COMPARISON BETWEEN PREDICTED AND OBSERVED COMPRESSIBILITY CHARACTERISTICS OF TREATED SOIL USING PRECOMPRESSION AND VERTICAL DRAIN

AZHANI ZUKRI

A project report submitted in partial fulfilment of the requirements for the award of the degree of

Master of Engineering (Civil-Geotechnics)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

JUNE 2010

To my beloved husband, sons and daughter..

AKNOWLEDGEMENT

During preparing this thesis, I was in contact with many people, academicians and practitioners. They have contributes towards my understanding and thoughts. I wish to express my sincere appreciations to my supervisor, Associate Professor Dr Kamarudin Ahmad, for encouragement, guidance, critics and motivation. I am also thankful to my program coordinator, Associate Professor Dr Nurly Gofar and Ir Azizan, Resident Engineer of UTHM Development Project, for their support and advice. I would also to express my gratitude to Dr Ir Ramli Nazir for providing me a data which is very important to my thesis. Without his help, the data for the project would not be available for analysis. My appreciation also extends to all my colleagues especially to Thanath, Vicky and Zalina who have provided assistance in all occasions. Their views and opinion are useful indeed. Last but not least, I am very grateful and indebted to my beloved husband Razali Kassim, my beloved mother Pn Halijah Mahmood and my dad En Zukri Majid and all family members for their support, patience and understanding.

ABSTRACT

Prefabricated vertical drain, PVD with preloading is one of the widely used techniques to accelerate the consolidation process in ground treatment program. Sometimes, it is very difficult to choose proper design parameters during design stage. Therefore, back analysis from field records is a means to verify these design parameters. The purpose of this project is to evaluate the performance of ground improvement by pre-compression and vertical drain implemented for the construction of permanent campus of Universiti Tun Hussein Onn (UTHM), Parit Raja, Batu Pahat, Johor Darul Ta'zim by comparing the settlement design parameters between field and theoretical value. The anticipate magnitudes of settlements were calculated using Terzaghi's one dimensional consolidation theory while the monitored settlements were evaluated using Asoaka's method. The predictions of the total settlements with and without soil treatment had been made for three different zones. The time rate consolidation with the application of PVD was calculated using Hansbo's solution adopting both vertical and radial consolidation effects. The back calculated coefficient of consolidation in horizontal direction, $c_{h(back-cal)}$ from Asoaka's plot was performed using different time intervals and it was found that the longer time interval produced lower field coefficient of horizontal consolidation. The modified coefficient of horizontal consolidation, $c_{h(modified)}$ value also had been evaluated and it was concluded as $c_{h(modified)} = 0.22 c_{h (lab)}$. This $c_{h(modified)}$ value would contribute to the formation of settlement curve resembling the actual settlement recorded from Asoaka's plot. The $c_{h(back-cal)}$ value was about 1.04 to 3.59 m²/year. The value evaluated from dissipation test was found to be larger than $c_{h(back-cal)}$ value indicated that the smear effect was significant. However, this laboratory coefficient of horizontal consolidation, $c_{h(lab)}$ was in good agreement with normal assumption of $c_h = 2c_v$ especially in Zone A while in Zone B and C the ratio was found to be 1 to 1.3. The ratio of $c_{h(back-cal)}$ over $c_{v(lab)}$ was found to be 0.27 to 0.96. The ratio of $c_{h(modified)}/c_{v(lab)}$ was in range 0.27 to 0.88 while the ratio of $c_{v(field)}/c_{v(lab)}$ value was found to be 0.13 to 0.48. The correlation of coefficient of volume compressibility, $m_{v(field)} = 0.4 m_{v(lab)}$ in Zones A and C, while the ratio was found to be 0.2 in Zone B. The compression ratio can be concluded as $CR_{(field)} = 0.03 CR_{(lab)}$ and the compression index, C_c value can be summarized as $C_{c(\text{field})} = 0.03 C_{c(lab)}$ while the recompression index, C_r was found to be C_r (field) = 0.12 C_r (lab). This study shows that laboratory values were significantly higher than the field values.

ABSTRAK

Saliran tegak pre-fabrikasi, PVD dan pra-bebanan surcaj merupakan salah satu teknik yang digunakan secara meluas untuk mempercepatkan proses pengukuhan tanah liat semasa rawatan tanah. Kadangkala sangat sukar untuk menentukan parameter-parameter yang sesuai semasa peringkat rekabentuk. Oleh itu analisis kembali daripada rekod ditapak digunakan bagi mengesahkan parameterparameter rekabentuk yang digunakan ini. Tujuan kajian ini dilaksanakan adalah untuk menilai kemajuan tanah yang dibaiki dengan pra-bebanan dan saliran tegak yang dilaksanakan di kampus tetap Universiti Tun Hussein Onn (UTHM), Parit Raja, Batu Pahat, Johor Darul Takzim dengan membandingkan antara parameter rekabentuk teori dan sebenar di tapak. Jumlah enapan ramalan dikira menggunakan teori pengukuhan satu dimensi Terzaghi, manakala jumlah enapan sebenar di tapak dianalisa berdasarkan kaedah Asoaka. Penyelesaian Hansbo digunakan bagi meramal kadar masa pengukuhan bilamana PVD digunakan dengan megambil kira kesan pengukuhan menegak dan mendatar. Analisis kembali nisbah pekali pengukuhan dalam arah mendatar, ch(back-cal) daripada graf Asoaka di analisa menggunakan jangkamasa yang berbeza dan didapati analisis menggunakan jangkamasa yang panjang akan menghasilkan nilai pekali sebenar ditapak yang lebih rendah. Pekali pengukuhan arah mendatar diperbaiki, $c_{h(modified)}$ juga di analisa dan didapati $c_{h(modified)}$ $= 0.22c_{h(lab)}$. Pekali $c_{h(modified)}$ ini menyumbang kepada lengkung enapan ramalan yang menyamai lengkung enapan sebenar yang direkodkan oleh graf Asoaka. Nisbah pekali pengukuhan dalam arah mendatar, $c_{h(back-cal)}$ yang diperolehi adalah antara 1.04 hingga 3.59 m²/tahun. Nilai pekali yang diperolehi daripada ujian lesapan *piezocone* didapati lebih besar daripada nilai $c_{h(back-cal)}$ menunjukkan faktor kesan lumuran adalah penting. Walaubagaimana pun, nilai $c_{h(lab)}$ ini adalah bertepatan dengan kebiasaan anggapan $c_h = 2c_v$ terutamanya di Zon A manakala di Zon B dan C pula nisbahnya adalah antara 1 hingga 1.3. Nisbah $c_{h(back-cal)}$ kepada $c_{v(lab)}$ didapati antara 0.27 hingga 0.96. Nisbah $c_{h(modified)}/c_{v(lab)}$ adalah antara 0.27 ke 0.88 manakala nilai diperolehi adalah 0.13 hingga 0.48. nisbah $c_{v(field)}/c_{v(lab)}$ yang Pekali kebolehmampatan isipadu adalah $m_{v(field)} = 0.4 m_{v(lab)}$ di Zon A dan C, manakala di Zon B nisbahnya adalah 0.2. Nisbah mampatan yang diperolehi adalah $CR_{(field)}$ = 0.03 $CR_{(lab)}$ dan nilai indeks mampatan, C_c adalah $C_{c(field)} = 0.03 C_{c(lab)}$ manakala indeks ketidakmampatan, C_r adalah C_r (field) = 0.12 C_r (lab). Kajian ini menunjukkan parameter yang diperolehi melalui ujian makmal adalah lebih tinggi daripada nilai sebenar yang diperolehi di tapak.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvi
LIST OF APENDICES	xix

1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope and Limitation of the Study	4

2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Soft Ground	7
2.3	Ground Improvement	9
	2.3.1 Precompression or Preloading Technique	10
	2.3.1.1 Types of Preloading	13
	2.3.1.2 Preloading Method	14
	2.3.2 Precompression and Vertical Drain	16
	2.3.2.1 Design of Vertical Drain	18
	2.3.3 Other Ground Improvement Method	26
	2.3.3.1 Mechanical Stabilization	26
	2.3.3.2 Chemical Stabilization	27
2.4	Consolidation	28
	2.4.1 One-Dimensional Consolidation Theory	29
	2.4.2 Compressibility Characteristics	29
	2.4.3 Rate of Consolidation	34
2.5	Settlement	37
	2.5.1 Immediate Settlement	37
	2.5.2 Primary Consolidation Settlement	39
	2.5.3 Secondary Compression Settlement or Creep	42
2.6	Settlement Prediction and Interpretation Method	44
	2.6.1 The Oedometer Test	44
	2.6.2 Cone Penetration Test (CPT)	47
	2.6.3 Observational Method	48
	2.6.3.1 Asoaka's Method	48
	2.6.3.2 Hyperbolic Method	51
2.7	Interpretation of Field and Laboratory Result for design	
	Purpose	53
2.8	Instrumentation and Monitoring Program	57

2 **LITERATURE REVIEW**

2.9 Review of Previous Case Study

3 METHODOLOGY

- 3.1 Introduction
- 3.2 Data Acquisition
- 3.3 Data Analysis

4 CASE STUDY

- 4.1 Introduction
- 4.2 Subsurface Conditions
- 4.3 Soil Profile
- 4.4 Soil Characteristics
 - 4.4.1 Zone A
 - 4.4.2 Zone B
 - 4.4.3 Zone C
- 4.5 Water Level
- 4.6 Soil Design Parameters
- 4.7 Construction Procedures
- 4.8 Instrumentation and Monitoring Program
- 4.9 Embankment Design
- 4.10 Acceptance Criteria

5 ANALISYS AND RESULTS

5.1	Introduction	88
5.2	Magnitude of Settlement	90
	5.2.1 Magnitude of Predicted Settlement without Soil	
	Treatment	92
	5.2.2 Magnitude of Predicted Settlement with Soil	
	Treatment	93
5.3	Analysis of c_h Value Using Asoaka's Method	94
5.4	Back Calculated of Field Soil Characteristics	100
5.5	Correlation between Lab and Field Soil Characteristics	101

6 CONCLUSIONS AND RECOMMENDATIONS

6.1	Conclusions	105
6.2	Recommendations	107

REFERENCES

APPENDIX	112

PAGE

108

LIST OF TABLES

TABLE NO.	TITLE	PAGE
		Inde

Table 2.1	Outline for identification of soft ground	8
Table 2.2	Range of Possible Field Values of the Ratio k_h/k_v for	
	Soft Clays (Rixner et al., 1986)	23
Table 2.3	Equations for the Compression Index from Different	
	Sources (adopted from Bowles, 1988)	31
Table 2.4	Compression and recompression indexes of natural soil	32
Table 2.5	Typical value of Poison's ratio, v	38
Table 2.6	Typical Values of C_{α} (after Ladd, 1967)	43
Table 2.7	Modified Time Factor (after Gue & Tan, 2000)	55
Table 2.8	Instruments Suitable for Consolidation Monitoring	60
Table 2.9	Summary of Predicted Settlement	63
Table 2.10	Comparison of Soil Properties before and after Improvement	65
Table 2.11	Comparison between Recorded Settlement at Site and	
	Predicted From Laboratory Test Result (after Aw, 2001)	66
Table 2.12	Several Previous Findings from Different Researchers	66
Table 4.1	Generalized Soil Profile	76
Table 4.2	Soil Design Parameters at Zone A, B and C	79
Table 5.1	Expected Total Settlement Occurs After Construction	92
Table 5.2	Predicted Settlement and Time to achieve 90%	94
	Consolidation	

TABLE NO.

TITLE

Table 5.3	Final Settlement and c_h Values	98
Table 5.4	Back Calculated Field Soil Characteristics	100
Table 5.5 (a)	The correlation of coefficients of vertical consolidation,	
	$C_{\mathcal{V}}$	102
Table 5.5 (b)	The correlation of coefficients of horizontal	
	consolidation, c_h	102
Table 5.5 (c)	The correlation between c_h and c_v	102
Table 5.5 (d)	The correlation of coefficients of volume	
	compressibility, m_v	103
Table 5.5 (e)	The correlation of compression index, C_c	103
Table 5.5 (f)	The correlation of recompression index, C_r	103
Table 5.5 (g)	The correlation of compression ratio, CR	103
Table 5.6	Comparison of Settlement and Time to Achieve 90%	
	Consolidation	104

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Beneficial Effects of Preloading	12
Figure 2.2	Surcharge preloading is placed on top of a permanent	
	load (proposed embankment)	13
Figure 2.3	Staged Loading	14
Figure 2.4	Comparison of Dissipation of Excess Pore Water	
	Pressure for Projects with and without Installation of	
	PVD	17
Figure 2.5	Installation Process of Prefabricated Vertical Drain	17
Figure 2.6	Example of Comparisons between Time Curves	
	(Stamatopoulos & Kotzias, 1985)	18
Figure 2.7	Relationship of Drain Spacing (S) to Drain Influence	
	Zone (D) (after Rixner et al., 1986)	21
Figure 2.8	The Disturbed Zone around Mandrel (Rixner et al.,	
	1986)	24
Figure 2.9	Schematic of PVD with the resistance and soil	
	disturbance (Rixner et al., 1986)	25
Figure 2.10	Typical Shape of Vertical Drain	25
Figure 2.11	Plot of void ratio versus pressure in logarithmic scale	30
Figure 2.12	Consolidation curve for two-way vertical drainage	36
	(Hausmann, 1990)	

FIGURE NO.

TITLE

Figure 2.13	Illustration of settlement of footing on elastic medium	39
Figure 2.14	Possible loading conditions for a (a) normally	
	consolidated clay and an (b) over consolidated soil (after	42
	Das, 2004)	
Figure 2.15	Consolidation Settlement	45
Figure 2.16	Asoaka Diagram	49
Figure 2.17	Asoaka's Graphical Method (after Tan and Gue, 2000)	50
Figure 2.18	Hyperbolic Method	51
Figure 2.19	Example of Hyperbolic Plot Method (Tan, 1996)	52
Figure 2.20	Example Defining Soil Layer and Interpreting Soil	
	Names (after Dobis & Wong, 1990)	54
Figure 2.21	Normalized Pore pressure Dissipation Versus T*	56
Figure 2.22	Typical Arrangement of Instrumentations for	
	Monitoring Program	59
Figure 2.23	The Diagram of Open Well and Standpipe Piezometer	61
Figure 2.24	The Schematic of Pneumatic Piezometer	62
Figure 2.25	The settlement point is used to monitor settlement of	
	soil under an embankment	62
Figure 2.26	The Principle of Inclinometer Operation	62
Figure 2.27	Settlement plot with and without vertical drain	64
Figure 3.1	Flowchart of the Research Methodology	68
Figure 4.1	The Topographical Map of Development Area	73
Figure 4.2	The Geological Map of Development Area	74
Figure 4.3	The Boreholes Location	76
Figure 4.4	Excavation of unsuitable material	80
Figure 4.5	Laying of Geotextile	81
Figure 4.6	Installation process for PVD	82
Figure 4.7	Installation of PVD	82
Figure 4.8	Cutting off vertical drain	83

FIGURE NO.

TITLE

Locations of Instrumentations	85
Locations of Ground Improvement Area	87
Detail of Embankment and Subsoil Model for Zone A	89
Detail of Embankment and Subsoil Model for Zone B	89
Detail of Embankment and Subsoil Model for Zone C	90
Percentage Consolidation versus Time at Zone A,	
B & C	94
c_h Value versus Time Interval	95
Comparison of c_h Value from Different Method of	
Analysis	96
Predicted Settlement versus Time (Zone A)	97
Predicted Settlement versus Time (Zone B)	97
Predicted Settlement versus Time (Zone C)	97
Time Rate Settlement (Zone A)	98
Time Rate Settlement (Zone B)	99
Time Rate Settlement (Zone C)	99
Comparison of m_v Value from Different Method of	
Analysis	101
	Locations of Instrumentations Locations of Ground Improvement Area Detail of Embankment and Subsoil Model for Zone A Detail of Embankment and Subsoil Model for Zone C Percentage Consolidation versus Time at Zone A, B & C c_h Value versus Time Interval Comparison of c_h Value from Different Method of Analysis Predicted Settlement versus Time (Zone A) Predicted Settlement versus Time (Zone B) Predicted Settlement versus Time (Zone C) Time Rate Settlement (Zone B) Time Rate Settlement (Zone B) Time Rate Settlement (Zone B) Time Rate Settlement (Zone C) Comparison of m_v Value from Different Method of Analysis

LIST OF SYMBOLS

а	-	Width of Strips
a_v	-	Coefficient of Compressibility
BH	-	Borehole
В	-	Width
B,t	-	Thickness of Strips
С	-	Compressibility coefficient
CPT	-	Cone Penetration Test
$C_{a\varepsilon}$	-	Modified of Secondary Compression Index
C_{lpha}	-	Rate of Secondary Compression
C_c	-	Compression Index
C_h	-	Coefficient of consolidation in Horizontal Direction
CR	-	Compression Ratio
C_r	-	Recompression Index
C_u	-	Undrained Cohesion of Soil
C_{v}	-	Coefficient of Consolidation in Vertical Direction
d_w	-	Equivalent diameter of prefabricated vertical drain
Ε	-	Young Modulus
E_u	-	Undrained Modulus
е	-	Void ratio
e_0	-	Initial void ratio
e_1	-	Final void ratio
G	-	Shear Modulus

Gs	-	Specific Gravity
Η	-	Thickness of the Compressible Layer
H_d	-	Length of Drainage Path
I_{p}, α	-	Influence Factor
I_p	-	Plasticity Index
I_r	-	Rigidity Index
k	-	Coefficient of Permeability
k_h	-	Horizontal Coefficient of Permeability
k_s	-	Permeability of Smeared Zone
k_v	-	Vertical Coefficient of Permeability
LL	-	Liquid Limit
n	-	Ratio of D/d
m_v	-	Coefficient of Volume Compressibility
OCR	-	Over-Consolidated Ratio
р	-	Pressure
PI	-	Plastic Index
PVD	-	Prefabricated Vertical Drains
q	-	Extra surcharge
q_c	-	Cone Resistant
q_u	-	Unconfined compression Strength
r	-	Radius
RR	-	Recompression Ratio
S	-	Drain Spacing
S_c	-	Primary Consolidation Settlement
S_i	-	Settlement Reading, Immediate Settlement
S_{i-1}	-	Preceding Settlement
S_{f}	-	Final Settlement
S_s	-	Secondary Compression Settlement or Creep
SPT-N	V -	Value of Standard Penetration Test
<i>s</i> _u	-	Undrained shear strength
t	-	Time

t	-	Time of consolidation
t_f	-	Time of Interest for Secondary Consolidation
t_p	-	Time of The Beginning of Secondary Consolidation
T_h	-	Time factor for Horizontal Drainage
T_r	-	Time factor for Radial Drainage
T_{v}	-	Time Factor
UTHM	И -	Universiti Teknologi Tun Hussein Onn Malaysia
U	-	Degree of Consolidation
U_e	-	Excess Pore Water Pressure
U_r	-	Average Degree of Consolidation Ratio for Radial Drainage
U_v	-	Average Degree of Consolidation Ratio for Vertical Drainage
U_{vr}	-	Average Degree of Consolidation Ratio for Combined Vertical and
		Radial Drainage
v	-	Poisson's Ratio
W_L	-	Liquid Limit
W_n	-	Natural Water Content
Z.	-	Depth
α	-	Constant Which Depends on The Spacing Ratio of The Vertical Drain
∆e	-	Change in Void Ratio
∆p	-	Change in Stress
⊿σ'	-	Change in Effective Stress
σ'_0	-	Initial Effective Stress or Existing Overburden Pressure
σ_{c}'	-	Pre-consolidation Pressure
γw	-	Water Unit Weight

LIST OF APPENDICES

TITLE

APPENDIX NO.

Appendix A	Prefabricated Vertical Drain Specification	112
Appendix B	Soil Characteristics at Zone A	113
Appendix C	Soil Characteristics at Zone B	116
Appendix D	Soil Characteristics at Zone C	119
Appendix E	Predicted settlement calculation Using One	
	Dimensional Terzaghi's Analysis for Zone A, B and C	123
Appendix F	Calculation of Embankment Settlement	124
Appendix G	Consolidation Analysis Using Hansbo's Solution for	
	Zone A, B and C	127
Appendix G2	Sample Calculation Consolidation Analysis Using	
	Hansbo's Solution	130
Appendix H	Asoaka's Analysis for Zone A, B and C	133
Appendix I	Sample Calculation For Asoaka's Plot	135
Appendix J	Back calculated of Field Soil Characteristics	137

CHAPTER 1

INRODUCTION

1.1 Background

Soft ground deposits are widespread and cover many coastal regions of the world, such as Japan, Eastern Canada, Norway, Sweden and other Scandinavian countries, India and the South East Asian countries. In Malaysia, soft soil deposits are widespread all over the country and mostly found in the coastal area. Further extensive development activities are apace in many lowland areas to promote human activities such as agriculture, industry, housing, infrastructure facilities and so on. With the decrease in suitable land for construction, the next choice available is to expand the development in the geotechnical challenging environment such as wetlands or soft soil area and highlands. Generally, soft soils exhibit low strength and high compressibility. Many are sensitive, in the sense that their strength is reduced by mechanical disturbance. For example, foundation failure is likely in structure constructed in soft soil and surface loading beyond yield stress levels due to embankments and shallow foundation inevitably results in large settlements. This is because, these soils respond in a spectacular manner to stress changes, that geotechnical engineer has an obligation to examine to what extend the soft soils can be analyzed within the frame work of development in soil mechanics. The soft soils conditions need to be improved to avoid the excessive settlement and to ensure the stability and safety of the built infrastructure and other facilities.

Nowadays, many ground improvement methods have been proposed and implemented on soft soils to improve the bearing capacity and minimize the settlement. In geotechnical engineering, ground improvement means the increase on soil shear strength, the reduction of soil compressibility and the reduction of soil permeability ¹. Precompression by preloading is one method to improve the bearing capacity and reduce the settlement. It is most effective and economical compare to other methods such as mechanical and chemical stabilization, soil reinforcement such as using granular piles and stone column.

Preloading is usually combined with vertical drain to speed up the consolidation process, hence, reduce the post construction settlement. Prefabricated vertical drain (PVD), or sometime referred to band or wick drains have been widely used in Malaysia as a means to accelerate the consolidation settlement.

1.2 Problem statement

Generally, the site investigation is performed to obtain information of the physical properties of soil within a site to design earthwork and foundations for the proposed structures. Such investigation will include surface and subsurface exploration to enable soil sampling and laboratory tests of the soil samples retrieved.

The test on some soil design parameters are not normally being carried out during SI stage, unless special provisions are made. Some design parameters are usually being assumed based on published literature, report and experiences during the designing stage in the absence of adequate data. Inaccurate assumptions would result in problems that the actual settlement differs from the predicted or designed values.

The precompression or preloading and prefabricated vertical drains (PVD) have been used successfully as a ground improvement method for soft soil. The performance of this ground improvement method can be evaluated by comparing the design parameters of the subsoil before and after stabilization work.

1.3 Objectives of the study

The aim of this study is to see the difference between predicted or designed parameters from actual condition on site through the analysis of the data that being collected from instrumentations and monitoring program. In order to achieve the aim of the project, the study consists of the following objectives;

- To predict the magnitude of settlement by adopting the Terzaghi's consolidation theory and time required based on Hansbo's solution for PVD consolidation.
- ii) To determine field coefficient horizontal consolidation, c_h value based on settlement data by adopting Asoaka's method.
- iii) To determine the correlation of compressibility characteristics by comparing the magnitudes of predicted settlement and monitoring settlement.

1.4 Scope and limitation of the study

This is a case study based on a development project in Parit Raja, Batu Pahat, Johor Darul Takzim. The subsoil condition, loading type, method of construction, monitoring and instrumentation system, soil improvement method and PVD are being discussed in this research. The scope of the analysis will be limited to settlement criteria. Analysis would be based on the available limited Site Investigation and instrumentations monitoring records. Series of instrumentation program such as settlement plates, pieozometers, inclinometers and extensonometers were installed to monitor the performance of the treated ground. 24 locations of Settlement plate instruments was installed to monitor the settlement of the embankment in whole development site, however, only 9 sets of settlement data in Zone A, B and C will be used for analysis in this particular study. Calculation being carried out using manual calculation and for more complicated analysis, *Microsoft Excel* spreadsheet program will be used.

The back analysis of the settlement data from the field data would be carried out by adopting the Asoaka's method. The effect of vertical drain in speeding up the consolidation process was evaluated based on the both effects of horizontal and vertical conditions. However, some consolidation parameters and data were assumed to be fixed for calculation purpose due to the inter-dependency between the parameters used, which were initial void ratio, e_0 , permeability of smeared zone coefficient, k_s , horizontal coefficient of permeability, k_h and vertical coefficient of permeability, k_v . The ratio of k_h/k_s was taken as 2 as recommended by Zhou *et al*¹.

Type of prefabricated vertical drain, PVD used for this project is Nylex Flodrain and the PVD specification as attached in Appendix A. The PVD was installed in close spacing with distance 1.5 meter for Zone B and 1.0 meter for Zone A and Zone C in triangular configuration and 16 meters in length for each point.