SEISMIC BEHAVIOR OF TALL BUILDING STRUCTURES BY FRICTION DAMPER

ABDOLLAH VAEZ SHOUSHTARI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering University Technology Malaysia

> > July 2010

To my beloved mother and father

ACKNOWLEGMENTS

In terms of gratifying my accomplishment of project, I would like to express that the project would not have been completed without the assistance and support of those who guided me in the course of my master's project.

In particular, I wish to express my sincere apparition to my honorable supervisor, Professor Dr. Azlan Adnan, for encouragement, support, guidance, critics, and friendship. Without his continued support and interest, this thesis would not have been same as presented here.

For mostly, I would like to extend my thankfulness to University Technology Malaysia (UTM) and librarian for their assistance in supplying the relevant literatures and information pertaining the searching troubleshot problem and domain.

Lastly but not least, I am grateful to my family members for their love, care, support and daily encouragement, particularly my mother.

ABSTRACT

Large-magnitude long-distance earthquakes generated from Sumatra have significant potential engineering implications in Singapore and Malaysia Peninsula due to accentuation by resonance in buildings. Historical seismicity data of the region covering the past 100 years shows numerous occasions when low-intensity seismic waves reached Peninsular and hence no seismic provisions have been incorporated into building regulations to date. If part of input energy due to earthquake could be dissipated through special devices which can be easily be replaced, as necessary, after an earthquake, the structural damage could be reduced. These devices can be classified into three categories: viscous and viscoelastic dampers, metallic dampers, and friction dampers. The purpose of this study is to evaluate the seismic behavior of tall building structures by friction damper. The finite element modeling technique (SAP2000 Software) is used in this study to learn the behavior of structure equipped by friction dampers. Three different methods of analyzing (Free vibration, Response spectrum, and Time History analysis) have been done to achieve this purpose. In general, this study indicates that the response of structure such as story drifts, axial load of columns and beams, shear load and bending moment of beams, and base shear can be dramatically reduced by using friction damper devices. In addition, this study indicates that the seismic risks due to large-magnitude, long-distance earthquakes generated from Sumatra should be considered for the tall buildings in Malaysia and the application of the seismic retrofitting to existing buildings is much needed to safeguard structure from external peak ground acceleration intensity.

ABSTRAK

Jarak skala Richter gempa bumi besar jauh yang dihasilkan dari Sumatera mempunyai potensi implikasi kejuruteraan di Singapura dan Semenanjung Malaysia kerana resonansi diperbesarkan oleh bangunan. Data gempa yang merangkumi 100 tahun terakhir menunjukkan berbagai kesempatan ketika cepatan gempa-gelombang rendah mencapai Peninsular dan sehingga tidak ada peruntukan seismik telah dimasukkan ke dalam bangunan peraturan terkin. Jika bahagian daripada tenaga input akibat gempa bisa hilang melalui peranti khas yang dapat dengan mudah diganti, bila perlu, selepas gempa bumi, kerosakan struktur dapat dikurangkan. Alat ini dapat dikelompokkan menjadi tiga kategori: dan peredam viskoelastik kental, peredam metalik, dan peredam geseran. Objektif kajian ini adalah untuk menilai perilaku seismik struktur bangunan tinggi dengan peredam geseran. Teknik pemodelan elemen terhingga (perisian SAP2000) digunakan dalam kajian ini untuk mempelajari perilaku struktur dilengkapi dengan peredam geseran. Tiga kaedah yang berbeza dari analisis (Getaran Bebas, Respon spektrum, dan Analisis Perubahan Masa) telah dilakukan untuk mencapai matlamat ini. Secara umum, kajian ini menunjukkan bahawa respon struktur seperti anjakan, beban paksi dari tiang dan rasuk, beban ricih dan lentur, dan luncuran dasar dapat dikurangkan secara dramatik dengan menggunakan alat peredam geseran. Selain itu, kajian ini menunjukkan bahawa risiko seismik besar-besaran,-jarak panjang gempa bumi yang dihasilkan dari Sumatera harus dipertimbangkan untuk bangunan tinggi di Malaysia dan pelaksanaan penyesuaian gempa untuk bangunan yang ada sangat diperlukan untuk menjaga struktur dari intensiti gegaran tanah maksimum.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS'	TRACT	V
	ABS'	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	xi
	LIST	COF FIGURES	xii
	LIST	COF ABBREVIATIONS	xvii
	LIST	COF SYMBOLS	xix
	LIST	FOF APPENDICES	xxii
1	INTI	RODUCTION	1
	1.1	General	1
	1.2	Background	1
	1.3	Problem Statement	3
	1.4	Objectives	5
	1.5	Scope of study	6
	1.6	Organization of Study	6
2	LITH	RATURE REVIEW	8
	2.1	General	8
	2.2	Earthquake Characteristics	9
	2.3	Causes of Earthquake	10
		2.3.1 Plate Tectonics Theory	10
		2.3.2 Faulting	11
		2.3.3 Seismic Waves	12
	2.4	Sources of Site Effects	12

2.5	Response of Tall Building Structures 13		
	2.5.1	Definition	13
	2.5.2	Structural systems for tall buildings	13
	2.5.3	Structural Response Characteristics	19
2.6	Dampi	ing	19
	2.6.1	Energy Dissipation Devices	21
	2.6.2	Passive control system	25
	2.6.3	Some basic types of dampers	26
2.7	Seismi	ic Performance of Friction Dampers	30
2.8	Seismi	ic Performance of other Types of Dampers	46
2.9	Seismi	ic Performance of High-Rise Buildings	51
2.10	Structu	ural Design and Control	52
2.11	Seismi	ic Retrofitting Design	53
2.12	Summ	ary of Literature Review	54
THEO	ORETI	CAL BACKGROUND	55
3.1	Genera	al	55
3.2	Equati	on of Motion	56
3.3	Dampe	er Characteristics	57
	3.3.1	General	57
	3.3.2	Friction Damper Devices (FDD)	60
3.4	Pall Fr	riction Damper	61
	3.4.1	Slip Load	63
	3.4.2	Characteristics of Pall Friction Damper	64
	3.4.3	Design Criteria	66
	3.4.4	Nonlinear Time-History Dynamic	
	Analys	sis	66
3.5	Numer	rical Model of Friction Damped Frame	67
3.6	Classit	fication of Seismic Analysis Methods	69
	3.6.1	Free Vibration Analysis	69
	3.6.2	Response Spectrum Analysis	71
	3.6.3	Time History Analysis	72
3.7	SAP 2	000 Program	72
3.8	Summ	ary of Theoretical Background	73

3

MET	HODOLOGY	74
4.1	General	74
4.2	Planning of Study	75
4.3	Gathering of Information and Data	77
	4.3.1 Description of building	77
4.4	Modeling by SAP 2000, Version 14	79
	4.4.1 Material Properties	80
	4.4.2 Dead loads and Live loads	82
	4.4.3 Earthquake loads	83
4.5	Friction Damper	86
4.6	Analysis	88
4.7	Fast Fourier Transform Analysis (FFT Analysis)	88
4.8	Verification of Finite Element Technique	89
4.9	Summary of Methodology	89
RES	ULTS AND ANALYSIS	90
5.1	Introduction	90
5.2	Section Properties	90
5.3	Free Vibration Analysis Results	92
	5.3.1 Un-damped Frame	93
	5.3.2 Damped Frame	95
5.4	Response Spectrum Analysis Results (RSA)	98
	5.4.1 Displacement of stories	99
	5.4.2 Axial Load of Columns	101
	5.4.3 Shear Load of Beams	103
	5.4.4 Bending Moment of Beams	105
	5.4.5 Axial Loads of Beams	107
	5.4.6 Base Shear	108
5.5	Time History Analysis Results	109
	5.5.1 Synthetic Time History (Rapid-KL) (PGA:	
	0.1606g)	110
	5.5.1.1 Displacement of Top Story	110
	5.5.1.2 Axial load of 2 nd floor column	112
	5.5.1.3 Shear Load of 19 th floor Beam	113

			5.5.1.4 Bending Moment of 19th floor	
			Beam	114
			5.5.1.5 Axial Load of 1 st floor Beam	115
			5.5.1.6 Base Shear	116
		5.5.2	Padang (30/September/ 2009) Time	
		Histor	y (PGA: 0.002268)	117
			5.5.2.1 Displacement of Top Story	118
			5.5.2.2 Axial Load of 2 nd floor Column	119
			5.5.2.3 Shear Load of 19 th floor Beam	121
			5.5.2.4 Bending Moment of 19th floor	
			Beam	122
			5.5.2.5 Axial Load of 1 st floor Beam	123
			5.5.2.6 Base Shear	124
	5.6	Discus	ssing Findings	125
6	REC	OMME	NDATION AND CONCLUSION	129
	6.1	Overv	iew	129
	6.2	Concl	usion	129
	6.3	Limita	tion of The Current Study	131
	6.4	Reco	mmendations For Further Work	131
REFERENCES				132
APPENDICES				137

LIST OF TABLES

TABLE NO.	TITLE	
2.1	Comparison of maximum story drift between FDD frame	
	and primary frame, (Wen-I et al. 2004).	37
3.1	Structural protective systems, (Soong et al, 1997).	55
4.1	Properties of materials	81
4.2	Load descriptions	82
5.1	Beams, Columns, and Braces Sections	91
5.2	Slabs and Shear walls thicknesses	92
5.3	Mode shapes based on period and frequency	97
5.4	Base Shear	108
5.5	Comparison of results of response spectrum analysis	109
5.6	Comparison of results of Time History analysis	125

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Historical earthquakes around Peninsular Malaysia,	
	(Azlan. A, et al, 2005)	5
2.1	worldwide earthquake distribution, Preliminary	
	Determination of Epicenters, 1963-1998.	11
2.2	Behavior of rigid frame due to lateral loads, (Council on	
	tall buildings and urban habitat, 1995).	14
2.3	Shear wall structures, (Council on tall buildings and	
	urban habitat, 1995).	15
2.4	Wall frame structure, (Council on tall buildings and urban	
	habitat, 1995).	16
2.5	(a) Viscoelastic shear damper; (b) diagonal bracing	
	configuration with viscoelastic damper, (Nishant. K.	
	R. et al, 2009).	23
2.6	TADAS device, (Chopra, 2002).	24
2.7	Slotted Bolted Connection (SBC)	24
2.8	Building frames equipped with energy dissipaters, (De la	
	cruz. S. T., 2006)	28
2.9	Envelope of Maximum Roof Displacement, (Vaseghi. J.	
	et al. 2009).	30
2.10	Envelope of Maximum Base Shear, (Vaseghi. J. et al.	
	2009).	31
2.11	Envelope of Column axial force, (Vaseghi. J. et al. 2009).	32
2.12	Story Displacement Comparison, (Carlos Y.L. et al.	
	2003).	33
2.13	Photos of the test frame and attached friction damper,	
	(Wen-I et al. 2004).	35

2.14	Comparison of storey drift between the primary and the	
	damped frame for input of (a) El Centro, (b) Kobe and (c)	
	Chi-Chi earthquakes, (Wen-I et al. 2004).	37
2.15	Friction dampers as X-brace and chevron brace, (Moe	
	Cheung et al. 2000).	39
2.16	Time histories of energy input and energy dissipated,	
	(Pasquin. C. et al. 2002).	41
2.17	Time history of displacement of roof, (Pasquin. C. et al.	
	2002).	41
2.18	Hysteretic loop of a friction damper in a diagonal brace,	
	(Pasquin. C. et al. 2002).	41
2.19	Time history of deformation of damped bracing,	
	(Pasquin. C. et al. 2002).	42
2.20	Reduction of column axial force, (Pasquin.C. et al. 2002).	42
2.21	Experimental setup of scaled frame model with FDD,	
	(Imad H et al. 2002).	43
2.22	Effect of forcing frequency on moment-rotation loops,	
	(Imad H et al. 2002).	44
2.23	(a) Effect of displacement amplitude (b) Energy	
	dissipation-displacement relation, (Imad H et al. 2002).	45
2.24	Comparison between the third floor displacements of the	
	bare frame and of the frame protected with dissipaters,	
	(De la Cruz. S.T. et al. 2006).	46
2.25	Displacement of story due to effect of TMD, (An-Pei	
	Wang and Yung-Hing Lin. 2006).	47
2.26	Average acceleration elastic spectra for different damping	
	ratios, (Mohsen Tehranizadeh and Farzaneh Hamedi.	
	2002).	48
2.27	Top storey relative horizontal displacements (7-storey	
	building), (Semih S et al. 2003).	49
2.28	Top storey relative horizontal displacements (10-storey	
	building), (Semih S et al. 2003).	50

2.29	Top storey relative horizontal displacements (20-storey	
	building), (Semih S et al. 2003).	50
2.30	Base shear (20-storey building), (Semih S et al. 2003).	51
3.1	Dry friction hysteresis loop, (De la cruz. S. T., 2006).	61
3.2	Pall Friction Dampers, diagonal and X-bracing, (Pasquin.	
	C., 2002).	63
3.3	Responses versus Slip Load, (Pasquin. C., 2002).	64
3.4	Comparison of hysteresis loops of different kinds of	
	dampers, (Pasquin. C., 2002).	65
3.5	Schematic friction damped model, (Aliyeh Jowrkesh	
	Safai, 2001).	67
3.6	Force relationship of a friction damped model, (Aliyeh	
	Jowrkesh Safai, 2001).	68
3.7	Force-displacement hysteresis loop of a friction damped	
	model, (Aliyeh Jowrkesh Safai, 2001).	69
3.8	The plot of dynamic amplification equation	70
4.1	Luth Headquarters Building, Kuala Lumpur, Malaysia	78
4.2	Modeled structure in SAP2000	80
4.3	Detail of floors	82
4.4	Response spectrum Euro Code 8 Function	83
4.5	Response spectrum IBC2003 Function	84
4.6	Response spectrum Synthetic Function	84
4.7	Time History Synthetic Function (Rapid-KL)	85
4.8	Padang Earthquake Time History (30/September/2009)	85
4.9	Hysteretic loop of a 600kN friction damper in a diagonal	
	brace, (Pasquin. C. et al, 2004).	87
4.10	Configuration of friction dampers in damped model	87
5.1	First mode shape of Un-damped structure, $T_n = 3.17 sec$	93
5.2	Second mode shape of Un-damped structure, $T_n =$	
	0.9319 sec	94
5.3	Third mode shape of Un-damped structure, $T_n =$	
	0.417 sec	94
5.4	First mode shape of Damped structure, $T_n = 2.9808$ sec	95

5.5	Second mode shape of Damped structure, $T_n =$	
	0.9087 sec	96
5.6	Third mode shape of Damped structure, $T_n = 0.4045 \ sec$	96
5.7	Displacement of stories	99
5.8	Axial Load of Columns	101
5.9	Shear Load of Beams	103
5.10	Bending Moment of Beams	105
5.11	Axial Loads of Beams	107
5.12	(a) Un-Damped structure (Max is 0.2063 cm, Min is -	
	0.1816 cm), (b) Damped structure (Max is 0.1624 cm,	
	Min is -0.1178 cm), Reduction: 27.8%	110
5.13	(a) Un-Damped structure (Max is 68.61 KN, Min is -	
	57.95 KN), (b) Damped structure (Max is 54.57 KN, Min	
	is -40.77 KN), Reduction: 24.7 %	112
5.14	(a) Un-Damped structure (Max is 0.1095 KN, Min is -	
	0.1589 KN), (b) Damped structure (Max is 0.09253 KN,	
	Min is -0.1216 KN), Reduction: 20.2 %	114
5.15	(a) Un-Damped structure (Max is 1.288 KN.m, Min is -	
	0.8878 KN.m), (b) Damped structure (Max is 0.9861	
	KN.m, Min is -0.75 KN.m), Reduction: 20.2 %	115
5.16	(a) Un-Damped structure (Max is 12.07 KN, Min is -	
	10.21 KN), (b) Damped structure (Max is 9.952 KN, Min	
	is -8.265 KN), Reduction: 18.2 %	116
5.17	(a) Un-Damped structure (Max is 206.7 KN, Min is -	117
	190.1 KN), (b) Damped structure (Max is 185.2 KN, Min	
	is -167.5 KN), Reduction: 11.11 %	
5.18	(a) Un-Damped structure (Max is 8.46 mm, Min is -8.52	
	mm), (b) Damped structure (Max is 4.21 mm, Min is -	
	3.54 mm), Reduction: 54.4%	119
5.19	(a) Un-Damped structure (Max is 244 KN, Min is -248	
	KN), (b) Damped structure (Max is 141.6 KN, Min is -	
	121.8 KN), Reduction: 46.46 %	120

5.20	(a) Un-Damped structure (Max is 0.4575 KN, Min is -	
	0.4243 KN), (b) Damped structure (Max is 0.164 KN,	
	Min is -0.1865 KN), Reduction: 60.25 %	121
5.21	(a) Un-Damped structure (Max is 3.44 KN.m, Min is -	
	3.709 KN.m), (b) Damped structure (Max is 1.512 KN.m,	
	Min is -1.329 KN.m), Reduction: 60.26 %	122
5.22	(a) Un-Damped structure (Max is 31.39 KN, Min is -	
	34.49 KN), (b) Damped structure (Max is 18.19 KN, Min	
	is -17.48 KN), Reduction: 45.86 %	123
5.23	(a) Un-Damped structure (Max is 1433 KN, Min is -1252	
	KN), (b) Damped structure (Max is 805.8 KN, Min is -	
	911 KN), Reduction: 36 %	124
5.24	Frequency of Rapid-KL Time History data	127
5.25	Frequency of Padang Time History data	127

LIST OF ABBREVIATIONS

TITEL

IBC	-	International Building Code
NEHRP	-	National Earthquake Hazards Reduction Program
ADAS	-	Added Damping And Stiffness
SMRF	-	Special Moment Resisting Frame
FEMA	-	Federal Emergency Management Agency
RC	-	Reinforced Concrete
SBC	-	Slotted Bolted Connection
PED	-	Passive Energy Dissipation
VE	-	Viscoelastic
SDOF	-	Single Degree of Freedom
U.S.	-	United State of America
DBE	-	Design Basis Earthquake
MCE	-	Maximum Considered Earthquake
FDD	-	Friction Damper Device
EC	-	Euro code 8
FE	-	Finite Element
2D	-	2 Dimensional
3D	-	3 Dimensional

RSA	-	Response Spectrum Analysis
THA	-	Time History Analysis
SEER Research	-	Engineering Seismology and Earthquake Engineering
Rescuren		

LIST OF SYMBOLS

TITEL

m	-	Meter
cm	-	Centimeter
mm	-	Millimeter
kN	-	Kilo Newton
kN/mm^2	-	Kilo Newton per millimeter square
$N/_{mm^2}$	-	Newton per millimeter square
kg/cm ²	-	Kilogram per centimeter square
kg/cm ³	-	Kilogram per centimeter cube
g	-	Gravitational ground acceleration
U_1	-	Global X-direction
%	-	Percentage
ÿ	-	Ground acceleration
ż	-	Ground velocity
х	-	Ground displacement
t	-	Time/period
Hz	-	Hertz
k	-	Linear elastic stiffness

m	-	Mass
c	-	Damping coefficient
ü	-	Structural acceleration
ù	-	Structural velocity
u	-	Displacement
±	-	Approximation
δ	-	Inter story drift
b	-	Brace
d	-	Damper
f	-	Shear force/friction coefficient
Ν	-	Applied normal force
Δt	-	Time step
f_y	-	Strength of reinforcement
<i>f</i> _c	-	Strength of concrete
Е	-	Modulus of elasticity
G	-	Shear modulus
ν	-	Poisson ratio
y_e	-	Yield strength
U _e	-	Ultimate strength
р	-	Axial force
М	-	Bending moment
V	-	Shear force
i.e.	-	Initialism; "In other words"

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Hand Calculation	137

CHAPTER 1

INTRODUCTION

1.1 General

Tall buildings are subjected to vibrations. These vibrations can be due to wind forces, earthquake excitations, machine vibrations, or may other sources. In some cases, especially under strong earthquake excitations, these vibrations can cause the structural damage or even collapse of structure. For the structures that have high inherent or natural damping, the likelihood of damage will be decreased. However, for structures subjected to strong vibrations, the inherent damping in the structure is not sufficient to mitigate the structural response. In many situations, supplemental damping devices may be used to control the response of structure.

1.2 Background

Among the natural phenomenon that human kinds have worried about that, earthquakes are the most distressing ones. The place and the time of occurrence of earthquake are unpredictable and therefore this makes them disaster phenomenon. During a major earthquake, a large amount of input energy due to earthquake is pumped into the building. The manner in which this energy is consumed in a structure determines the level of damage. The building codes recognize that it is economically not feasible to reconcile this energy within the elastic capacity of materials.

The scale of designing in conventional building codes is to design structures to resist moderate earthquakes without significant damage and avoid collapse during major earthquakes. The primary emphasis is on life safety. The reliance for survival is placed on ductility to dissipate energy during inelastic deformations causing bending, twisting and cracking. Recent earthquakes have clearly demonstrated that conventional construction, even in technologically advanced countries, is not unaffected to destruction.

The most feared effects of earthquake are collapse of structures especially tall building structures due to high displacement of stories. One of the key problems with this explanation is to reduce the structural response by increasing the dissipation of input energy due to earthquake. In the other words, if the amount of energy getting into the structure can be controlled and a major portion of the energy can be dissipated mechanically independent of primary structure, the seismic response of the structure and damage control potential can be considerably improved. These objectives can be delivered by adopting new techniques of base isolation and energy dissipation devices. Damper devices are the most popular instruments for increasing the dissipation of input energy.

The main goals of any structural design are safety, serviceability and economy. Achieving these goals for the design of structures in seismic regions is very important and difficult. Uncertainty and unpredictability of when, where and how an earthquake will be happen, will increase the overall difficulties. The goal of this project is studying the seismic behavior of tall building structures by friction damper. According to the increment of population every year, tall building structures have significant role in countries. Therefore, the design of these buildings should be more accurate than other buildings. In the other words, the design of tall building structures in seismic regions is more challenging, (Council on tall buildings and urban habitat, 1995).

Finite Element Method (FFM) is a numerical method that can be used to solve different kinds of engineering problems in the stable, transient, linear or nonlinear cases (Bathe, 1996). Among finite element method software's, SAP2000 is known as one of the most precise and practicable software in industry and university researches. It is used for dynamic analysis such as earthquake and water wave loading on structures.

1.3 Problem Statement

Large-magnitude long-distance earthquakes generated from Sumatra have significant potential engineering implications in Singapore and the Malaysia Peninsula due to accentuation by resonance in buildings. In addition, as the high of building increases, the weight of structure will be increased as well as the fundamental period of building, therefore, the displacements of stories or story drifts as well as story shears increase. In the other words, Long-distance earthquakes generated from Sumatra have been a cause for concern in recent years for countries in the Indo-China region including Singapore, Malaysia and Thailand. In addition, Long-distance earthquakes have long period, therefore, as it mentioned earlier, tall buildings have long period too and then phenomenon of resonance may be occurred. For example, long-period seismic waves generated by large-magnitude earthquake events could be amplified by some four to six folds as a result of resonance. (Balendr. T. et al. 2005). One criticism of much of the literature on above explanation is that, although, Malaysia is located in low seismic activity area but the active earthquake fault line through the centre of Sumatra just lies 350 km from Peninsular.

Historical seismicity data of the region covering the past 100 years shows numerous occasions when low-intensity seismic waves reached Peninsular; the acceleration of the infrastructure is estimated to be about 3% gravitational acceleration. Neither casualty nor significant damage has been recorded from these events and hence no seismic provisions have been incorporated into building regulations to date. Consequently, there is generally little attention to design and detailing for ductile behavior of the structure in the region.

In addition, according to studies, the damping ratio of structures is generally less than 10%, and also, by increasing the height of structures, damping ratio will be decreased, (Amr. S. E., and Luigi. D. S., 2008). Therefore, the amount of elements that are needed to resistant the lateral loads increase, so, the cost of construction increase dramatically.

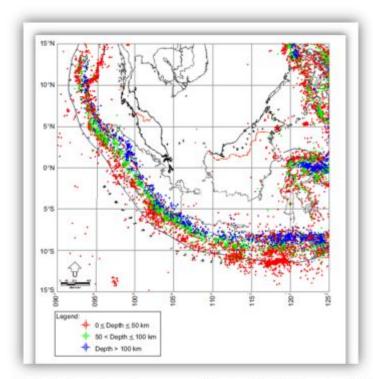


Figure 1.1Historical earthquakes around Peninsular Malaysia, (Azlan. A, et al,2005)

1.4 Objectives

The objectives of this study can be listed as follows:

- a) Remodeling of a tall building structure (Luth Headquarters building) by friction damper.
- b) Determining the effects of large-magnitude, long-distance earthquakes generated from Sumatra on seismic behavior of tall buildings of Malaysia Peninsula.
- c) Studying the seismic behavior of existing tall building structure by friction damper, when seismic activity occurs using time history, response spectrum and free vibration analysis.

1.5 Scope of study

- a) Earthquake characteristics
- b) Response of tall building structures
- c) Damper characteristics (Types of damper devices)
- d) Evaluation of response of tall building structures equipped by friction damper

1.6 Organization of Study

The preparing of the objectives and scopes of study are explained as below;

Stage 1: Explaining of the project on the objectives and scopes of the study

It is to verify the feasibility of the study outcomes and planning of methodology in efficient thesis of input and output.

Stage 2: Literatures, collecting data and modeling of structures

Initial study should be done to understand the behavior of the tall building structure and best solution for retrofitting it. Knowing the performance of the tall building structure subjected to earthquake loading is essential to assume the structure behave according to literature findings. Obtaining the information of model before head and spearhead the modeling technique is part of the requirement in successful overall analysis.

Stage 3: Verification of retrofitting devices and modeling

The purpose of this stage is to identify appropriate and application of retrofitting devices, which is the friction dampers devices. In addition, the theoretical background of the frame equipped by friction damper device is also included to verify the concept of work on the device. Material properties and analysis methods have been determined to obtain correct mode shapes. The structure with and without damper has been modeled by SAP2000 software to verify the response of structure with appropriate earthquake signals. In other words, the models are proposed with (damped) and without (UN damped) friction damper for comparison purposes.

Stage 4: Vulnerability assessment of modeling and response analysis

The response spectrums and Time histories analysis have been done to find responses of the two models.

Stage 5: Discussion and conclusion

Summary of the project according to the different analysis methods and the proposed retrofitting device will be presented. Comments on the further improvement to the study are to be enumerated.