A FRAMEWORK FOR DESIGN INFORMATION MANAGEMENT SYSTEM FOR ARCHITECTS

ALIYU MUHAMMAD ALHASSAN

UNIVERSITI TEKNOLOGI MALAYSIA

A FRAMEWORK FOR DESIGN INFORMATION MANAGEMENT SYSTEM FOR ARCHITECTS

ALIYU MUHAMMAD ALHASSAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Information Technology- Management)

Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia

MARCH 2010

ABSTRACT

Architectural design solutions are outcomes of information manipulations by designers. An activity in the architectural design process may require inputs from other phases. The architect must be able to keep track of the amount of information required to accomplish a design task, which is a difficult task to perform. A design information management system is required to assist designers with new ways of managing and handling design projects. Despite the difficulty of managing the information flows and the availability of tools and techniques that can assist in manipulating the flow, there is still a lack of research to better understand and manage these flows. Architectural design is characterised by rework (iteration). Many of the available process models are not capable of representing these iterative processes. The models that are capable of identifying iterations do not provide means for managing them. In this work, we review existing information system framework, information modelling tools and techniques, and propose an information system framework termed ADIMS based on web services to manage architectural design information. The work also addresses the problem of architectural design information management from the information flow perspective by introducing the design structure matrix as a modelling tool to aid in a better understanding and management of the flow of information within the RIBA work stages.

ABSTRAK

Penyelesaian rekaan senibina merupakan hasil manipulasi maklumat oleh para pereka. Sesebuah aktiviti dalam proses rekaan senibina memerlukan input dari pelbagai fasa lain. Arkitek mestilah mampu menjejaki pelbagai maklumat yang diperlukan untuk menyiapkan sesebuah tugasan rekaan, yang mana merupakan tugas yang sukar untuk dilakukan. Suatu sistem pengurusan maklumat rekaan diperlukan untuk membantu para pereka dengan cara-cara baru dalam mengendalikan dan menyelesaikan projek-projek rekaan. Walaupun terdapat masalah dalam menguruskan susunan maklumat serta kesediaan alatan dan teknik yang boleh membantu dalam memanipulasikan pengalirannya, masih terdapat kekurangan dalam penyelidikan untuk memahami dengan lebih baik lagi tentang pengaliran maklumat ini. Rekaan senibina bercirikan iterasi. Kebanyakan model proses yang sedia ada tidak berupaya untuk mewakili proses-proses iterasi ini. Model-model yang mampu mengenalpasti iterasi tidak mampu menyediakan cara untuk menguruskannya. Dalam projek ini, kita akan meneliti rangka kerja sistem maklumat yang sedia ada, peralatan pemodelan maklumat dan tekniknya, serta mencadangkan sebuah rangka kerja sistem maklumat yang berterma ADIMS yang berasaskan servis-servis web untuk mengurus maklumat rekaan senibina. Projek ini juga menerangkan masalah pengurusan maklumat rekaan arkitektual dari perspektif pengaliran maklumat dengan memperkenalkan struktur rekaan matriks sebagai sebuah peralatan pemodelan untuk membantu dalam pemahaman dan pengurusan pengaliran maklumat dalam lingkungan kerja RIBA.

TABLE OF CONTENTS

CHAPTER	TITLE
---------	-------

ii
iii
iv
v
vi
vii
xii
xiii
xvi
xvii

1 PROJECT OVERVIEW

1.1	Introduction	1
1.2	Background of Problem	3
1.3	Statement of the Problem	4
1.4	Research Objectives	5
1.5	Scope	5
1.6	Importance of the Research Study	6
1.7	Chapter Summary	6

2 LITERATURE REVIEW

3

2.1	Introduction 7		
2.2	Information Management	9	
	2.2.1 Information Management System	11	
	2.2.2 Information Modelling	11	
	2.2.3 Information System Models	12	
	2.2.4 Information System Framework	15	
2.3	Concept of Design	17	
	2.3.1 Architectural Design	17	
	2.3.2 Architect	18	
	2.3.3 Architect and the Building Design	19	
	2.3.4 Architectural Design Process	21	
	2.3.5 Architectural Design Information Sources	24	
	2.3.6 Architectural Design Information Search and	25	
	Storage		
2.4	Information Management in Architectural Design	27	
	2.4.1 Design Process Modeling	28	
	2.4.2 Design Process Modeling Tools	28	
	2.4.3 Architectural Design Information Repository	33	
2.5	Problems and Weaknesses in Managing Architectural Design	34	
	Information		
2.6	Architectural Design Information Requirements Determination	35	
	2.6.1 Activity Theory Background	37	
2.7	Discussion	38	
2.8	Chapter Summary	39	
RESE	ARCH METHODOLOGY		
3.1	Introduction	40	

3.2	Resear	rch Design	41
3.3	Projec	et Methodology	41
	3.3.1	Phase 1: Initial Planning	44
	3.3.2	Phase 2: Analysis	44
		3.3.2.1 Literature Review Analysis	44

		3.3.2.2 Data Collection	45
		3.3.2.3 Collected Data Analysis	50
	3.3.3	Phase 3: Modeling	52
		3.3.3.1 Design Framework	52
		3.3.3.2 System Development Methodology	53
		3.3.3.3 Methodology Justification	53
	3.3.4	Phase 4: Evaluate the Framework	54
	3.	3.4.1 Apply and Evaluate the Framework	54
	3.	3.4.2 Report Writing	54
3.4	Project So	chedule	55
3.5	Software	and Hardware Requirements	55
3.6	Chapter S	Summary	58

4 DATA COLLECTION AND DATA ANALYSIS

4.1	Introduction 59		59	
4.2	Organi	zational Ai	nalysis	60
	4.2.1	Introducti	on to Faculty of Built Environment (FAB)	60
		4.2.1.1	FAB' objectives	61
		4.2.1.2	Mission and Vision	61
		4.2.1.3	FAB Organizational Structure	61
	4.2.2	Royal In	stitute of British Architects	62
4.3	Data C	ollection		64
	43.1	Observati	on and Discussion	64
	4.3.2	Design St	ructure Matrix	65
4.4	Observ	vation, Disc	sussion, and Matrix Design	66
	4.4.1	Observati	on and Discussion Summary	66
	4.4.2	Design	Matrix Summary	67
4.5	Archite	ectural Des	ign Information System Requirement Capture	72
	4.5.1 A	Applying th	ne Concept of Activity Theory to Architectural	73
	Design			
4.6	Chapte	r Summary	7	80

5 FRAMEWORK OF ARCHITECTURAL DESIGN INFORMATION MANAGEMENT SYSTEM

5.1	Introduction	81	
5.2	Matrix Representation of Architectural Design Phases		
5.3	Design Process Analysis: Partitioning	84	
	5.3.1 Identifying Loops by Powers of Adjacency Matrix	85	
	5.3.2 Ordering of Tasks within the Blocks (Tearing)	88	
5.4	Proposed framework for Architectural Design Information	92	
	Management System (ADIMS)		
5.5	System Overview	92	
5.6	User Registration and Login Validation	95	
5.7	Information Model Design	98	
5.8	Chapter Summary	100	

6 THE ARCHITECTURAL DESIGN INFORMATION MANAGEMENT SYSTEM

6.1	Introduct	ion	102
6.2	User Specification 103		
6.3	Prototype	e and Interface Requirement Specification	103
6.4	Architect	tural Design Information Management System	104
6.5	Web Pres	sentation	107
	6.5.1	The Architect Module	107
	6.5.2	The Client Module	115
	6.5.3	The Admin Module	118
	6.5.4	Search Module	120
6.6	Data Mana	gement Service Logic	121
6.7	Information	n Repository	122
6.8	Software Q	Quality and Testing	123
	6.8.1	User Interface Testing	124
	6.8.2	User – Case Testing	128
	6.8.3	Documentation Testing	132
6.9	Chapter S	ummary	133

7 DISCUSSION AND CONCLUSION

7.1	Introduction	134
7.2	Achievements	134
3.3	Constrains, Challenges and Limitations	136
7.4	Aspiration	137
7.5	Chapter Summary	137
REF	ERENCES	138

150
142- 167

LIST OF TABLES

TABLE 1	NO.
---------	-----

TITLE

PAGE

2.1	Definitions of Data, Information and Knowledge	9
2.2	The Set of Architectural Representations prepared over	21
	the process of building a Building	
	The RIBA Outline Plan of Work	23
3.1	Data, Source, Method of Collection, and	50
	Person/Organization Involved	
3.2	Software Requirements	56
4.1	Description of Actions	79
5.1	Partitioning Algorithm	85
5.2	Tearing Algorithm	88
5.3	Nodes with their Row and Column Entries	89
6.1	Screen Layout Testing	125
6.2	Report Layout Testing	126
6.3	Form Layout Testing	127
6.4	Menu Testing	128
6.5	Use-case testing for Architect Page	129

LIST OF FIGURES

FIGURE N	0
----------	---

TITLE

PAGE

2.1	Literature Review Framework	8
2.2	Physical Architecture of an Information System	14
2.3	Distributed Information system architecture	16
2.4	Information Search Process	27
2.5	Directed Graph	29
2.6	PERT Chart	30
2.7	SADT Technique	31
2.8	Design Structure Matrix	32
2.9	Screen shot of the Interface in Browser mode	34
2.10	Basic Structure of an Activity	37
2.11	The three levels of Activity	38
3.1	Project Operational Framework	43
4.1	Input of Architect with 20 Years Experience	68
4.2	Input of Architect with 4 Years Experience	70
4.3	Input of Unregistered Professional with 6 Years	71
	Experience	
4.4	Activity System for Architectural Design Information	75
	Management System	
4.5	The Hierarchical Decomposition of Activities into	78
	Actions	

5.1	The Flow of Information in Architectural Design Stages	83
5.2	The Design Structure Matrix with non-zero entries	86
	replaced with 1's	
5.3	The Square of Adjacency Matrix	87
5.4	The Cube of Adjacency Matrix	87
5.5	Tear Suggested by the Matrix	90
5.6	System Overview	93
5.7	Architect, Client, and Admin Activity Management	95
5.8	Architect Registration and Login Validation	96
5.9	Client Registration and Login Validation	97
5.10	System Admin Login Validation	98
5.11	Information Model	100
6.1	Model of Architectural Design Information Management	106
	System (ADIMS)	
6.2	The Architect Account	108
6.3	The Architect File Upload Page	109
6.4	List of Files Uploaded the Architect	109
6.5	Design Document Search	110
6.6	Architects Document Search Results	111
6.7	Architects Client Search Results	111
6.8	View Client Specification/Make Offer Page	112
6.9	Change Password Page	113
6.10	URL Subcategories Page	114
6.11	View URLs Page	114
6.12	Add Category, Subcategory, and URL Page	115
6.13	Make Appointment Page	116
6.14	Select Offer and Confirm Appointment Page	117
6.15	View Design Description Page	117
6.16	Admin Account	119
6.17	View System Users Page	119
6.18	Add New Design Description Page	120
6.19	Advanced Search	121
6.20	Database Implementation of ADIMS	123

6.21 System Interface

125

LIST OF ABBREVIATION

ADIMS	Architectural Design Information Management Systems
AI	Artificial intelligence
BI	Business intelligence
СМ	Content Management
DAM	Digital Asset Management
DBMS	Database Management Systems
DM	Document Management
DSS	Decision Support System
ES	Expert Systems
FAB	Faculti Alam Bina
HTML	Hypertext Markup Language
HTTP	Hypertext Transport Protocol
IMS	Information Management Systems
I/O	Input/output
LCM	Learning Content Management
LM	Learning Management
MIS	Management Information Systems
RIBA	Royal Institute of British Architects
RM	Record Management
TPS	Transaction Processing Systems
UML	Unified Modelling Language
UTM	Universiti Technologi Malaysia

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Gantt Chart	142
В	Design Structure Matrix	149
С	RIBA Outline Plan of Work 2007	153
D	Use-Case for Adims	155
E	FAB Organizational Chart	164
F	MATLAB Printout	166

CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

Information management can be considered as a cycle of processes which support the organization learning activities. The activities are; information needs identification, information acquisition, organizing and storage of information, developing information products and services, distributing information, and information usage (Woo, 1995). It is an umbrella term that encompasses (Woo, 1995) all the systems and process within an organization for the creation and use of corporate information (Woo, 1995).

Architects as designers need information from a very broad source, in order to come up with a solution to such design problem. Traditionally, this information could come from books, other documents, colleagues and experts (Jambak et al., 2005). Usually, when designers obtain this information they will keep it in their mind, or in their very own repository. Therefore, it is difficult for other designers to obtain the same information in case they have to solve similar design problems. This situation may lead to a risk of wrong decision and overlooked concepts (Jambak et al., 2005).

Architectural designs as well as other designs are characterised by its ill defined problem, therefore the methods of obtaining those solutions are also poorly defined (Ozakaya and Akin, 2006). To be able to come up with a solution, designer needs to discover the real problem. Though, the solution still cannot be completely validated (Ozakaya and Akin, 2006). The designer should therefore decide when a problem is sufficiently described. Knowledge and information are critical to effective design and product development. As such solving and specifying design problems go hand in hand. According Ozakaya and Akin (2006), information consistency and updating leads to significant overheads in design.

Designers need design information management systems in order to find new ideas and to solve their design problems. As such, the result of a design project depends largely on the expertise and information a designer have before he starts to search and retrieve information. Determining the information required by designers to do their design task and to help them update their knowledge towards problem solving is one of the most difficult aspects of deriving information management plan in a creative environment.

The amount of data, information and knowledge to be handled by the designers is often too broad, and unmanageable. Despite the availability of sources surrounding designers, getting access to the correct and required information for a particular design is often very handy, and a very uneasy task to perform. This problem results from both the ambiguity between sequence, keywords, relationship, connections and also due to the types and size of data and information from other sources. As such, many designs are being generated without the benefit of existing information in the design environment. This work is aimed at developing an information system framework that will assist architects with ways of managing design information.

1.2 Background of the Problem

The increasing complexity of buildings (Pektas and Pultar, 2005), competitive global markets, and rapid advances in technology (Wu et al., 2004), have been forcing design professionals to improve their process in terms of time and quality (Pektas and Pultar, 2005). One major obstacle affecting architectural design is the lack of systematic design planning in many building projects (Formoso et al., 1998). The planning is at times performed in an intuitive manner based on discipline specific programs (Pektas and Pultar, 2005). This is due to the fact that, a limited effort is made in identifying and managing the flow of information in the architectural design process.

Different researchers assisted designers in a number of ways. Some used the design structure matrix to restructure complex design projects in order to develop better products (Eppinger et al., 1994). Others (Pektas and Pultar, 2005), introduces the use of parameter analysis tool for building design with an aim of revealing the process structure, optimum sequence of parameter decisions, iterative cycles and concurrency in the process. Wu et al., 2004, proposes an information framework by integrating web services and agent technologies to manage collaborative product development process. Szykman, 2002, developed a design repository software system in order to address terminological and semantic issues associated with computer aided product development.

There are different types of information in the architectural design phases. This information can be in the form of audio (communication between the architect and the client), in the form of sketch (bubble chart), architects drawings, contract documents, etc. The information from earlier phases provides inputs to later phases. As such there is a need to assist the architects with ways of managing this architectural design information so that they can retrieve and used it as at when needed. This study proposes an information system framework to assist architects to manage design information. The work also proposes a model of the flow of information within the architectural design process by introducing the design structure matrix as a modelling tool for understanding and manipulating the information flow.

1.3 Statement of the Problem

Information is essential to the success of such design work. However, designers in any activity have their own way of finding/collecting information during the design process. It is a need to support designers to collect information while not restricting their design activity. In order to develop such a system (information system) that nature to designers or architects, an information framework that can guide the system developer is needed.

The research questions that this project focuses on are;

- 1. How to model the ways architects collect information to solve their design task?
- 2. What is the suitable framework for a design information management system for architects?

1.4 Research Objectives

The objectives that pave the way for the project are:

- 1. Collecting requirements and understanding the flow of information in architectural design process.
- 2. To develop a framework for design information system for architects based on the collected requirements.
- 3. To develop a simple prototype as a proof of concept for the framework.

1.5 Scope

The scopes which identify the boundaries of the project are;

- i) Only architectural design will be considered.
- ii) Only looking at the way architects follow the architectural design process/phases.
- iii) Only the information flow within the design process will be considered.
- iv) Only the deliverables of the early phases of design will be considered in developing the information system framework.

1.6 Importance of the Research Study

The knowledge of the ways that designers collect information to develop the building design, the source of the information, and the format of the information and how the query is done will assist in modeling the information seeking processes. The model will thus assist in developing a framework for the design information management system for architects. Some benefits of the framework are:

- 1. Easy way to design and modify an information management system for Architects.
- 2. Simplifying the information seeking process for solving design problems.
- 3. Assist designers with a more effective way to re-use design knowledge and information.

1.7 Chapter summary

As a summary, this chapter provides a general introduction and overview of the project including the problem background. Problem statements, project objectives and the scope of the project have been clearly stated. The goal of this project is to develop a framework for design information management system for architects.

REFERENCES

Adair, D. (1995). Building Object-Oriented Framework. AIXpert. February.

- Agile PLM Platform. Source: http://www.agile.com
- Akin O. (2002). Case based Instruction Strategies in Architecture Design. Design Studies, Vol 23 pp 407-432.
- Akin, O., Ipek, O. (2006). *Requirement-driven Design: Assistance for Information* traceability in Design Computing. Design Studies 27, 2006, 381-398.
- Andrew Treloar. *The Monash University Information Management Strategy: From Development to Implementation* Journal of Knowledge Management Prentice, 2006.
- Arthur Thompson (1999). Architectural design procedures. 2nd edition, London, Architectural Press.
- Barbara Mc. Nurlin, Ralph H. Sprague, and JR. Tung Bui (2009). *Information Systems Management in Practice*, eight edition, Pearson International edition.
- Chun, W. W. (1995). Information Management for the Intelligent Organization: Roles and Implications for the Information Professionals. Digital Libraries Conference, Singapore.
- Dace A. Campbell, and Maxwell Wells. A Critique of Virtual Reality in the Architectural Design Process. Source:

http://www.hitl.washington.edu/publications/r-94-3/.

- Data Center Definitions (2007). *Information Management System (IMS)*. SearchDataCenter.com Definitions.
- Davenport, T.H., and Prusak, L. (1998). Working Knowledge: How Organizations Manage What They Know. Boston, MA: Harvard Business School Press.

- David A. G., and Steven D. E. (1991). Methods for Analyzing Design Procedures. Design Theory and Methodology, Vol 31, American Society of Mechanical Engineers, New York, N.Y. 10017.
- Dick Stenmark (2002). Information vs. Knowledge: The role of intranets in Knowledge Management. Hawaii International Conference on System Science.
- Donal J. Flynn, Olivia Fragoso Diaz (1999). *Information Modelling: An International Perspective*. Prentice Hall, Europe.
- Eppinger SD, Witney DE, Smith RP, Gebala DA (1994). A model-based method for organizing tasks in product development. Research in Engineering Design 6:1-13
 E2open Software. Source: <u>http://www.e2open.com</u>.
- Engeström, Y. (1999). *Expansive visibilization of work: an activity-theoretical perspective*. Computer Supported Cooperative Work (CSCW), **8**(1-2), 63-93.
- Hicks B.J., S.J. Culley, R.D., and Allen, G. Mullineaux (2002). A Framework for the Requirements of Capturing Information and Knowledge in Engineering Design, PERGAMON International Journal of Information Management.
- Ipek Ozkaya, and Omar Akin (2006). *Requirement-driven Design: Assistance for Information traceability in Design Computing*. Design Studies 27, 381-398, Elsevier Ltd.
- Jambak M.I., Verlinden J.C., Vergeest J.S.M., and Smith (2005). *Context Visualization in Web-based design information retrieval system*. Delft University of Technology, Netherlands.
- James Robertson (2005). 10 Principles of Effective Information Management. Step Two Designs Pty Ltd.
- James T. McClave, and Terry Sincich (2000). *Statistics*. Eight edition, Prentice Hall, Upper Saddle River New Jersey.
- Kaufer, D. S., Carley, K. M. (2003). Communication at a Distance: the influence of print on sociocultural organization and change. Lawrence Erlbaum Associates, Hillsdale, New Jersey.
- Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction research. In B. Nardi (Ed.), Context and consciousness: activity theory and human-computer interaction. (pp. 17-44). Cambridge, MA: MIT press.

- Leont'ev A.N. (1978). Activity, consciousness and personality. Englewood Cliffs, NJ: Prentice-Hall.
- Leont'ev A.N. (1981). Problems of the development of mind. Moscow: Progress.
- Lorna U., Pedro V., and Oscar P. (2008). An Activity-Theory-Based Model to Analyze Web Application Requirements. IR Information Research, vol. 13 No2.
- Moises Daniel Diaz Toledano. *The Architecture of Enterprice Information Systems: A View Based on Patterns*. Source: <u>www.moisesdaniel.com</u>
- Oliver Tamine, and Rudiger Dillmann (2003). KaViDo A Web-Based System for Collaborative Research and Development Process. Elsevier, Computers in Industry 52(2003)29–45.
- Roy U., and Kodkani S.S. (1999). *Product Modeling Within the Framework of the World Wide Web.* IIE Transactions, 31(7), pp. 667–677.
- Simon Szykman (2002). Architecture and Implementation of a Design Repository System. Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada.
- Sule Tash Pektas and Mustafa Pultar (2005). Modelling Detailed Information Flows in Building Design with the Parameter – Based Design Structure Matrix. Design Studies, 27, pp.91–122.
- Tamine, O., and Dillmann R. (2003). *KaViDo: a Web-based system for collaborative research and development processes*. Computers in Industry, 52, pp.29–45.
- Tanenbaum A. S., and Steen, M. (2002). Distributed Systems Principles and Paradigms. Upper Saddle River, NJ, Prentice Hall, pp.50-52.
- Teresa W., Nan X., and Jennifer B. (2004). Design and Implementation of Distributed Information System for Collaborative Product Development.
- The Riba Outline Plan of Work (2007). Publication of National Joint Consultative Council of Architects, Quantity Surveyors and Builders.
- Tuomi, I. (1999). Data is More Than Knowledge: Implications of the Reversed Knowledge Hierarchy for Knowledge Management and Organizational Memory, Journal of Management Information Systems, Vol. 16, No.3, pp. 107-121.
- Wanga Y. D., Shena W., and Ghenniwab H. (2003). WebBlow: a Web/agent-based multidisciplinary design optimization environment. Computers in Industry, 52, pp. 17–28.

- Xu X. W., and Liu T. (2003). A Web-Enabled PDM System in a Collaborative Design Environment. Robotics and Computer Integrated Manufacturing, 19, pp.315–328
- Formoso, C T, Tzotzopoulos, P, Jobim, M S S and Liedtke, R (1998). Developing a Protocol for Managing the Design Process in the Building Industry. International Group for Lean Construction, Sixth Annual Conference, Source: <u>http://www.ce.berkeley.edu/wtommelein</u>.
- Young-kyunglin, and Keiichi S. (2001). *Development of Design Information Framework for Interractive Systems Design*. Proceedings of the 5th Asian International Symposium on Design Science, Seoul, Korea
- Zachman J. A. (1999). A Framework for Information System Architecture. International Journal IBM Systems Journal, Vol38, NOS 2&3.
- Zainal, Z. (2007). Case Study as a Research Method. Universiti Teknologi Malaysia.
- J. D. Wiest and F. K. Levy (1997). A Management Guide to PERT/CPM. Prentice-Hall, Englewood Cliffs, New Jersey, 2nd Edition.
- D. A. Marca and C. L. McGowan (1988). SADT: Structured Analysis and Design Technique. McGraw Hill, New York.