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ABSTRACT 

 

 

 

 

Lattice Boltzmann method (LBM) is applied to predict the phenomenon of 

natural convection in a generalised isotropic porous media model filled in a square 

geometry by introducing a force term to the evolution equation and porosity to the 

density equilibrium distribution function. The temperature field is obtained by 

simulating a simplified thermal model which uses less velocity directions for the 

equilibrium distribution function and neglects the compression work done by the 

pressure and the viscous heat dissipation. The reliability of this model for natural 

convective heat transfer simulation is studied by comparing with results from other 

previous simulations at a porosity value, ε = 0.9999 which is close to unity 

resembling a square cavity condition. The model is then used for simulation at ε 

equal to 0.4, 0.6 and 0.9. The results obtained are discussed in terms of the Nusselt 

number, streamlines and isotherms. Comparison with previous works confirms the 

applicability of the model. 
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ABSTRAK 

 

 

 

 

Kaedah Kekisi Boltzmann (LBM) diaplikasikan untuk menjangka fenomena 

perolakan semulajadi pada model umum untuk bahan poros yang bersifat isotropik 

dalam sebuah geometri berbentuk segiempat sama dengan memperkenalkan kesan 

daya dalam persamaan evolusi dan keporosan kepada fungsi keseimbangan 

ketumpatan.  Medan suhu diperolehi dengan mensimulasi model terma yang telah 

dipermudahkan dengan menggunakan kurang arah halaju untuk fungsi peredaran  

keseimbangan dan mengabaikan kerja mampatan yang dilakukan oleh tekanan dan 

kehilangan haba kelikatan.  Kebolehpercayaan model ini untuk pemindahan haba 

konvektif secara semulajadi dikaji dengan membandingkan kepada keputusan 

simulasi hasil kerja yang terdahulu pada nilai keporosan, ε = 0.9999 yang hampir 

kepada 1 yang menyerupai keadaan segiempat sama yang kosong. Seterusnya, model 

digunakan untuk simulasi pada ε bersamaan dengan  0.4, 0.6 dan 0.9.  Keputusan 

yang diperolehi diboncangkan dari segi nombor Nusselt, garisan stream dan garisan 

isothermal. Perbandingan dengan hasil kerja terdahulu menunjukkan yang model ini 

memberikan keputusan yang memuaskan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Convective heat transfer is mode of energy transfer between a solid surface and 

the adjacent fluid in motion. It involves the combined effects of conduction and fluid 

motion. Convective heat transfer is known as forced convection if the fluid is forced to 

flow over the surface by external means. If the fluid motion is initiated by buoyancy 

forces as a result of density differences due to variation of temperature in the fluid, it is 

known as natural convection (Cengel, 2003).  

                     
Figure 1.1 Examples of porous media structure (Kaviany, 1992) 
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Porous media is a medium that is formed by many relatively closely packed 

particles or solid matrix with its void filled with fluids (Kaviany, 1992). The porosity of 

a medium is defined as the fraction of the total volume of the medium that is occupied 

by void space ( Nield and Bejan, 1992). 

 

                  
 

           Figure 1.2 Flow in a porous medium (Oosthuizen and Naylor, 1999) 

 

Convective heat transfer through porous media has received attention from many 

researchers. In particular, natural convective heat transfer through porous media has 

been studied extensively since the past several decades because of its importance in 

industry (Kakac et.al, 1990). Some of the applications include heat transfer through a 

layer of granular insulating material entirely filled with air and heat transfer from a pipe 

or cable buried in soil or in a bed of crushed stones saturated with flowing ground water 

(Oosthuizen and Naylor, 1999).  

 

 

Before the development of high speed digital computers, experimental and 

theoretical methods have been used to solve problems related to fluid flow and heat 

transfer including convective heat transfer in porous media. However, with the existence 

of digital computers, numerical methods became more popular. When the problems are 

very complex, it is relatively easier to solve by using numerical methods. (Tannehill 

et.al, 1997).  
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1.2 Numerical Methods 

 

 

The governing equations of fluid dynamics and heat transfer form the basis of 

numerical methods in fluid flow and heat transfer problems. The Navier Stokes equation 

coupled with energy equation only partially address the complexity of most fluids of 

interest in engineering applications. In addition to that, the equation is so complex that 

currently there is no analytical solution except for a small number of special cases. The 

most reliable information pertaining to a physical process of fluid dynamics is usually 

given by an actual experiment using full scale equipments. However, in most cases, such 

experiment would be very costly and often impossible to conduct (Azwadi, 2007). 

 

 

With the recent computer technology, the Navier-stokes equation is able to be 

solved numerically. In order to simulate fluid flows on a computer, continuity equation, 

Navier-Stokes equation coupled with energy equation need to be solved with acceptable 

accuracy. Researchers and engineers need to discretize the problem by using a specific 

method before they can solve the problem. The numerical simulation begins with 

creating a computational grid. Grid is the arrangement of these discrete points 

throughout the flow field (Anderson, 1995). Depending on the method used for the 

numerical calculation, the flow variables are either calculated at the node points of the 

grid or at some intermediate points. 

 

 

Common numerical methods are finite difference, finite volume and finite 

element method. In recent years, researchers have also developed other methods apart 

from the three aforementioned methods. In this project, a relatively new method; Lattice 

Boltzmann Method (LBM) will be used.  
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1.3  Lattice Boltzmann Method 

 

 

Lattice Boltzmann Method (LBM) is a relatively new approach that uses simple 

microscopic models to simulate complicated macroscopic behavior of transport 

phenomena.  In other words, it describes the fluid at molecular level and models for the 

collision between molecules.  

 

 

 The core idea of the LBM is to develop simplified kinetic models that 

incorporate the essential physics of microscopic processes so that the macroscopic 

averaged properties comply with the desired macroscopic Navier-Stokes equations.  The 

concept of particle distribution has been developed in the field of statistical mechanics to 

describe the kinetic theory of liquids and gases.   

 

 

This single-particle distribution is then used in the lattice Boltzmann scheme.  

The degree of freedom used to define the particle distribution is reduced from the 

physical world to a computationally manageable number in the simulation while still 

maintaining fidelity with the continuum prescription of the physical world. The LBM 

was found to be as stable, accurate and computationally efficient as classical 

computational methods for simulation of a single phase, isothermal fluid flow (Azwadi, 

2007). Simulations for thermal related problems such as natural convective heat transfer 

require additional thermal equilibrium distribution function apart from the initially stated 

particle distribution function. The application of this model also has been proven to be 

successful (He et.al, 1998). 
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1.4  The advantages of Lattice Boltzmann Method 

 

 

There are a few advantages of Lattice Boltzmann Method (LBM) compared to 

the conventional numerical methods. Firstly, the algorithm is simple and thus can be 

implemented with a kernel of just a few hundred lines.  Moreover, the algorithm can be 

modified to suit other relatively complex simulation. 

 

 

Secondly, the LBM allows for an efficient parallelization of the simulations even 

on parallel machines with relatively slow interconnection networks. This is due to only 

interaction of each lattice node with its nearest neighboring nodes are involve at each 

iteration step. 

 

 

Thirdly, the LBM can also be implemented to simulate multiphase flows. In 

classical numerical methods, for multiphase flow, the partial differential equations need 

to be written for each of the two phases.  The implementation of such a model requires 

advanced software engineering techniques to track the position of this interface and to 

implement its dynamics. LBM eliminates this problem where the two phases can be 

represented by the same fluid model. 

 

 

Fourthly, LBM has been proven to be successfully used in applications that 

involve interfacial dynamics and complex.  Apart from that, the natural advantage of 

LBM compared to conventional numerical methods is that, no descretization of the 

macroscopic continuum equations need to be provided.  Hence, the LBM does not need 

to consider explicitly the distribution of pressure on interfaces of refined grids since the 

implicity is included in the computational scheme.   
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Last but not least, since only one or two speeds and a few moving directions are 

used in LBM, the transformation related to the microscopic distribution function and 

macroscopic quantities is extremely simple and consists of no more than arithmetic 

calculations. 

 

 

 

1.5  Comparison : LBM and other numerical methods  

  

 

In the conventional fluid flow simulation and other physical modeling, the 

starting point is to discretize the partial differential equations (PDE). These PDEs are 

discretized either by finite differences, finite element or finite volume. Then, standard 

numerical methods are used to solve the resulting of ordinary differential equations. 

 

 

 In Lattice Boltzmann Method (LBM), the particle velocity distribution function 

is discretized instead of hydrodynamic variables.  The derivation of the corresponding 

macroscopic equation requires multi-scale analysis (Gladrow, 2000).  

 

 

 

 

 

               

 

 

 

 

 

                 Figure 1.3      Classical numerical methods versus LBM 
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1.6 Natural convection through porous media - LBM 

 

 

  A benchmark solution for natural convection in square geometry has been 

developed nearly three decades ago (Davis, 1983). Due to industrial demand for 

numerical solutions, the problem has been till now progressively extended to porous 

media. 

 

 

  Darcy’s equation was earlier used by researchers to study natural convection in 

porous media. However, previous results indicate that the equation is only applicable at 

low velocity condition (Darcy, 1856). For higher velocity condition, modifications to the 

equation are required which includes consideration of non-linear drag due to the solid 

matrix (Forchheimer, 1901) and viscous stresses by the solid boundary (Brinkman, 

1947). These two factors may not affect the study in low velocity but it must be 

considered for high velocity studies. The combination of these two equations is known 

as Brinkman-Forchheimer equation. The behaviour of this non-Darcian condition is 

shown in physical experiment (Prasad et.al, 1985). Due to lack of generality in the 

model to be used for a medium with variable porosity, a generalised model was then 

developed (Nithiarasu et.al, 1997).  

 

 

  Mesoscopic approach for fluid flows have been extensively used with the 

advancement of lattice Boltzmann method (Shen and Doolen, 1997). Since then, studies 

of incompressible flows through porous media have been done by using the proposed 

generalised model (Guo and Zhao, 2002). The model was created by introducing a force 

term to the evolution equation and porosity to the density equilibrium distribution 

function (Guo et.al, 2002). Simulations for thermal related problem such as natural 

convective heat transfer require additional thermal equilibrium distribution function (He 

et.al, 1998). A simplified model can be used by neglecting the compression work done 

by the pressure and the viscous heat dissipation (Peng et.al, 2003). Such simulations 
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have also been done for porous media (Seta et.al, 2006) which also yield comparatively 

good results. Other study showed that for certain limited conditions, the thermal 

equilibrium distribution function calculation can actually be further simplified by using 

less velocity directions for the equilibrium distribution function without reducing the 

accuracy in computation (Azwadi and Tanahashi, 2006).  

 

 

 

 

1.7  Statement of identified problem 

 

 

Lattice Boltzmann Method (LBM) have been used to simulate natural convection 

in porous media by using nine velocity directions model (D2Q9) for both velocity and 

temperature field. However, no attempt have been made to use a simplified model 

(D2Q4) to simulate the temperature field although previous research have shown that the 

calculation effort can be reduced by using simplified model (D2Q4) for temperature 

field (Azwadi and Tanahashi, 2006). Therefore, in this study, the temperature field will 

be simulated by D2Q4 model.    
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1.8  Objectives of the Project 

 

 

In this study, a simplified version of thermal model will be used to simulate 

natural convective heat transfer in porous media. It uses less velocity directions for the 

equilibrium distribution function. The objective of this study is to demonstrate the ability 

of this new model to produce the same result with conventional thermal model. 

  

 

 

 

1.9  Scope of the Project  

 

 

This master project will be limited to: 

a) steady state incompressible fluid flow 

b) rectangular enclosure with differentially heated walls 

c) isotropic porous media 

d) non-Darcy region 




