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ABSTRACT

The Finite Different Navier Stokes equation (FDN@Bd Cubic Interpolated
Pseudo-Particle Navier Stokes equation (CIPNSE)apmdied to simulate the 2-D
square lid driven cavity flow of water at Reynoldsmbers 100, 400 and 1000.
CIPNSE scheme solves hyperbolic type equations twlicthe vorticity transport
equation In the CIPNSE, the gradient and the valuhe vorticity at the nodes is
determined and the stream function is then detexthursing the vorticity equation. It
is discovered that the numerical simulation of CH#ENprovided a very good
agreement with the established ‘benchmark’ reqyt&hia et. al. but is slightly less
accurate compare to FDNSE. The flow structure @ 2hallow lid driven cavity
flow of water at Reynolds numbers has been studiigderically using CIPNSE and
compared with FDNSE and Ghia result which show gagretement. The location of
the primary and secondary vortex also settled atstime place. For shallow cavity
flow, both streamline pattern using FDNSE and CIEN®ow concluding remarks
compare to CIPLBM. On top of that, the accuracyGdPNSE and FDNSE are
compared based on Ghia result within the midseat&nocity profile where minor
differences of accuracy are demonstrated for CIPNSE the other hand, both
midsection velocity for CIPNSE and FDNSE show tid§ferences compare to
FDNSE and Constrained Interpolation Profile LatBmtzmann Method (CIPLBM).

Yet CIPNSE is practical in simulating two dimensbhd driven cavity.
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ABSTRAK

Pembeza terhingga persamaan Navier Stokes (FDN&E)lisipan semata-
padu Pseudo-Zarah persamaan Navier Stokes (CIPN&g)nakan untuk
mensimulasikan aliran di dalam rongga persegi dimemksi dengan penutup
bergerak pada nombor, Reynolds 100 400 dan 100k €IPNSE menyelesaikan
persamaan jenis hiperbolik yang menyelesaikan p&raa pengangkutan pusaran.
Dalam CIPNSE, kecerunan dan nilai pusaran padapsetbd dapat dicerap dan
fungsi arus kemudian ditentukan dengan menggunagarsamaan pusaran.
Hasilnya, simulasi berangka CIPNSE memberikan jamagang hampir sama
simulasi Ghia et. al. Walaubagaimanapun, ianyakgeklurang tepat berbanding
dengan FDNSE. Struktur aliran tutup cetek 2-D alirangga didorong air pada
nombor Reynolds secara berangka menggunakan ClEESHibandingkan dengan
keputusan FDNSE dan Ghia yang menunjukkan kesesumag baik. Lokasi
pusaran primer dan sekunder juga didapati di térgpag sama. Untuk aliran
rongga cetek juga, pola garis arus yang terhagh glenggunaan FDNSE dan
CIPNSE menunjukkan hasil yang lebih baik jika ditiagkan dengan CIPLBM
(kaedah isipadu terkekang Lattice Boltzmann). 8eli&i, ketepatan bandingan
CIPNSE dan FDNSE berdasarkan keputusan Ghia dalafih kelajuan di kawasan
tengah menunjukkan sedikit perbezaan ketepatanmigaggunakan CIPNSE. Dari
aspek lain, baik kelajuan kawasan tengah untuk SEPNan FDNSE menunjukkan
perbezaan kecil berbanding dengan FDNSE dan CIPLB&ungguhnya, CIPNSE
bersifat praktikal dalam simulasi kedua dimensggantudung didorong.
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CHAPTER 1

INTRODUCTION

1.1  Background

Mankind and would fall into great disaster andasabphe to humanity if the
human best friend, computer, is suddenly disapdeace the first computer was
built on in the early 2‘bcentury, human life changes exponentially. Ingbdier era
of computer invention, computer was as big as hanskthe performance were very
slow. But thanks to IBM and APPLE, the companieat thave developed the
computer up until today as the size, the weight wedperformance are terrifically
boosted. With the latest version of computer, pedplish their job within few
minutes rather than spending days or months d@&digpus work and recursive task
long before the existence of computer. Researchedsaccountant would be the
happiest person to be using the computer as theikimg time can be reduced
greatly and they have more time to do more calmriatand researches.

Centuries before the existence of the computexeareher only relies on
experimental data to understand the behaviouuat flow and come out with many
correlations, and such worthy correlations wasfdinsous and widely-used Reynolds
Number, Re which was discovered after hundredsuotessful experiment. The

experiments were conducted by Osborn Reynolds & 1880s producing the



establishment of the dimensionless Reynolds nunteras the key parameter for
the determination of the flow regime in pipes, Wigetturbulent or not [1]. The next
most successful experiment ever achieves backvindecades was the airplane
which was invented in 1903. Oliver and Wilbur Wrighwas the team that
successfully lead the world into a new dimensiod #iose victories were achieved
after thousands of worthy experience and experinm@htiously, the most difficult

part of an experiment is to get a successful ddtehwrequire a large number of
experiments. The result from experiment is verynpsing because it is the actual
thing that is really happening. Somehow, it is idifit when conducting an

experiment since the preparation of the instruntemaand devices is tedious if it

does not follow the instruction in a proper manner.

As the world developed, computers were also imgulovCFD or
Computational Fluid Dynamic is one of the applioca which introduced by the
computer. CFD tremendously facilitate the crackioig fluid flow problem by
presenting the real problem in an abundance of ledye that would be really
useful to replicate the real fluid flow problem. Masimulations were done using the
CFD and have been a great help for engineers aedtists. CFD is easier to be
implemented rather than conducting an experimegt ithvery expensive and time
consuming. Hence, the use of CFD is undeniable daysand it always yield good
results if the formulation, especially for the nuioal simulation was correctly
selected and evaluated. More research were dong asmputer and vast type of

numerical method were implemented using computer.

Overall, the fluid dynamic solution can be dividetb three major divisions
which are purely from experiment where many cotiets were developed. The
second division is completely theoretical which tafghe fluid problem has its own
assumption and mathematical equation that will leacnalytical solutions. This
division is not practical for complex Partial Diféatial Equation (PDE) especially
the Navier-Stokes equation which will be coverdaéran this chapter. The last and
the most recent method in solving the fluid dynamithe CFD. These divisions can
be illustrated in Figure 1.1



solution

Completely Experimental
Theoretice

Figure 1.1 Division of fluid dynamics solution

1.2  Computational Fluid Dynamic (CFD)

There are many application of CFD which are tdols research, design,
education, Automotive, Sports and many other fieldsthis thesis, the focus is
based on usefulness of CFD to solve the non lipeatial differential equation
(PDE) which usually the analytical solution doeg erist. Despite that, there are
flow with analytical solution were applied with nencal method for validation
purposes. The heart of CFD is the famous and uabt@won-linear incompressible

full Navier-Stokes equation.

There are two type of CFD simulation which is thenerical and the other
one is ready to use software. The latter one, oothrer word, the software for
example FLUENTO® is very easy to use and infiniteetyf flow problem with many
variables can be easily solved but there are da#dges such as the user probably
doesn’t know to the depth about the formulationat thas been applied, the
assumptions and a lot more. This software normedd for the practical application
which the complicated geometry and conditions. Redpat, this software is based



on the numerical method but it is not being rewvgalepurposes is solely to reduce
the tough part and to make it user friendly.

However, the former type of simulation is very eekable as the individual
who create the codes understand very well the ftaton, the assumption, boundary
conditions and others. This style of simulation alsuapplicable for knowledge
sharing as many publications spawn everyday with type of method for example
the Lattice Boltzmann method, Bifurcation method amore, claiming the method is
among the best through various comparison and at&ia with the earlier or the
classical method. The simulation requires the oredb be well-verse in
programming software i.e. FORTRAN, C++, Matlab.

On the other hand, the limitation is the simulat®ometimes cannot be
applied to complicated geometries, difficult and wery useful for industrial or life
application. Nevertheless, both type of simulatibnorrectly combined, the result
would be very reliable as the simulation resultacat yields the experimental result
for example the simulation of flow over cylindel @d the experimental |3

1.3  Governing Equation in CFD

In a fluid flow, there are many variables that sexand control the
characteristic of the flow. These variables norgnaépend on the physics of the
flow, the nature of the fluid or the surroundingst®m. The variables that normally

occur in a fluid flow are:
* velocity,u
e pressurep
* temperaturel’
» fluid density,p

 fluid viscosity, dynamicg) and kinematicy)

These familiar variables are very important forDC&imulation because it is

useful and usually incorporated in a three majoregal governing equation. These



governing equations are the key to CFD and alstdatt transfer simulation. It also
can be modified depending on the physical flow loé tfluid or base on the
assumption that can be made. The equations whidhdompressible fluid are:
* The continuity equation (conservation of mass)
V-u=0 (1.1)

* The Navier-Stokes Equation (conservation of monraptu
1
ut+u-Vu=—;V-p+vV2u+f (1.2)

* The energy equation (conservation of energy)
E.,+V(Ew=q—-p-Vu+f-u (1.3)

The first two equations play a major role in pobrg the formulation which
iIs needed to produce the numerical simulation. s&hievo basic equations will
morph to a new equation based on the physical maxktlit is also different from

one and another if the applied numerical methatifisrent.

1.4  Simpleintroduction to Navier-Stokes equation

Navier-Stokes equation is a well known in fluigndmic fields. The
equation is nonlinear and usually the flows thatlyphis equation are considered
incompressible. Many fluids flow were governed Wbystequation because in
describing the conservation of momentum, the eqnatilmost perfect. In the
equation lie the unsteady term, the diffusive tggressure term, convective term and
the external force which is a complete packagerfomentum conservation. In spite,
there is no analytical solution to this equationtteeyre are many Partial Difference
term in the equation. Till this thesis were wrotemt, this equation still not yet be
solved but many type of numerical method were taatiby scientist and engineers

and produce their own solution of numerical simalat

However, there is still exception because somed flilow having the

analytical solution and this exception will be dissed later in the next chapter.



15 Lattice Boltzmann Method (LBM)

Lattice Boltzmann Method (LBM) is an alternativestimod for solving fluid

flow. LBM was developed from the Boltzmann’s originconceptual view in a
mesoscopic way. LBM use particles analysis whiah plrticle is confined to the
node of the lattice. Variations in momentary due uelocity directions and
magnitudes and varying particle mass are reduc8dltections, 3 magnitudes and a
single particle mass. Overall, LBM method is foeagsmore on small particles
analysis which is completely different from the sdeal numerical method in the
latter section [4].

16  Cubiclnterpolated Pseudo Particle (CIP) at a glance

CIP method is rather a new method. This methodeamnates on solving the
advection term which will be described in later tihe second chapter. The
fundamental of this method is it not only carribe value of a node, but together
with the gradients at that node also. Thus, mafigrmation can be stored with

small value of nodes.

1.7 Problem Statement

Many classical numerical methods have been apphiesblve Navier-Stokes
equation over the years. Yet, these numericallatking where for higher order of
accuracy, more grids are needed to satisfy theadsth
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