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ABSTRACT 

 

 

 

 

 The Finite Different Navier Stokes equation (FDNSE) and Cubic Interpolated 

Pseudo-Particle Navier Stokes equation (CIPNSE) are applied to simulate the 2-D 

square lid driven cavity flow of water at Reynolds numbers 100, 400 and 1000. 

CIPNSE scheme solves hyperbolic type equations which is the vorticity transport 

equation In the CIPNSE, the gradient and the value of the vorticity at the nodes is 

determined and the stream function is then determined using the vorticity equation. It 

is discovered that the numerical simulation of CIPNSE provided a very good 

agreement with the established ‘benchmark’ results by Ghia et. al. but is slightly less 

accurate compare to FDNSE. The flow structure of 2-D shallow lid driven cavity 

flow of water at Reynolds numbers has been studied numerically using CIPNSE and 

compared with FDNSE and Ghia result which show good agreement. The location of 

the primary and secondary vortex also settled at the same place. For shallow cavity 

flow, both streamline pattern using FDNSE and CIPNSE show concluding remarks 

compare to CIPLBM. On top of that, the accuracy of CIPNSE and FDNSE are 

compared based on Ghia result within the midsection velocity profile where minor 

differences of accuracy are demonstrated for CIPNSE. On the other hand, both 

midsection velocity for CIPNSE and FDNSE show tiny differences compare to 

FDNSE and Constrained Interpolation Profile Lattice Boltzmann Method (CIPLBM). 

Yet CIPNSE is practical in simulating two dimensional lid driven cavity. 
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ABSTRAK 

 

 

 

 

 Pembeza terhingga persamaan Navier Stokes (FDNSE) dan sisipan semata-

padu Pseudo-Zarah persamaan Navier Stokes (CIPNSE) digunakan untuk 

mensimulasikan aliran di dalam rongga persegi dua dimensi dengan penutup 

bergerak pada nombor, Reynolds 100 400 dan 1000. Teknik CIPNSE menyelesaikan 

persamaan jenis hiperbolik yang menyelesaikan persamaan pengangkutan pusaran. 

Dalam CIPNSE, kecerunan dan nilai pusaran pada setiap nod dapat dicerap dan 

fungsi arus kemudian ditentukan dengan menggunakan persamaan pusaran. 

Hasilnya, simulasi berangka CIPNSE memberikan jawapan yang hampir sama 

simulasi Ghia et. al. Walaubagaimanapun, ianya sedikit kurang tepat berbanding 

dengan FDNSE. Struktur aliran tutup cetek 2-D aliran rongga didorong air pada 

nombor Reynolds secara berangka menggunakan CIPNSE dan dibandingkan dengan 

keputusan FDNSE dan Ghia yang menunjukkan kesesuaian yang baik. Lokasi 

pusaran primer dan sekunder juga didapati  di tempat yang sama. Untuk aliran 

rongga cetek juga, pola garis arus yang terhasil oleh penggunaan FDNSE dan 

CIPNSE menunjukkan hasil yang lebih baik jika dibandingkan dengan CIPLBM 

(kaedah isipadu terkekang Lattice Boltzmann). Selain itu, ketepatan bandingan 

CIPNSE dan FDNSE berdasarkan keputusan Ghia dalam profil kelajuan di kawasan 

tengah menunjukkan sedikit perbezaan ketepatan jika menggunakan CIPNSE. Dari 

aspek lain, baik kelajuan kawasan tengah untuk CIPNSE dan FDNSE menunjukkan 

perbezaan kecil berbanding dengan FDNSE dan CIPLBM. Sesungguhnya, CIPNSE 

bersifat praktikal dalam simulasi kedua dimensi rongga tudung didorong. 
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CHAPTER 1 

 

 

 

 

1  INTRODUCTION   

 

 

 

 

1.1 Background 

BACK TO TABLE 
 

 Mankind and would fall into great disaster and catastrophe to humanity if the 

human best friend, computer, is suddenly disappear. Since the first computer was 

built on in the early 20th century, human life changes exponentially. In the earlier era 

of computer invention, computer was as big as house and the performance were very 

slow. But thanks to IBM and APPLE, the companies that have developed the 

computer up until today as the size, the weight and the performance are terrifically 

boosted. With the latest version of computer, people finish their job within few 

minutes rather than spending days or months doing tedious work and recursive task 

long before the existence of computer. Researchers and accountant would be the 

happiest person to be using the computer as their working time can be reduced 

greatly and they have more time to do more calculations and researches.  

 

 Centuries before the existence of the computer, researcher only relies on 

experimental data to understand the behaviour of fluid flow and come out with many 

correlations, and such worthy correlations was the famous and widely-used Reynolds 

Number, Re which was discovered after hundreds of successful experiment. The 

experiments were conducted by Osborn Reynolds in the 1880s producing the 
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establishment of the dimensionless Reynolds number, Re, as the key parameter for 

the determination of the flow regime in pipes, whether turbulent or not [1]. The next 

most successful experiment ever achieves back in few decades was the airplane 

which was invented in 1903. Oliver and Wilbur Wrights was the team that 

successfully lead the world into a new dimension and those victories were achieved 

after thousands of worthy experience and experiment. Obviously, the most difficult 

part of an experiment is to get a successful data which require a large number of 

experiments. The result from experiment is very promising because it is the actual 

thing that is really happening. Somehow, it is difficult when conducting an 

experiment since the preparation of the instrumentation and devices is tedious if it 

does not follow the instruction in a proper manner. 

 

 As the world developed, computers were also improved. CFD or 

Computational Fluid Dynamic is one of the applications which introduced by the 

computer. CFD tremendously facilitate the cracking of fluid flow problem by 

presenting the real problem in an abundance of knowledge that would be really 

useful to replicate the real fluid flow problem. Many simulations were done using the 

CFD and have been a great help for engineers and scientists. CFD is easier to be 

implemented rather than conducting an experiment that is very expensive and time 

consuming. Hence, the use of CFD is undeniable nowadays and it always yield good 

results if the formulation, especially for the numerical simulation was correctly 

selected and evaluated. More research were done using computer and vast type of 

numerical method were implemented using computer. 

 

 Overall, the fluid dynamic solution can be divided into three major divisions 

which are purely from experiment where many correlations were developed. The 

second division is completely theoretical which most of the fluid problem has its own 

assumption and mathematical equation that will lead to analytical solutions. This 

division is not practical for complex Partial Differential Equation (PDE) especially 

the Navier-Stokes equation which will be covered later in this chapter. The last and 

the most recent method in solving the fluid dynamic is the CFD. These divisions can 

be illustrated in Figure 1.1 
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Figure 1.1  Division of fluid dynamics solution  

BACK TO TABLE 
 

1.2 Computational Fluid Dynamic (CFD) 

BACK TO TABLE 

 

 There are many application of CFD which are tools for research, design, 

education, Automotive, Sports and many other fields. In this thesis, the focus is 

based on usefulness of CFD to solve the non linear partial differential equation 

(PDE) which usually the analytical solution does not exist. Despite that, there are 

flow with analytical solution were applied with numerical method for validation 

purposes. The heart of CFD is the famous and unsolvable non-linear incompressible 

full Navier-Stokes equation.  

 

 There are two type of CFD simulation which is the numerical and the other 

one is ready to use software. The latter one, or in other word, the software for 

example FLUENT© is very easy to use and infinite type of flow problem with many 

variables can be easily solved but there are disadvantages such as the user probably 

doesn’t know to the depth about the formulations that has been applied, the 

assumptions and a lot more. This software normally used for the practical application 

which the complicated geometry and conditions. Despite that, this software is based 

Experimental 

 

Completely 

Theoretical 

CFD 

 

Fluid 
Dynamic 
solution 
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on the numerical method but it is not being revealed. It purposes is solely to reduce 

the tough part and to make it user friendly. 

 However, the former type of simulation is very remarkable as the individual 

who create the codes understand very well the formulation, the assumption, boundary 

conditions and others. This style of simulation usually applicable for knowledge 

sharing as many publications spawn everyday with new type of method for example 

the Lattice Boltzmann method, Bifurcation method and more, claiming the method is 

among the best through various comparison and validation with the earlier or the 

classical method. The simulation requires the creator to be well-verse in 

programming software i.e. FORTRAN, C++, Matlab. 

 

 On the other hand, the limitation is the simulation sometimes cannot be 

applied to complicated geometries, difficult and not very useful for industrial or life 

application. Nevertheless, both type of simulation if correctly combined, the result 

would be very reliable as the simulation results almost yields the experimental result 

for example the simulation of flow over cylinder [2] and the experimental [3]. 

 

 

1.3 Governing Equation in CFD 

BACK TO TABLE 
 

 In a fluid flow, there are many variables that exist and control the 

characteristic of the flow. These variables normally depend on the physics of the 

flow, the nature of the fluid or the surrounding system. The variables that normally 

occur in a fluid flow are: 

• velocity, � 

• pressure, � 

• temperature, � 

• fluid density, � 

• fluid viscosity, dynamic (�) and kinematic (�) 

 

 These familiar variables are very important for CFD simulation because it is 

useful and usually incorporated in a three major general governing equation. These 
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governing equations are the key to CFD and also for heat transfer simulation. It also 

can be modified depending on the physical flow of the fluid or base on the 

assumption that can be made. The equations which for incompressible fluid are: 

• The continuity equation (conservation of mass) 

 ∇ ∙ � = 0                                                                                                                (1.1) 

• The Navier-Stokes Equation (conservation of momentum) 

              �� + � ∙ ∇� = −
1�∇ ∙ � + �∇²� + �                                                             (1.2) 

• The energy equation (conservation of energy)    

            �� + ∇(��) = �� − � ∙ ∇� + � ∙  �                                                                 (1.3) 

  

 The first two equations play a major role in providing the formulation which 

is needed to produce the numerical simulation.  These two basic equations will 

morph to a new equation based on the physical model and it is also different from 

one and another if the applied numerical method is different.  

 

 

1.4 Simple introduction to Navier-Stokes equation 

BACK TO TABLE 

 

  Navier-Stokes equation is a well known in fluid dynamic fields. The 

equation is nonlinear and usually the flows that apply this equation are considered 

incompressible. Many fluids flow were governed by this equation because in 

describing the conservation of momentum, the equation almost perfect. In the 

equation lie the unsteady term, the diffusive term, pressure term, convective term and 

the external force which is a complete package for momentum conservation. In spite, 

there is no analytical solution to this equation as there are many Partial Difference 

term in the equation. Till this thesis were wrote down, this equation still not yet be 

solved but many type of numerical method were tried out by scientist and engineers 

and produce their own solution of numerical simulation.  

 

 However, there is still exception because some fluid flow having the 

analytical solution and this exception will be discussed later in the next chapter. 
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1.5 Lattice Boltzmann Method (LBM) 

 

 

 Lattice Boltzmann Method (LBM) is an alternative method for solving fluid 

flow. LBM was developed from the Boltzmann’s original conceptual view in a 

mesoscopic way. LBM use particles analysis which the particle is confined to the 

node of the lattice. Variations in momentary due to velocity directions and 

magnitudes and varying particle mass are reduced to 8 directions, 3 magnitudes and a 

single particle mass. Overall, LBM method is focussing more on small particles 

analysis which is completely different from the classical numerical method in the 

latter section [4]. 

 

 

1.6 Cubic Interpolated Pseudo Particle (CIP) at a glance 

BACK TO TABLE 

 

 CIP method is rather a new method. This method concentrates on solving the 

advection term which will be described in later in the second chapter. The 

fundamental of this method is it not only carries the value of a node, but together 

with the gradients at that node also.  Thus, many information can be stored with 

small value of nodes. 

 

 

1.7 Problem Statement 

 

 

 Many classical numerical methods have been applied to solve Navier-Stokes 

equation over the years. Yet, these numerical still lacking where for higher order of 

accuracy, more grids are needed to satisfy the methods.  
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