STROKE-TO-STROKE MATCHING IN ON-LINE SIGNATURE VERIFICATION

AZHAR AHMAD JAINI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Computer Science)

Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia

MARCH 2010

ABSTRACT

On-line Signature Verification is a field of verifying the time series signature data that normally obtained from the tablet-based device. Unlike common signature image, the on-line signature image data consists of points that are arranged in sequence based on time. The aim of this research is to develop a new approach to map the strokes in both test and reference signatures as well as to verify the originality of the test signatures. Current methods make use of the DTW algorithm and its variant to segment them before comparing each of its data dimension. This project suggesting a modified DTW algorithm with the proposed Missed Nodes Recovery Algorithm aims to improve the mapping performance, hence the development of stroke to stroke signature comparison is possible. This project is also proposing a method to compare the strokes with its similar strokes in on-line signature. All algorithm and experiments will be carried out using Matlab. The output of this research project is an algorithm that can be used to map strokes as well as to compare similarity of strokes in on-line signature.

ABSTRAK

Pengesahan Tandatangan Atas-Talian adalah merupakan satu kaedah pengesahan data tandatangan urutan masa yang pada kebiasaannya didapati dari alatalat jenis sentuhan. Data tandatangan jenis ini berbeza dengan data tandatangan biasa disebabkan ianya terdiri dari titik-titik yang disusun mengikut urutan masa. Tujuan kajian ini adalah untuk membangunkan satu kaedah baru agar garisangarisan dalam tandatangan jenis ini dapat dinilai persamaannya. Dengan itu, keaslian sesebuah tandatangan itu dapat dipastikan. Buat masa ini, algoritma berasas DTW digunakan untuk membahagi-bahagikan tandatangan tersebut sebelum persamaan data setiap dimensi dapat dinilai. Kajian ini pula mencadangkan pengunaan Algoritma Pengembalian Titik yang Terlepas agar prestasi pemetaan tandatangan sekarang dapat ditingkatkan. Ini membolehkan pembangunan satu kaedah yang dapat mengukur persamaan garisan-garisan tersebut. Kajian ini juga mencadangkan satu kaedah yang boleh digunakan untuk mengukur perbezaan antara garisan dalam tandatangan jenis atas-talian ini. Keseluruhan ujikaji dan percubaan algoritma dalam kajian ini menggunakan perisian Matlab. Hasil kajian ini pula adalah merupakan satu algoritma yang boleh digunakan untuk memeta garisangarisan tandatangan atas-talian dan juga menilai persamaannya.

TABLE OF CONTENTS

1

2

TITLE

PAGE

DEC	ii		
DED	iii		
ABS	ABSTRACT		
ABS	ГКАК	V	
TAB	LE OF CONTENTS	vi	
LIST	COF TABLES	ix	
LIST	COF FIGURES	Х	
LIST	COF ABBREVIATIONS	xii	
LIST	COF APPENDICES	xiii	
INTF	RODUCTION	1	
1.1	Introduction	1	
1.2	Problem Background	3	
1.3	Problem Statement	4	
1.4	Objectives	5	
1.5	Project Scope	5	
1.6	Significance of the project	6	
1.7	Summary	7	
LITE	ERATURE REVIEW	8	
2.1	Introduction	8	
2.2	Signature Verification	9	

2.2.1	Off-Line Signature	11
2.2.2	On-Line Signature	12
2.3	Time Normalization	14
2.3.1	Asymmetric DP-Matching	14
2.3.2	Symmetric DP-Matching	15
2.4	Dynamic Time Warping	15
2.4.1	Pre-Processing	16
2.4.2	Segmentation	18
2.5	Extremum Points Attributes	21
2.6	Extrema-to-Extrema Mapping	25
2.7	Stroke-to-Stroke Matching	29
2.8	Summary	30

METHODOLOGY

3.1	Introduction	32
3.2	Data Acquisition Workflow	33
3.3	Signature Verification Workflow	35
3.4	Data Pro-Processing	36
3.5	Extremum Search	37
3.6	Extremum Classification	39
3.7	Segmentation	44
3.8	Stroke Mapping	45
3.9	Missed Nodes Recovery Algorithm	48
3.10	Stroke-to-Stroke Scoring	51
3.11	Best Matching Signature	55
3.12	Point Weight Factor	56
3.13	Signature Verification	57
3.14	Equal Error Rate	58
3.15	Project Schedule	59
3.16	Summary	59
		6.0

4	EXPERIMENTAL RESULT AND DISCUSSION		
	4.1	Introduction	60
	4.2	Time Series Data	61

32

4.3	Signature Reconstruction	61
4.4	Reconstruct The Signature with Lines	62
4.5	Detecting Extremum	63
4.6	Selecting Extremeum	63
4.7	Detecting type of extremum	64
4.8	Segmentation	65
4.9	Missed Nodes Recovery Algorithm Result	65
4.10	Stroke-to-Stroke Matching Result	67
4.11	Conclusion	68
4.12	Summary	69
CONC	LUSION AND FUTURE WORK	71
5.1	Introduction	71
5.2	Summary of Work	71
5.3	Analysis and Conclusion	72

5.4	Suggestion of Future Work	73

BIBLIOGRAPHY	75
APPENDIX	78

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	FRR and FAR	4
2.1	Extremum Type	22
2.2	List of Approaches	31
3.1	List of Strokes	42
4.1	Result of DTW Path Search Techniques	67
4.2	Test set from Task 1 containing 1600 signatures from	67
	40 users	
4.3	Test set from Task 2 containing 1600 signatures from	68
	40 users	
4.4	Testing Protocol	69

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

2.1	Off-line signature verification	11
2.2	Common Workflow	12
2.3	Signature Sample	16
2.4	x and y coordinate versus time	18
2.5	Cutting points	19
2.6	Cutting Points after de-rippled	20
2.7	Sample of signature marked with extremum points	23
2.8	Combinatorial type become basic	24
2.9	Clockwise stroke becomes counter clockwise stroke	24
2.10	DTW Path	28
2.11	One-to-one mapping	28
3.1	On-line signature verification workflow	33
3.2	Proposed signature verification workflow	36
3.3	Quartet naming system	40
3.4	Stroke sample	41
3.5	Point on axis - shifted nearer to the other point	43
3.6 (a)	DTW path of first layer	46
3.6 (b)	DTW path of second layer	46
3.6 (c)	DTW path of third layer	47
3.6 (d)	The final DTW path	47
3.7	Missed Nodes Recovery Algorithm	48
3.8	Signature is divided into sections	51

3.9	Stroke-to-Stroke scoring algorithm	54
4.1	y-location versus time	61
4.2	Signature points from the time series data	62
4.3	Reconstruct the signature - with lines	62
4.4	Detecting Extremum	63
4.5	Segment at y-maximum	64
4.6	Type of extremum	64
4.7	DTW matching using Similarity Maximization	65
4.8	Divide signature into 5 sections	66

LIST OF ABBREVIATIONS

BMS	-	Best Matching Signature
DNA	-	Deoxyribonucleic acid
DP	-	Dynamic Programming
DTW	-	Dynamic Time Warping
EER	-	Equal Error Rate
FAR	-	False Acceptance Rate
FRR	-	False Rejection Rate
RMSD	-	Root Mean Square Distance
RMSE	-	Root Mean Square Error
SVC2004	-	Signature Verification Competition 2004

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Sample of On-Line Signature Data		
В	Unprocessed Similarity Matrix		
С	DTW Path Created by Similarity Maximization		
D	Mapping Sample using Similarity Maximization		
E	Mapping Sample using Similarity Maximization with		
	Missed Nodes Recovery Algorithm.		
F (i)	Mapping Result using Similarity Maximization only		
(ii)	Mapping Result using Missed Nodes Recovery Algorithm	86	
G	Stroke-to-Stroke Score	87	

CHAPTER 1

INTRODUCTION

1.1 Introduction

Signing a letter with a unique signature is a common practice since a very long time ago as a way of identity verification. It is still until today that signatures are socially accepted as identity verifier (Fairhurst, M. C., 1998). Modern days financial institutions for example, still accept the idea that signature is a valid mode of authentication in cheques. Our legal system also requires handwritten signatures on contracts or legal documents to validate the documents. Having said all these, they show that, handwritten signatures have been accepted and still widely accepted as valid identity verification.

However, with the rapid modernization of the world, verification of identity has become more and more challenging. Signatures are no longer considered safe identity verifications. Nowadays, there are a lot of fraud cases involving fraud signatures on cheques and credit cards (Edge, M.E and Sampaio, R.F., 2009). That leads to a tighter identity verification system. A reliable identity verification system must ensure that only the identity owner could presents such prove of identity.

Besides signatures, fingerprints are also widely accepted and have been used for quite some time. However, with the evolution of biometrics technology, there are many other types of identity verifications. These newly found type of identity verifications are believed safer than older type of biometrics identification due to the nature of the older ones. Fingerprint for example, according to Roberts, C. (2007) is a form of stamp from physical texture of fingers which could be easily imitated by reconstructing synthetic fingers with fingerprints.

There are also many types of identities in the field of biometrics. Among others are face, fingerprint, palm, iris, DNA, signature and voice (Huang, K. and Yan, H., 1998). The more modern identities like iris and DNA are considered a lot saver than the older ones. However, due to the reasons discussed earlier, signatures are still socially accepted (Fairhurst, M. C., 1998). So, due to this social behavior, the challenge is not only about changing to a new method of identity verification but to make the currently accepted way of identity verification as safe as possible as well.

The motivation to make signature as safe identity verifier has brought many researchers to this field of study. Nowadays, new approach on applying signature has been developed. On-line signature is one example of modernized way of applying signature to make it safer yet maintaining it as a relevant identity verifier in these modern days.

1.2 Problem background

For signatures to continually be accepted as a modern identity verifier, just like thumbprints and palm prints to name a few, a system that could verify the originality of a signature should be developed. However, to date, no algorithm has been developed that are able to fully authenticate handwritten signatures. One of the factors that make signature verification a challenging field is the dynamic behavior of the signature itself. Unlike fingerprint for instance, it is merely impossible to get two genuine signatures that are geometrically similar. For that, researchers are now still looking for features with less dynamic behavior that could represent a signature. As researches continue in this field, the capability of signature verification algorithm improves.

As a benchmark, a standard index had been widely agreed in comparing the performance of signature verification algorithms. Their performance is normally represented by *False Rejection Rate (FRR)* and *False Acceptance Rate (FAR)* where,

FRR = percentage of false rejection from the test set FAR = percentage of false acceptance from the test set

For decades, FRR and FAR have been used as performance index in signature verifier. Table 1.1 shows performance of some signature verifier.

Year	Method	FRR (%)	FAR (%)
1996	DTW	3.3*	3.3*
1997	DP Optimization	1.6*	1.6*
2003	Variable Length	12	4
	Segmentation / HMM		
2004	Geometric Extrema	0.98*	0.98*
2007	Segment-to-Segment	6.02	6.02
2007	Time Frequency	2.66	1.33
2008	on-line Parameters	1.33	0

Table 1.1: FRR and FAR (* for EER)

There are many researchers use *Equal Error Rate (EER)* instead of *FRR* and *FAR* to represent their algorithm performance. *EER* is the point at which *FRR* and *FAR* are equal and most believe that it represents the performance of the algorithm better.

1.3 Problem Statement

Over the years, there are many techniques and approaches in signature verification. More and more techniques are developed on getting a lower FRR and FAR. One of the common ways nowadays is by matching between segments. The biggest challenge of segment-to-segment matching according to J.Zhang et al. (2007) and J.Lee et al. (2003) is time-alignment. If the timing of a genuine signature is badly aligned with the reference set, there will be an increase in FRR.

Segmentation of off-line signature using some sense of *Dynamic Time Warping* (DTW) in determining peaks and valleys by I.Guler et al. (2008) is a good approach in off-line signature verification. However, segmenting a heavily crisscrossed signature is the biggest challenge as it is hard to justify which stroke is earlier then which stroke. For that, mapping the segments in those signatures is merely impossible.

So, the research question of this study is: Could the skeleton matching of strokes in signatures that earlier segmented using DTW improve the FRR and FAR in on-line signature verification?

1.4 Objectives

The objectives of this project can be summarized as follows:

- i) To developed different mapping technique in signature verification.
- ii) To design the stroke-to-stroke matching technique for on-line signature verification.
- iii) To compare the effectiveness of mapping technique.
- iv) To compare the effectiveness of stroke-to-stroke matching technique

1.5 Project Scope

The scope of the study is given as follows:

 The study will use the official dataset from Signature Verification Competition 2004, SVC2004

- ii) Testing of algorithm will be done using Matlab.
- iii) The comparison of the results is between the stroke-to-stroke technique and the segment-to-segment technique.

1.6 Significance of Project

Signature just like thumbprint is a very old type of personal identifier but yet it is still socially acceptable. In Malaysia for example, usage of thumbprint that applied electronically and kept as digital image is a norm. To list a couple, clocking in the attendance system and opening door using smart card without thumbprint verification are already outdated. MyKad for example, has digital image of thumbprint kept in the memory chip as a mean of security that could verify the owner of the card and eventually could also be compared with the national database. Historically, this was what happened to thumbprint. Looking at the evolution of thumbprint as a trend of change, it is very much possible that signature, in the near future will be applied on electronic devices rather than conventional paper.

Furthermore, still images like thumbprints that are currently being widely used have its own drawbacks as well. One of the major drawback in still images is, with the current hardware technology is, a synthetic thumbprint could easily be made. Some devices that depends solely on image recording like the devices that are widely used now fails to differentiate between real thumbprint and a good copy of the thumbprint. So, a device that could record, compare and verify sets of movements like the on-line signature would solve the issue arose in the still image verification.

BIBLIOGRAPHY

- Cheriet, M., Yacoubi, M.E., Fujisawa, H., Lopresti, D. and Lorette, G., (2008).
 Handwriting Recognition Research: Twenty Years of Achievement... and
 Beyond. *Pattern Recognition*, 2009, doi:10.1016/j.patcog.2009.03.014.
- Das M.T. and Dulger L.C. (2009). Signature Verification (SV) toolbox: Application of PSO-NN. *Engineering Application of Artificial Intelligence, 2009,* doi:10.1016/j.engappai.2009.02.005.
- Edge, M.E and Sampaio, R.F. (2009). A Survey of Signature Based Methods for Financial Fraud Detection. Computers & Security, 2009, volume 28, Issue 6, 381-394.
- Fairhurst, M. C. (1998). New Perspective in Automatic Signature Verification. Information Security Technical Report, 1998, vol 3, issue 1, 52-59.
- Feng, H. and Wah, C.C. (2003). Online Signature Verification Using a New Extreme Points Warping Technique. *Pattern Recognition Letters 24, 2003*, 2943-2951.
- Güler, İ. and Meghdadi, M. (2008). A Different Approach to Off-line Handwritten Signature Verification Using the Optimal Dynamic Time Warping Algorithm. *Digital Signal Processing 18, 2008*, 940-950.
- Huang, K. and Yan, H. (1998), Off-line Signature Verification Based on Geometric Feature extraction and Neural Network Classification. *Pattern Recognition Volume 30, Issue 1, 1997, 9-*17.
- Jaini, A.A. and Ahmad, A.M. (2010), Enhancement of DTW Algorithm in On-Line Signature Mapping using the Missed Nodes Recovery Algorithm, *submitting to Hindawi Journal, 2010*.

- Jawahar, C.V., Balasubramanian, A., Meshesha, M., Namboodiri, A.M., Retrieval of Online Handwriting by Synthesis and Matching, *Pattern Recognition*, 2009, 42:1445-1457
- Lee, J., Yoon, H., Soh, J., Chun, B.T. and Chung Y.K. (2003). Using Geometric Exterma for Segment-to-Segment Characteristics Comparison in Online Signature Verification. *Pattern Recognition*, 2003, 37:93-103.
- Mailah, M. and Han, L.B., (2008). Biometric Signature Verification Using Pen Position, Time, Velocity and Pressure Parameters, *Jurnal Teknologi, 2008*, 48(A):35-54
- Martens, R. and Claesen, L. (1996). On-Line Signature Verification by Dynamic Time-Warping. *ICPR*, 1996. *IEEE*, 38-42.
- Martens, R. and Claesen, L. (1997). Dynamic Programming Optimization for Online Signature Verification, *IEEE*, 1997, 653-656.
- Nalwa, V.S. (1997), Automatic On-Line Signature Verification, *IEEE*, 1997, 0215-239.
- Özgündüz, E., Şentürk, T. and Karslıgil, M.E., (2005) Off-Line Signature Verification and Recognition by Support Vector Machine, *Eusipco proceeding*, 2005
- Plamondon, R. and Lorette, G., (1989). Automatic Signature Verification and Writer Identification – the State of the Art. *Pattern Recognition, 1989,* 22 (2) 107-131.
- Roberts, C., (2007). Biometric Attack Vectors and Defences. *Computers & Security, Volume 26, Issue 1, 2007,* 14-25
- Shafiei, M.M, and Rabiee, H.R., (2003) A New On-Line Signature Verification Algorithm Using Variable Length Segmentation and Hidden Markov Models. 2003, ICDAR, Vol 1:443-446
- Sakoe, H. and Chiba, S. (1977). Dynamic Programming Algorithm Optimization for Spoken Word Recognition. *1978. IEEE*, 159-165.
- Shanker, A.P. and Rajagopalan A.N. (2007). Off-Line Signature Verification using DTW. *Pattern Recognition Letters 28, 2007*, 1407-1414.
- Thumwarin, P., Suthithummathat, N. and Matsuura, T. (2007). On-Line Signature Verification based on Time-Frequency Characteristics of Barycenter Trajectory. *ECTI International Conference*, 2007. 521-524.

- Vélez, J., Sánchez, Á., Moreno, B. and Esteban, J.L. (2008). Fuzzy Shape-Memory Snakes for the Automatic off-line signature Verification Problem. *Fuzzy Sets* and Systems 160, 2009. 182-197.
- Wu Q.Z., Lee S.Y. and Jou I.C. (1997). On-Line Signature Verification Based on Split-and-Merge Matching Mechanism. *Pattern Recognition Letters 18*, 1997. 665-673.
- Zhang, J. and Kamata, S. (2008). Online Signature Verification Using Segment-to-Segment Matching. *ICFHR*, 2008. *IAPR Conference*, Oral Paper No:1157.
- Zhang, K., Pratikakis, I., Cornelis, J. and Nyssen, E. (1999). Using Landmarks to establish a Point-to-Point Correspondence between Signatures. *Pattern Analysis & Application*, 2000. 3:69-75.