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ABSTRACT 

 

 

 

 

In this project, a line contact elastohydrodynamic lubrication is modelled 

through an infinite cylinder on a plane to represent the application of roller bearing. 

The numerical solution of this problem is presented embedded with free volume 

model of pressure-viscosity equation using Doolittle-Tait model. Newton-Raphson 

method is used to solve the Reynolds equation simultaneously with pressure-

viscosity equation and elastic deformation in order to find the pressure profile and 

film thickness. The behavior of non-Newtonian fluid also was investigated using 

power law fluid model. The bearing performances parameters such as pressure, film 

thickness and friction coefficient of lubricated contacts are calculated. Non-uniform 

grid also used to improve the pressure spike stability. The results show that the peak 

pressure increases as the parameters such as velocity, load, material parameter and 

power law index are increases and the spike is found to shift to the center of roller. 

The coefficient of friction is reduced as the power law index and slide to roll ratio 

are decreased. 
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ABSTRAK 

 

 

 

 

Dalam projek ini, pelinciran sentuhan garisan elastohydrodynamic 

dimodelkan melalui silinder tidak terhingga ke atas suatu satah untuk mewakili 

penggunaan galas jenis roller . Penyelesaian berangka terhadap permasalahan 

pelinciran elastohydrodynamic jenis sentuhan garisan dipersembahkan dengan 

memasukan model isipadu bebas terhadap persamaan tekanan-kelikatan 

menggunakan model Doolittle-Tait. Kaedah Newton-Raphson digunakan untuk 

menyelesaikan persamaan Reynolds secara serentak bersama persamaan tekanan-

kelikatan dan elastik deformasi untuk mengira tekanan dan ketebalan filem. 

Kelakuan bendalir bukan Newtonian juga disiasat menggunakan model hukum 

kuasa bendalir. Perkara yang melibatkan prestasi galas seperti tekanan, ketebalan 

filem and pekali geseran terhadap permukaan yang mengalami pelinciran dikira. 

Saiz sela yang tidak sekata telah digunakan untuk memperbaiki kesan 

ketidakstabilan pepaku tekanan. Hasil kajian menunjukkan puncak tekanan 

meningkat apabila parameter seperti halaju, beban, parameter bahan dan indeks 

hukum kuasa ditingkatkan dan puncak tekanan didapati bergerak ke tengah silinder. 

Pekali geseran berkurang apabila indeks hukum kuasa dan nisbah gelincir-golek 

dikurangkan.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The whole idea of this study is to write a programming code that can provide 

a solution for fluid film lubrication problem related to elastohydrodynamic 

lubrication. This can further be applied to investigate the effect of parameters on 

bearing design and performance such as pressure, film thickness and friction.  

 

 

Once completed, the programming code will also be highly suitable for 

investigating the behavior of Non-Newtonian lubricant in elastohydrodynamic 

lubrication problem.  

 

 

 

1.1.1 Tribology and Fluid Film Lubrication 

 

 

During the past few decades, there has been an increasing research interest in 

the area of friction and wear characteristics of various bearing designs, lubricants, 



2 

 

and materials for bearings. This discipline, named Tribology, is concerned with the 

friction, lubrication, and wear of interacting surfaces in relative motion. Tribology, 

which derived from the Greek word ‘tribos’ meaning rubbing or sliding. It is a new 

field of science defined in 1967 by a committee of the Organization for Economic 

Cooperation and Development. The word tribology has gained gradual acceptance 

from time to time [ 1 ]. 

  

 

Wear is the major cause of material wastage and loss of mechanical 

efficiency and performance. Any improvement to reduce wear can result in 

considerable cost savings. Friction is a principle cause of wear and energy 

dissipation. Friction is a phenomenon that cannot be eliminated but can be reduced. 

There are basically three methods in reducing friction: use of bearings, air 

cushioning and lubrication. Considerable cost savings can be made by controlling 

and improving the friction. Among others, lubrication is an effective means of 

controlling wear, agent of a cooling system and reducing friction. 

 

 

In fluid film lubrication, thin low shear strength layers of gas, liquid and solid 

(Figure 1.1) are interposed between two surfaces in order to improve the smoothness 

of movement of one surface over another and to prevent damage. These layer of 

material separate contacting solid bodies and are usually very thin and very difficult 

to observe by naked eyes. In general, the thickness of these films ranging from 

1~100 µm. 
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Figure 1.1 Lubricant film  

 

 

Detailed analysis of gaseous or liquid films is usually termed 

hydrodynamics lubrication (HD). While lubrication by solid is termed solid 

lubrication. A specialized form of hydrodynamics lubrication involving physical 

interaction between the contacting bodies and the liquid lubricant is termed 

elastohydrodynamics (EHD) lubrication (EHL) and is considerable practical 

significance. Another form of lubrication involves the chemical interactions between 

contacting bodies and the liquid lubricant is termed boundry and extreme pressure 

lubrication. A form of lubrication that operates involving the external force is 

termed hydrostatic lubrication where liquid or gaseous lubricant is forced into the 

space between contacting bodies. 

 

 

The foundations of fluids-film lubrication theory were established by 

Osborne Reynolds in 1886, following earlier experimental work on railroad journal 

bearing by Beauchamp Tower [2]. On Tower’s test rig (Figure 1.2), he was 

discovered that the frictional resistance is nearly constant regardless of the bearing 

load but the frictional resistance increases with sliding speed. Tower also reported 

that beautiful pressure distribution was observed as was expected. Reynolds then 

considered this apparent phenomenon of Tower’s experiments and suggested that 

film lubrication was a hydrodynamic action and depended on the viscosity of the 

lubricant. The lubricant adhere to both the stationary and moving surfaces of the 

bearing and is dragged into a wedge-shaped gap, converging in the direction of 
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motion, where it develops a fluid pressure sufficient to carry the load. He developed 

a governing differential fluid flow equation for a wedge shape film, known as 

Reynolds equation which is simplified form of Navier-Stokes equation. This theory 

is the basis of hydrodynamics (HD) and elastohydrodynamics (EHD) lubrication 

(EHL) that is applied by all researchers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Tower’s test rig 

 

 

There were two other important fundamental equations derived around that 

time. In 1881, Hertz [3] published his study of the contact between two spherical 

bodies, to show how the surfaces deform due to high, local pressure. In 1892, Barus 

determined how the viscosity of oils increases as a function of pressure. 

 

 

Bearing technology developed rapidly in subsequent years, but attempts to 

explain the effective lubrication of highly stressed non-conformal conjunction, such 

as those in gears, on the basis of hydrodynamic principles alone remained ineffective 

throughout most of the first half of the twentieth century. It was recognized that the 

very high pressures associated with such non-conformal conjunctions would enhance 

the lubricant viscosity and also causes substantial local elastic deformation and that 

both effects might contribute to satisfactory film deformation.  

 

Bearing bush Bearing cap 

Journal 

Lubricant 
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 In the elastohydrodynamics (EHD) lubrication (EHL) regime, the elastic 

deformation of the bounding solids is large and affects the hydrodynamics 

lubrication process. EHL is important in non-conforming, heavily loaded contacts 

such as point contacts of ball bearing, line contacts of roller bearing and gear teeth. 

The EHL phenomena also occur in some low elastic modulus contacts of high 

geometry conformity such as lip seals, conventional journal bearing with soft liner, 

wiper blade and nip coating. In the heavily loaded contacts, high pressure can lead 

both to change in the viscosity of the lubricant and the elastic deformation of the 

bodies in contact. 

 

 

 

 

1.2 Objective and scope of study 

 

 

The objective of this study is to determine the solution for 

Elastohydrodynamic lubrication for bearing using non-Newtonian Fluid using power 

law fluids. 

 

 

Numerical method will be used in the prediction of the parameters that need 

to be considered in bearing design analysis such as pressure, film thickness and 

coefficient of friction. As a comparison, this project would also investigate the 

behavior of non-Newtonian fluids in evaluating the performance of bearing and its 

lubricant. 

 

 

The scopes for this project include: 

 

(i) Solution is limited to two-dimensional line contact problem only. 

(ii)  Bearing speed is to be assumed in steady state. 

(iii)  Temperature is to be assumed constant. 

(iv) Non-Newtonian Fluid is limited to power law behavior only. 
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