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ABSTRACT

In this project, a line contact elastohydrodynaruilorication is modelled
through an infinite cylinder on a plane to repreédbe application of roller bearing.
The numerical solution of this problem is presenéetbedded with free volume
model of pressure-viscosity equation using Doelifthit model. Newton-Raphson
method is used to solve the Reynolds equation samebusly with pressure-
viscosity equation and elastic deformation in oraefind the pressure profile and
film thickness. The behavior of non-Newtonian fllatso was investigated using
power law fluid model. The bearing performancespaaters such as pressure, film
thickness and friction coefficient of lubricatedntacts are calculated. Non-uniform
grid also used to improve the pressure spike #gbllhe results show that the peak
pressure increases as the parameters such astyeload, material parameter and
power law index are increases and the spike isddarshift to the center of roller.
The coefficient of friction is reduced as the powawr index and slide to roll ratio

are decreased.
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ABSTRAK

Dalam projek ini, pelinciran sentuhan garisan elagtirodynamic
dimodelkan melalui silinder tidak terhingga ke agagmtu satah untuk mewakili
penggunaan galas jenim®ller . Penyelesaian berangka terhadap permasalahan
pelinciran elastohydrodynamicjenis sentuhan garisan dipersembahkan dengan
memasukan model isipadu bebas terhadap persamakanartekelikatan
menggunakan modeDoolittle-Tait Kaedah Newton-Raphsordigunakan untuk
menyelesaikan persamaan Reynolds secara serentskriae persamaan tekanan-
kelikatan dan elastik deformasi untuk mengira tekardan ketebalan filem.
Kelakuan bendalir bukamNewtonianjuga disiasat menggunakan model hukum
kuasa bendalir. Perkara yang melibatkan prestdas gaeperti tekanan, ketebalan
filem and pekali geseran terhadap permukaan yanggatemi pelinciran dikira.
Saiz sela yang tidak sekata telah digunakan untuemmperbaiki kesan
ketidakstabilan pepaku tekanan. Hasil kajian markkgn puncak tekanan
meningkat apabila parameter seperti halaju, beparameter bahan dan indeks
hukum kuasa ditingkatkan dan puncak tekanan didbpegerak ke tengah silinder.
Pekali geseran berkurang apabila indeks hukum kdasanisbah gelincir-golek
dikurangkan.
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CHAPTER 1

INTRODUCTION

1.1  Background

The whole idea of this study is to write a programgctode that can provide
a solution for fluid film lubrication problem rekd to elastohydrodynamic
lubrication. This can further be applied to invgate the effect of parameters on

bearing design and performance such as presdumghfckness and friction.

Once completed, the programming code will also i suitable for
investigating the behavior of Non-Newtonian lubntan elastohydrodynamic

lubrication problem.

1.1.1 Tribology and Fluid Film Lubrication

During the past few decades, there has been agaisiaog research interest in

the area of friction and wear characteristics afotes bearing designs, lubricants,



and materials for bearings. This discipline, narmé&tology, is concerned with the
friction, lubrication, and wear of interacting sarés in relative motion. Tribology,
which derived from the Greek word ‘tribos’ meanindpbing or sliding. It is a new
field of science defined in 1967 by a committeethed Organization for Economic
Cooperation and Development. The word tribology damed gradual acceptance

from time totime [ 1 ].

Wear is the major cause of material wastage and tfs mechanical
efficiency and performance. Any improvement to @uwvear can result in
considerable cost savings. Friction is a princiglguse of wear and energy
dissipation. Friction is a phenomenon that canmotlominated but can be reduced.
There are basically three methods in reducing idmct use of bearings, air
cushioning and lubrication. Considerable cost sgszican be made by controlling
and improving the friction. Among others, lubricati is an effective means of

controlling wear, agent of a cooling system andicat friction.

In fluid film lubrication, thin low shear strengthyers of gas, liquid and solid
(Figure 1.1) are interposed between two surfacesdar to improve the smoothness
of movement of one surface over another and togmtedamage. These layer of
material separate contacting solid bodies and swally very thin and very difficult

to observe by naked eyes. In general, the thicknédbese films ranging from
1~100pm.
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Figurel.1  Lubricant film

Detailed analysis of gaseous or liquid films is algu termed
hydrodynamics lubrication (HD). While lubrication by solid is termedolid
lubrication. A specialized form of hydrodynamics lubricatiamvelving physical
interaction between the contacting bodies and igaid lubricant is termed
elastohydrodynamics (EHD) lubrication (EHL) and is considerable practical
significance. Another form of lubrication involvése chemical interactions between
contacting bodies and the liquid lubricant is tedrbeundry and extreme pressure
lubrication. A form of lubrication that operates involving tlexternal force is
termedhydrostatic lubrication where liquid or gaseous lubricant is forced irfie t

space between contacting bodies.

The foundations of fluids-film lubrication theory ene established by
Osborne Reynolds in 1886, following earlier expenmal work on railroad journal
bearing by Beauchamp Tower [2]. On Tower’s test (fagure 1.2), he was
discovered that the frictional resistance is neadgstant regardless of the bearing
load but the frictional resistance increases wiitlirsgy speed. Tower also reported
that beautiful pressure distribution was observedvas expected. Reynolds then
considered this apparent phenomenon of Tower’'srerpats and suggested that
film lubrication was a hydrodynamic action and deged on the viscosity of the
lubricant. The lubricant adhere to both the statrgnand moving surfaces of the

bearing and is dragged into a wedge-shaped gamerging in the direction of



motion, where it develops a fluid pressure suffiti® carry the load. He developed
a governing differential fluid flow equation for wedge shape film, known as
Reynolds equation which is simplified form of Navi&tokes equation. This theory
is the basis of hydrodynamics (HD) and elastohygnadhics (EHD) lubrication
(EHL) that is applied by all researchers.

Bearing ca Bearing bus

Lubrican

Journa

Figurel.2  Tower's test rig

There were two other important fundamental equatiderived around that
time. In 1881, Hertz [3] published his study of ttentact between two spherical
bodies, to show how the surfaces deform due to, haglal pressure. In 1892, Barus

determined how the viscosity of oils increases famation of pressure.

Bearing technology developed rapidly in subsequeairs, but attempts to
explain the effective lubrication of highly streds@on-conformal conjunction, such
as those in gears, on the basis of hydrodynanmcipies alone remained ineffective
throughout most of the first half of the twentiegntury. It was recognized that the
very high pressures associated with such non-conaioconjunctions would enhance
the lubricant viscosity and also causes substalattal elastic deformation and that

both effects might contribute to satisfactory fitleformation.



In the elastohydrodynamics (EHD) lubrication (EHt9gime, the elastic
deformation of the bounding solids is large andee# the hydrodynamics
lubrication process. EHL is important in non-comfiang, heavily loaded contacts
such as point contacts of ball bearing, line castac roller bearing and gear teeth.
The EHL phenomena also occur in some low elastidutus contacts of high
geometry conformity such as lip seals, conventigoatnal bearing with soft liner,
wiper blade and nip coating. In the heavily loadedtacts, high pressure can lead
both to change in the viscosity of the lubricantl dhe elastic deformation of the

bodies in contact.

1.2  Objective and scope of study

The objective of this study is to determine the ugsoh for
Elastohydrodynamic lubrication for bearing usingifidewtonian Fluid using power

law fluids.

Numerical method will be used in the predictiontlué parameters that need
to be considered in bearing design analysis sucpressure, film thickness and
coefficient of friction. As a comparison, this peof would also investigate the
behavior of non-Newtonian fluids in evaluating therformance of bearing and its

lubricant.

The scopes for this project include:

(1) Solution is limited to two-dimensional line contgcbblem only.
(i) Bearing speed is to be assumed in steady state.
(i)  Temperature is to be assumed constant.

(iv)  Non-Newtonian Fluid is limited to power law behavamly.
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