EFFECT OF CUTTING PARAMETERS ON THE SURFACE INTEGRITY OF GROUND AISI 1148 STEEL

MOHD ROZAIMI BIN ISMAIL

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical – Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

To my beloved parents, wife and son

ACKNOWLEDGEMENT

My deepest gratitude is extended to my supervisor Professor Dr. Noordin Mohd Yusof for the excellent guidance and supervision. The Director of Kolej Kemahiran Tinggi MARA Balik Pulau, Puan Hajah Rosminah bt Mohd Hussin for the understanding and support. My thanks also go to my parents Mr Ismail Ibrahim and Mrs. Esah Loman for the endless motivation and moral support. Not to forget thanks also goes to my beloved wife and new born son, Mrs Hartini bt Ab. A'ala and Muhammad Rizq Hakim b Mohd Rozaimi, who always stands by my side along this remarkable journey. Thank you very much.

ABSTRACT

This work outlines the effect of grinding cutting parameters on the surface integrity namely surface roughness and the surface hardness of AISI 1148 steel during surface grinding. The fundamental concept was that during grinding process, the heat dissipated in the cutting area is used to induce heat treatment of the AISI 1148 steel. ANOVA analysis was then utilized in order to process the data. The cutting parameter involved were work speed, infeed, cross feed and coolant flow rate. The influences of the cutting parameters toward surface roughness and surface hardness had been determined. The data obtain used as input to the statistical analysis software which is Statease.version 8 The ANOVA with full factorial is applied. From the data analysis, it seem that for surface roughness, the most significant cutting parameters were work speed and cross feed and infeed.

ABSTRAK

Kajian ini adalah mengenai kesan pembolehubah pemotongan pada proses lelasan terhadap integriti permukaan iaitu kekasaran permukaan dan kekerasan permukaan besi AISI 1148. Ini berlandaskan terhadap kefahaman bahawa semasa proses lelasan, haba yang terjana digunakan untuk melaksanakan proses rawatan haba terhadap besi AISI 1148. Data yang diperolehi kemudian di analisis menggunakan pendekatan ANOVA. Pembolehubah pemotongan yang dikaji adalah kelajuan bahan kerja, kedalaman pemotongan, kelajuan rentasan bahan kerja dan kadar aliran cecair penyejuk. Pengaruh pembolehubah – pembolehubah berikut kemudiannya dikenalpasti. Data kemudianyan dianalisis menggunakan perisian statistik Statease versi 8. Kaedah analisis data ANOVA dengan *full factorial* digunakan. Daripada analisis data yang diperolehi, bagi kekasaran permukaan, kelajuan bahan kerja dan kelajuan rentasan bahan kerja adalah pembolehubah pemotongan yang paling signifikan. Manakala bagi kekerasan permukaan, kelajuan bahan kerja, kelajuan rentasan bahan kerja dan kedalaman pemotongan yang paling signifikan.

TABLE OF CONTENTS

TITLE

CHAPTER

DECLARATION		ii
DEDICATION		iii
ACKNOWLEDGEMENTS		iv
ABSTRACT		v
ABSTRAK		vi
TABLE OF CONTENTS		vii
LIST OF TABLES		Х
LIST OF FIGURES		xi
LIST OF ABBREVIATIONS AND SYM	IBOLS	xvi
LIST OF APPENDICES		xvii
1 INTRODUCTION		
1.1 Background	1	
1.2 Problem Statement	2	
1.3 Objectives of Study	3	
1.4 Significance of the Study	4	
1.5 Scopes of Study	4	
1.6 Organization of the Project Report	5	
2 LITERATURE REVIEW		
2.1 Introduction	6	
2.2 Surface Grinding	7	
2.2.1 Grinding Wheel		9

2.3 Mechanics of Grinding16			
2.3.1	Spesific Heat Energy		19
2.3.2	Temperature During Grinding		22
2.3.3	Grinding Wheel Wear		23
2.3.4	Ductile Mode Machining of Hard	l and	
	Brittle Material		26
2.4 Metal All	oys: Structure and Heat Treatment	28	
2.4.1	Introduction		28
2.4.2	Structures of Alloys		29
2.4.3	Phase Diagram		33
2.4.4	The Iron Carbon System		38
2.5 Heat Trea	atment of Ferrous Alloys	41	
2.5 Heat Trea 2.5.1	Time Temperature Transformation	41 on Diagrar	n 45
2.5 Heat Trea 2.5.1 2.5.2	Time Temperature Transformatic Martensite	41 on Diagrar	n 45 47
2.5 Heat Trea 2.5.1 2.5.2 2.5.3	Time Temperature Transformatic Martensite Continuous Cooling Transformat	41 on Diagran ion	n 45 47
2.5 Heat Trea 2.5.1 2.5.2 2.5.3	Time Temperature Transformation Martensite Continuous Cooling Transformat Diagram	41 on Diagran ion	n 45 47 50
2.5 Heat Trea 2.5.1 2.5.2 2.5.3 2.5.4	Time Temperature Transformation Martensite Continuous Cooling Transformat Diagram Tempered Martensite	41 on Diagran ion	n 45 47 50 53
2.5 Heat Trea 2.5.1 2.5.2 2.5.3 2.5.4 2.6 Surface R	Time Temperature Transformation Martensite Continuous Cooling Transformat Diagram Tempered Martensite	41 on Diagran ion 57	n 45 47 50 53
2.5 Heat Trea 2.5.1 2.5.2 2.5.3 2.5.4 2.6 Surface R 2.6.1	Time Temperature Transformation Martensite Continuous Cooling Transformat Diagram Tempered Martensite Roughness Measurement Surface Structure and Integrity	41 on Diagran ion 57	n 45 47 50 53 57
2.5 Heat Trea 2.5.1 2.5.2 2.5.3 2.5.4 2.6 Surface R 2.6.1 2.6.2	Time Temperature Transformation Martensite Continuous Cooling Transformat Diagram Tempered Martensite Roughness Measurement Surface Structure and Integrity Surface Texture and Surface Rou	41 on Diagran ion 57 ghness	n 45 47 50 53 57 59
2.5 Heat Trea 2.5.1 2.5.2 2.5.3 2.5.4 2.6 Surface R 2.6.1 2.6.2 2.7 Rockwell	Time Temperature Transformation Martensite Continuous Cooling Transformat Diagram Tempered Martensite Roughness Measurement Surface Structure and Integrity Surface Texture and Surface Rou	41 on Diagran ion 57 ghness 60	n 45 47 50 53 57 59

3 RESEARCH METHODOLOGY

3.1 Component/Workpiece	62
3.2 Grinding Wheel	62
3.3 Grinding Process	63
3.4 Machine Tool	63
3.5 Measuring Equipments	66
3.6 Design of Experiment	67
3.7 Surface Roughness Measurement procedure	70
3.8 Superficial Hardness Test Procedure	70

4 RESULT AND DISCUSSION

4.1 Result	71	
4.1.1	Response 1 : Surface Roughness	73
4.1.2	Response 2 : Surface Hardness	79
4.2 Discussion		
4.2.1	Surface Roughness	84
4.2.2	Surface Hardness / Superficial Hardness	85
5 CONCLUSION AN	D RECOMMENDATIONS 89	
REFERRENCES 91		
Appendices A1 - A10		

LIST OF TABLES

TABLE NO.

TITLE

2.1	Hardness value of abrasive material used in grinding	
	wheel (I. D. Marinescu et. al., 2007)	10
2.2	Marking system for conventional grinding wheels as	
	defined by ANSI Standard (I. D. Marinescu et. al., 2007)	14
2.3	Approximation of the fraction of heat (R) going to	
	the workpiece (S. Malkin, 1984)	23
3.1	Specifications of Grinding Machine	63
3.2	Experimental design table	68
3.3	Experimental design matrix	69
4.1	The grinding operation parameters and the value of	
	surface roughness and surface hardness obtain	72
4.2	ANOVA for Response 1: Surface Roughness	73
4.3	ANOVA for Response 2: Surface Hardness	79

LIST OF FIGURES

FIGURE NO.

TITLE

2.1	Schematic illustration of various surface grinding	
	operation (a) Horizontal- spindle surface grinder: traverse	
	grinding (b) Horizontal-spindle surface grinder: plunge	
	grinding (S. Malkin, 1984)	8
2.2	Schematic illustration of a horizontal spindle surface	
	grinder (S. Malkin, 1984)	8
2.3	Typical structure of grinding wheel	
	(I. D. Marinescu et. al., 2007)	13
2.4	Some of the standard wheel shape:	
	(I. D. Marinescu et. al., 2007)	15
2.5	A line diagram showing (a) the basic scheme	
	of the surface grinding operation similar to that of the up	
	milling operation and (b) the cutting action of active grain	
	that are randomly distributed in the periphery of bonded	
	abrasive wheel .(V. C. Venkatesh et. al., 2006)	16
2.6	(a) Relationship between the cutting force and the wheel	
	depth of cut in the three phases of grinding process	
	(b) specific energy decreases as the metal removal	
	rate is increased throughout the three stages in the	

	grinding operation .(V. C. Venkatesh et. al., 2006)	17
2.7	A schematic of a horizontal surface grinding operation	
	showing an individual undeformed chip and grinding	
	parameters .(V. C. Venkatesh et. al., 2006)	18
2.8	Shows size effect relationship between chip thickness	
	and resisting shear stress of a carbon steel modified	
	by Taniguchi with the addition of tension test.	
	(V. C. Venkatesh et. al., 2006)	21
2.9	Radial volumetric wheel wear versus accumulated metal	
	removed for an external cylindrical grinding plunge	
	grinding operation .(V. C. Venkatesh et. al., 2006)	24
2.10	A schematic illustration of the wheel wear mechanism :	
	(A) Attritious wear (B) Grain Fracture (C) bond	
	fracture (D) Intrefacial grain bond fracture .	
	(V. C. Venkatesh et. al., 2006)	25
2.11	Conventional machining processes versus the	
	nanogrinding process	27
2.12	Cross section of gear teeth showing induction hardened	
	surfaced (W. D. Calister, 2004)	28
2.13	(a) Schematic illustration of grain, grain boundaries, and	
	particle dispersed throughout the structure of two phase	
	system. (b) Schematic illustration of a two phase system	
	consisting of two sets of grain: dark and light	
	(W. D. Calister, 2004)	33

2.14	(a) Cooling curve for the solidification of pure metal.	
	Note that freezing take place at a constant temperature,	
	The latent heat of solidification is given off. (b) Change in	
	density during the cooling of pure metal	
	(W. D. Calister, 2004)	34
2.15	Phase diagram for nickel copper alloy obtained at a	
	slow rate of solidification . (W. D. Calister, 2004)	36
2.16	The lead-tin phase diagram. (W. D. Calister, 2004)	37
2.17	The iron –iron carbide phase diagram.	39
2.18	The unit cells for (a) austenite,	
	(b) ferrite, and (c) martensite	40
2.19	Microstructure of eutectoid steel. Spheroidite is formed by	
	tempering the steel at 700°C. Magnification 1000X	
	(W. D. Calister, 2004)	42
2.20	(a) Hardness of martensite as a function of carbon content,	
	(b) Micrograph of martensite containing 0.8% carbon.	43
2.21	Hardness of tempered martensite as a function	
	of tempering time for 1080 steel. (W. D. Calister, 2004)	45
2.22	(a) Austenite to pearlite transformation of iron	
	carbon alloy as a function of time and temperature.	
	(b) Isothermal transformation diagram obtained from	
	(a) for a transformation temperature of 675° C.	
	(c) Microstructures obtained for a eutectoid iron carbon	
	alloy as a function of cooling rate. (W. D. Calister, 2004)	46
2.23	Photomicrograph of a steel having a spheroidite	
	microstructure. (W. D. Calister, 2004)	47
2.24	The body centered tetragonal unit cell for martensitic	
	steel showing iron atoms (circles) and sites that may be	

	occupied by carbon atoms (crosses). For this tetragonal	
	unit cell.(W. D. Calister, 2004)	48
2.25	The body centered hexagonal unit cell for martensitic steel	
	showing iron atoms (circles) and sites that may be	
	occupied by carbon atoms (crosses). For this hexaonal	
	unit cell (W. D.Calister, 2004)	49
2.26	Superimposition of isothermal and continuous cooling	
	transformation diagram for eutectoid iron carbon alloy.	
	(W. D. Calister, 2004)	50
2.27	Moderately rapid and slow cooling curves superimposed	
	on a continuous cooling transformation diagram	
	for a eutectoidiron – carbon alloy (W. D. Calister, 2004)	52
2.28	Continuous cooling transformation diagram for a eutectoid	
	iron-carbon alloy and superimposed cooling curves	
	(W. D. Calister, 2004)	52
2.29	Electron micrograph of tempered martensite	
	(W. D. Calister, 2004)	55
2.30	Tensile and yield strength and ductility (%AR) versus	
	tempering temperature for an oil quenched alloy steel	
	(type 4340) (T. Tawakoli et. al., 2007)	55
2.31	The hardness of the alloy steel in tempering temperature	
	time (T. Tawakoli et. al., 2007)	56
2.32	Principles of the Rockwell and Rockwell superficial	
	hardness tests (A. Nayar, 2005)	60
3.1	The grinding machine	65
3.2	Surface roughness tester machines	66
3.3	Hardness tester machine	67
4.1	Normal plot Residual (Surface Roughness)	75
4.2	Residual vs Predicted (Surface Roughness)	75

4.3	Predicted vs Actual (Surface Roughness)	76
4.4	Interaction graph – cross feed and speed	
	(Surface Roughness)	76
4.5	Interaction graph- coolant and speed (Surface Roughness)	77
4.6	Interaction graph – speed and infeed (Surface Roughness)	77
4.7	Interaction graph – coolant and cross feed	
	(Surface Roughness)	78
4.8	Interaction graph – speed and infeed (Surface Roughness)	78
4.9	Normal plot residual (Surface Hardness)	81
4.10	Residual vs Predicted (Surface Hardness)	81
4.11	Predicted vs Actual (Surface Hardness)	82
4.12	Residual vs speed (Surface Hardness)	82
4.13	Interaction graph – Cross feed and speed	
	(Surface Hardness)	83
4.14	Interaction Graph – Infeed and speed (Surface Hardness)	83

LIST OF ABBREVIATIONS AND SYMBOLS

P_{g}	-	Proportion of abrasive grains in the total wheel volume
P _b	-	Proportion of bond material
P _p	-	Proportion of pores (air gaps)
ANOVA	-	Analysis of variance
t	-	Chip thickness
и	-	Specific grinding energy
Ft	-	Tangential grinding force
F_{H}	-	Horizontal grinding force
F_V	-	Vertical grinding force
V	-	Cutting speed
V	-	Workpiece speed
d	-	Infeed
b	-	Width of the cut
F	-	Wheel speed
D	-	Wheel diameter
θ_{d}	-	Mean surface temperature
pC	-	Volume specific heat
\mathbf{V}_{w}	-	Volume remove
Vs	-	Volume of the wheel wear
TTT	-	Time-Temperature-Transformation
FCC	-	Face centered cubic
BCC	-	Body centered cubic
CCT	-	Continuous cooling transformation
Ν	-	Number specific to the Rockwell hardness scale
h	-	Permanent depth of indentation

S	-	Scale unit, specific to the Rockwell hardness
HB	-	Hardness Brinnel
HV	-	Hardness Vickers
HPD	-	Depth of hardness

LIST OF APPENDICES

APPENDIX

TITLE

A1	Design Actual	93
A2	Design Summary	94
A3	Effect for Response 1: Surface Roughness	95
A4	ANOVA for Response 1 : Surface Roughness	96
A5	Diagnostic for Response 1: Surface Roughness	102
A6	Model Graph for Interactions : Surface Roughness	105
A7	Effect for Response 2: Surface Hardness	108
A8	ANOVA for Response 2 : Surface Hardness	109
A9	Diagnostic for Response 2: Surface Hardness	113
A10	Model Graph for Surface Hardenss	116

CHAPTER 1

INTRODUCTION

1.1 Background

Grinding is a complex metal cutting process, which for many centuries has been perfected via study and complex analytical approach. It is well known that this machining process consume more energies compare to another machining methods. Generally, grinding process is closely related to the main objective as the best cutting method to produce a dimensionally and geometrically accurate workpiece. The relationship between cutting condition and the surface finish of the workpiece has been establish and verified through series of studies.

Recently, a vast study on the heat dissipation and the effect on the microstructure level of material has been explored. A prominent study by E. Brinksmeler et al (1996), try to integrate production line in manufacturing industries with grinding possibilities to produce superficial hardening in order to cutting manufacturing cost. A new term has been introduced in his study paper namely grind-hardening. If we focus on microstructure level, Grind-hardening is based upon martensitic phase transformation by short time austenization of a surface layer with following self quenching. However, up until now, the component that were grind

hardened are mostly characterized by compressive residual stresses in the surface layer (E. Brinksmeler et al, 1996). An attempt also has been made by O. Zurita et al (2002) to discover the influence of the cutting parameters on the superficial hardening of AISI 1045. She comes out with a conclusion that the increasing value of parameters lead to the higher superficial hardening on the workpiece. Other study (P. Krajnik, 2005), design the grinding factors based upon surface methodology or classically design of experiment. Superficial hardness is closely related to the amount of the residual stresses on the material surface during machining. Y. Matsumoto (1991) demonstrates that the residual stresses are mainly by; (1) martensite transformation near the surface (2) the plastic flow of the material on the surface and adjacent areas due to thermal stresses cause by heat generated during the process (3) plastic deformation due to the cutting forces of the grain on the surface of workpiece.

In spite of that, a question related to the optimum grinding cutting parameters which can induced superficial hardening together with great surface roughness were never being answered.

Therefore, this study work have been propose in order to determine the optimum parameter and co relation between good surface roughness and the superficial hardness of the workpiece.

1.2 Problem Statement

As we all known, grinding is complex cutting process with large number of interacting parameters. Its can be classified into four type (4). First, wheel characteristic; which is include wheel diameter, grit type and size, wheel grade, structure, bond, dressing method, degree of wheel balance. Second was the work characteristic, which is including workpiece hardness, structure and chemistry. The

third was machine characteristic, which is spindle abd table stiffness, damping and dynamic characteristic. The fourth is operating condition which would be the concern parameters in this study include wheel speed, feed, depth of cut and coolant flow rate.

Several information has been extracted from previous study. a carbon content is crucial to induce the superficial hardening process to take place in grinding. It is also suggested that the severe cutting condition will assist in martensite formation in microstructure level of workpiece. Workpiece with high carbon content will be applied in this study. In addition, a good surface finish is also a response to the experiment done. How the cutting parameters influence the value of the surface roughness and the surface hardness will be determine through the study work. Furthermore, what are the optimum value to achieve the best for both response.

1.3 Objective of the Study

The study was carried out to investigate the effect of the operating condition which are wheel speed, feed, depth of cut and coolant flow rate upon surface integrity of the workpiece (AISI 1148). The surface integrity involve are surface roughness and superficial hardness of the workpiece.

The objectives of this study are:

- I. To investigate the effect of the operating condition which are workpiece speed, infeed, crossfeed, coolant flow rate on the surface roughness and surface hardness of ground AISI 1148 steel.
- II. To identify and determine the significance parameters that influences the responses.

1.4 Significance of the Study

The industries request upon good surface finish component with high hardness has pushed the researchers to come out with the optimum condition in grinding technology. The best value which can compensate both surface roughness and surface hardness must be determine for every metal and non metal. A grind process not yet being closely discovered and understood. This study will contribute to the knowledge of understanding the surface roughness and possibility to induce the superficial hardening by together with good surface finish in component. It will also indirectly contribute to the industry in term of cutting the cost of hardening process which can be integrated in the operation line.

1.5 Scope of the Study

This study is limited within the scope listed;

- I. AISI 1148 steel will employed as a workpiece material.
- II. Surface roughness tester machine brand Mitutoyo SJ-400 will be employed.
- III. Grinding wheel aluminium oxide with the marking system A60M5V will be employed.
- IV. Vickers microhardness tests will be employed to determine HV values of the workpiece.
- V. The experiments will be limited to surface grinding
- VI. The wheel and machine characteristic are not factors to be considered in this experiment.
- VII. Classic DOE through Statease software will be utilized.

1.6 Organization of Project Report

The Project report can be summarized into five chapters which are Introduction, Literature Review, Research Methodology, Result and Discussion and finally, Conclusions and Recommendations. Chapter 1 (Introduction) is on the background, the rationale and significant of the research, problems statement and scopes of the research. It is followed with the chapter 2, which is Literature Review, it is the accumulation of the related literature regarding of the research. The literatures are on grinding, material properties, the science of heat treatment on metal and mechanic of metal cutting. Chapter 3 (Research Methodology) is on the experiment set up and experiment procedures. It is also on the specifications of the related measuring equipments. Chapter 4 is on Results and Discussion. It is the detail of the ANOVA analysis by utilizing Statease version 8 statistical software. The discussion on data and analysis by the ANOVA. Finally, Chapter 5 is on Conclusions and Recommendations. It is consist of the conclusions due to the research and the suggestions for future research.