
43

PROPERTY COMPOSITION AND OTHER

CONSTRUCTS TO SUPPORT IDENTITY IN OWL

Robert M. Colomb
Department of Information Systems

Faculty of Computer Science and Information Systems
University of Technology Malaysia

colomb@utm.my

Abstract: This paper presents proposals for augmenting OWL Full with constructs necessary

for supporting identity, an essential facility for ontologies governing interoperating

information systems. These constructs include declaration that a property is one-to-one, a

representation of the image of a property, and composition of properties. Using definitions

from Category theory, property composition allows definition of Cartesian product without

requiring that an individual have any internal structure. Category theory-style definitions and

reasoning work entirely with properties, therefore are not affected by the open world

semantics of OWL. The definitions permit representation of n-ary relations, association

classes, parameterised families of properties and indexed families of classes.

Keywords: OWL, information systems interoperation, ontology

1. INTRODUCTION

OWL as a knowledge/ontology representation language has a rich set of constructs, but is

very limited in expressive power compared for example with Common Logic or even SQL.

There are many applications for which the expressive power of OWL is insufficient. But

extensions to OWL are best if they respect the basic structure of OWL, founded on classes,

properties, and the absence of the unique names assumption. This paper argues for a number

of extensions based on property composition, which it argues fit well into the OWL way of

doing things.

OWL has a set of base constructs: class and property. Properties have domain and range.

There are special kinds of properties: functional, inverse functional, transitive, symmetric. In

addition, it is possible to construct restriction classes using a number of conditions on

properties (allValuesFrom, someValuesFrom, hasValue, minCardinality, maxCardinality).

There is a limited ability to construct derived properties using inverseOj Further, there is a

limited facility for property composition, in that composition of a transitive property results in

the same property; and a limited algebra of operators on properties: inverseOf applied to

inverseOf is the identity, and inverseOf is the identity on a symmetric property. Finally, in

OWL individuals by default fail to satisfy the unique names assumption, but properties and

Jilid 20, Bil.4(Disember 2008) Jurnal Teknologi Maklumat

mailto:colomb@utm.my

2. IDENTITY

44

AgentA2

Jurnal Teknologi Maklumat

L

Figure 1. Interoperating Agents

Agent Al

Jilid 20, Bi!. 4 (Disember 2008)

An ontology is a representation of a world shared among a community of agents. This

world consists of a collection of objects organized into classes and related through properties.

A key requirement for two agents to interoperate is the ability to tell if they are working with

the same object. In other words they need to be able to agree on the identification of the

objects they share. Consider the situation in Figure 1.

classes by default do satisfy the assumption. Of course classes can be declared to be

equivalent, as can properties, but they are by default assumed to be distinct.

In this paper, we argue for a more complete facility for property composition, a richer

facility for construction of classes, and the use of aggregation for deriving classes and

properties. Some of the proposals are informed by category theory, which suggests definitions

that do not require instance-level reasoning so are compatible with the absence of the unique

names assumption. All of the proposals are informed by well-established requirements of

large information systems, and in some cases borrow from facilities of SQL designed to serve

these requirements.

We first consider the problem of identity, which requires that properties be declared to be

injective and surjective, and also the construction of derived classes using Cartesian product.

These lead to the need for property composition, which allows the definition of Cartesian

product without requiring a class to have internal structure, instance-independent definitions

of surjection and injection, and a class of integrity constraint called the principle of consistent

dependency useful in information systems applications. These new constructs are applied to

the representation of n-ary properties, to association classes and to correlations among

classes. They are further applied to structures useful for large ontologies, namely

parameterised families of properties and indexed families of classes. Finally, a proposal is

made for declaration of local closed worlds permitting the definition of aggregation functions

used in data warehousing applications. The proposals are fmally summarized in a table, and

the issue of placement in OWL Full rather than OWL DL is addressed.

Ontology

C

/t p'-.

45

The ontology consists of a concept C which is the in the domain of a property p whose

range instance is a single literal L. The ontology supports a group of interoperating agents,

including agents Al and A2. Each agent maintains an internal representation of concept C as

Cl and C2 respectively. But CI is not visible to any observer outside AI, and similarly C2 is

not visible to any observer outside A2.

The agents communicate using messages constructed out of literals. So if agent A I wants to

communicate with A2 about concept C, the message will contain the literal L. A I finds L by

navigating from CI to L via p, while A2 must find C by navigating from L to C2. This implies

a property whose range includes C and whose domain includes L. The property p carries

identity for the class including C.

OWL has a very weak concept of identity. Individuals can have names, but names do not

necessarily satisfy the unique name assumption. Names may be synonymous. The fact that

two names are synonymous may not be known, so two distinctly named individuals may not

necessarily be distinct objects.

Literals do satisfy the unique name assumption, in that for example two distinct strings are

different. If there were a one-to-one property whose domain was a class of individuals and

whose range was a class of literals, it could be identifying. But it is impossible to declare such

a property in OWL DL. One can declare a property to be functional, and that its inverse is

also functional, but a property cannot have a class of literals as its domain. OWL Full allows

the declaration of a property whose range can be a class of literals to be both functional and

inverse functional, but there is still no property whose domain is a class of literals.

There are many applications like Figure I where a community of autonomous agents

interoperate in a closed world. Electronic commerce exchanges are an obvious example.

These can have tens of thousands of autonomous players, but they must all be members of the

exchange and must all commit to the ontology. These agents need identity, and the

representations they have to work with are restricted to collections of literals.

Besides its use in the interoperation of information systems, identity is a central concern of

the OntoClean [4] method for validating the subclass structure of an ontology. The properties

used to identify instances of a superclass must also be capable of identifying instances of all

subclasses.

SQL systems represent identity by allowing columns of tables to declared keys. Entity

Relationship models and UML models have cardinality/multiplicity constraints on all ends of

relationships/associations, so in particular can declare one-to-one constraints.

An equivalent facility in OWL would be the inclusion of an additional restriction class on a

property, namely the subset of its domain which is in one-to-one correspondence with a

subclass of its range. We might call this new restriction isOneToOneTo. But such a restriction

Jilid 20, Bil.4(Disernber 2008) Jurnal Teknologi Maklurnat

46

class is different from other restriction classes in OWL. The other restriction classes are all

predicates which can be satisfied or refuted by a single individual, so that it is possible to

compute the restriction class by testing all individuals, putting those satisfying the predicate

into the restriction class, and leaving the others out. The proposed restriction isOneToOneTo

can't be computed this way.

2.1 Restrictions: Injection and Surjection

The restriction isOneToOne is more naturally evaluated by testing the individuals in the

range of the property. Each instance of the range corresponding to a single instance of the

domain determines an instance of the domain belonging to the restriction class. So

isOneToOneTo can be defined as a restriction for an objectProperty. But we would also like

isOneToOneTo to apply to a datatypeProperty. This is more difficult, because literal

datatypes are generally not finite classes.

OWL has a construct owl:DataRange, which is defined as a subclass of literals. The only

constructor for owl:DataRange is the ability to construct an enumerated class of literal

instances using owl:oneOf. A datatypeProperty whose range is an owl:DataRange can

support our definition of isOneToOneTo.

A possible representation in RDF of isOneToOneTo (restriction(ID isOneToOneTo

(required))) along the lines of [8] is

_:x rdf:type owl:Restriction .

_:x rdf:type owl:Class [opt]

_:x rdf:type rdfs:Class [opt]

_:x owl:onProperty T(ID)

_:x owl:isOneToOne T(required)

ID and required are parameter variables, ID a property and required a class. The [opt]

annotation means that the OWL reasoner can infer this (a Restriction is by defmition an OWL

class, which is by definition an RDFS class.) The notation TO refers to a translation of the

parameter to an RDF object.

A DataRange defined using owl:oneOfhas an extent defined a priori and explicitly. This is

inconvenient for many common situations. For example, suppose we have a datatypeProperty

studentlD whose domain is Student and whose range is xsd:string, and want to know which

strings are actually associated with instances of Student in that class' extent at a particular

time. To this end, we propose a derived class imageofclass C from property P, or C imageO!

P

'-t~

:~*_owl:1
. ':xrdf:typo rdfs,

,. ,'''''' I onPr',Vt ':x ow: opel
~'''T<m) rdf:type 0 ..

, 'T(requiJ'ed) rdf~

T(ID) rdfs:domai
T(required) rdfs::

:x owl:image01
- imageOf(requiJ

n	 :x rdf:type owl:
-:x rdf:type rdfs:
-:x owl:onPrope
T(IO) rdf:type o
T(required) rdf:t

. T(ID) rdfs:doma
T(required) rdfs
_:xowl:imageO

lass T ofR on a Sl

I imageOf S onl

T rdfs:subclassOf
the restriction

isOneToOneTo T
ally

S rdfs:subClass01

On class must be

, now have a propo:

e, and hence an i

Jilid 20, Bil. 4 (Dis ember 2008)	 Jumal Teknologi Maklumat

47

datarange(imageOf(required) onProperty(ID))

_:x rdf:type owl:DataRange

_:x rdf:type rdfs:Class [opt]

_:x owl:onProperty T(ID)

T(ID) rdf:type owl:datatypeProperty

T(required) rdf:type owl:Class

T(ID) rdfs:domain D

T(required) rdfs:subclassOf D

_:x owl:imageOfT(required)

and class(imageOf(required) onProperty(ID))

_:x rdf:type owl:Class

_:x rdf:type rdfs:Class [opt]

_:x owl:onProperty T(ID)

T(ID) rdf:type owl:objectProperty

T(required) rdf:type owl:Class

T(ID) rdfs:domain D

T(required) rdfs:subclassOf D

_:X owl:imageOfT(required)

So if we have a property P with domain D and range R, and want to say that P is injective

to a subclass T of R on a subclass S of D, we can first declare

I imageOf S onProperty P

then

T rdfs:subclassOf I

then the restriction

isOneToOneTo T onProperty P

and fmally

S rdfs:subClassOf restriction

An identifier for S must also satisfy the restriction cardinality = 1, since every instance of

the domain class must be identified.

We now have a proposal for OWL constructs supporting the restriction that a property be

injective, and hence an identifier. But along the way we have also proposed a construct that

can be used to declare that a property is surjective, since a property is by definition surjective

if it is range restricted to any subclass of its image.

2.2 Cartesian Product

But a single property is often not sufficient for identification. Relational systems make

great use of compoun~s reflecting the need to identify objects in particular applications

by combinations of attributes. For example, in RDF, a non-reified statement in a named graph

is identified by the combination of four properties subject, predicate, object and graph. So we

need to be able to designate a combination of properties as carrying identity for a class.

One way to do this, analogous to the way compound keys are handled in relational systems,

is to allow a new class to be derived as the Cartesian product of a number of existing classes.

Jilid 20, BiI.4(Disember 2008) Jumal Teknologi Maklumat

48

In relational systems, a Cartesian product is defined as a set of tuples, but in category theory

(see eg [I D, a Cartesian product is defined without specifying the internal structure of the

derived class. Instead, the construction includes a collection of total functional projection

properties whose domain is the Cartesian product and whose range is one of the classes from

which the product is derived. This latter approach is probably more suited to OWL, since

individuals in OWL have no internal structure.

If a collection of properties is together identifying for a class, it is equivalent to a single

property whose range is the Cartesian product of the ranges of the original properties. The

original range classes can be reached using the projection properties.

Cartesian product can be defined in a way analogous to the definition of class intersection

in [8], using blank nodes. First we define the product itself

cartesianProduct(description1... descriptionn)
_:x rdf:type owl:Class
_:x rdf:type rdfs:Class [opt]
_:x owl:cartesianProduct T(SEQ descriptionl ... descriptionn)

then the projections
projection(description, description i) i = I ... n

_:x rdf:type owl:functionalProperty
_:x rdf:type rdf:Property [opt]

_:x owl:projection T(SEQ description, descriptioni)
_:x rdfs:domain T(description)
_:x rdfs:range T(descriptioni)
T(description) rdfs:subClassOf T(restrictionrjx, minCardinality(1»)

where the first description is the product and descriptioni is one of the components of the

product. The projection property has minimum cardinality 1 on the product.

This definition is somewhat ambiguous, but will be augmented below.

3. COMPOSITION OF PROPERTIES

A property in OWL associates each individual with zero or more individuals. So if we have

two properties P1 and P2, with P1 associating individual 11 with 12 and P2 associating 12

with 13, then the composition P2.P1 associates 11 with 13, and is semantically a property in

OWL. It would seem reasonable therefore for OWL to have a syntactic mechanism for

property composition. We propose the construct composedWith for this purpose, where P2

composedWith P1 = P2.P 1 as above. The construct composedWith can be defined in the same

sort of way as intersectionof and unionOf, connecting the construct to the type rdf:Property

via a blank node.

Jilid 20, BiJ.4 (Disember2008) Jumal Teknologi Maklumat

49

_:x rdf:type owl:ObjectProperty .

_:x rdf.type rdf:Property . [opt]

_:x owl:composedWith P(SEQ propertyl...propertyn)

where propertyl ... propertyn are all object properties.

We need rules to derive the domain and range of a property composition given the domains

and ranges of the properties composed. Since property composition is associative, we need

only look at the case of composition of two properties, P1 and P2. Let Dl, D2 be respectively

the domain of P1, P2 and similarly Rl, R2 the range of P1, P2. Let P be P1 composed with

P2, with domain D and range R. Clearly,

D=DI

Further,

R = imageOf (R I intersect D2) onProperty P2

Property composition is a very useful tool. One very common use is to present aspects of an

ontology to a player in a form appropriate to their participation in the application supported

by the ontology. In relational database implemented information systems, this facility is

called a view. For example, suppose we have a class Wine which is the domain ofa property

availablehrom whose range is WineStore, and that WineStore is the domain of a property

situatedln whose range is Suburb. Ifwe have a menu planning application, it might want only

to know which suburb a wine is available in, abstracting away from the stores. We can create

a property availableln with domain Wine and range Suburb as an equiva/entProperty to

situatedln composedWith availab/eFrom.

A second kind of use for composition is constructing derived properties in semantically

dense networks of base properties. A very familiar example is family relationships. Ifwe have

parentOj we can define grandParentOj as an equivalentl'roperty to parentOj composedWith

parent/If If we have chi/dOj as inverseOj parentOf, we can define sib/ingOj as

equiva/entProperty to childOjcomposedWith parentof. Similarly for uncles, cousins, in-laws

and so on.

Note by the way that the construction of composedWith results in a blank node, which can

be named with subPropertyOj as well as equivalentl'roperty, so that for example recursive

properties can be defined.

3.1 Application to Cartesian Product

We can complete the definition of Cartesian product of classes with a more technical use of

property composition. As noted above, in category theory, Cartesian product of classes is

defined without reference to any internal structure of the product class by defining the product

class in terms of properties. Class C is the product of classes A and B with projections

Jilid 20, Bil.4(Disember 2008) Jumal Teknologi Maklumat

50

respectively pa and pb if given any properties a and b with domain D and range respectively

A and B, there is a unique property c with domain D and range C such that a is c composed

with pa and b is c composed with pb. It is customary to illustrate this with a diagram, as in

Figure 1.

BA

Figure 1 Diagram of Cartesian product

In this diagram, it makes sense to think of property c as the product of a and b. If a and b

together carry identity for D, then we can say that c carries the compound identity.

3.2 Principle of Consistent Dependency

That for example pa composedWith c is equivalentProperty to a is called in category theory

that the diagram commutes. That two property compositions with the same domain and range

commute gives an important kind of integrity constraint called principle of consistent

dependency by Dampney (see [2]). For example, suppose our menu planner creates a plan for

a client. The client is located in a suburb via a composition of properties, and the wines are

available in a suburb via a composition of different properties. We might want to stipulate

that the wines must be available in the same suburb that the client lives in. Declaring that the

two compositions commute (in OWL terminology that the two composed properties are

equivalentProperty) expresses that constraint.

Situations where the principle of consistent dependency is a useful integrity constraint are

extremely common: we want a delivery of a product in respect of an order to be the same

product as that ordered; we want the institution granting a degree to a student to be the same

institution as offered the courses the student takes; we want the destination of a flight taken

with a ticket to be the same as the destination on the ticket. That the constraint is seldom

made explicit is partly due to lack of a language to do so, and partly to the fact that these sorts

of constraints are taken for granted in single information systems. Where systems are built

using cooperating autonomous agents, failures are more likely and have greater consequences.

It is therefore more important that commitment to the ontology include commitment to

constraints like these.

Jilid 20, Bil. 4 (Disember2008) Jurnal TeknologiMaklumat

51

3.3 Reasoning on Properties Only: Monomorphisms and Epimorphisms

Notice that the property c in Figure 1 is defined without regard for any instances of either D

or C, unlike our earlier definitions of injective and surjective properties. This is an advantage,

since the default open world semantics for OWL makes reasoning at the individual level

problematic. For example, if we have a restriction on property P that cardinality == I, and

have the triples

il P j I
il P j2

we can't conclude that the restriction is violated unless we further know

j I differentFrom j2

similarly, we can not conclude from the absence of a triple whose subject is i1 and whose

predicate is P that the constraint is violated. We simply may not know the object ofthe triple,

so can't represent it.

In Category Theory, there is a generalization of injective, called monomorphism, and a

generalization of surjective, called epimorphism, defined solely in terms of commuting

diagrams. We will refer to Figure 2

g
f)>y --------:>~ T x

)

j h
Figure 2 Diagrams for monomorphism and epimorphism

A property f with domain S and range T is a monomorphism (injective) iff for every

properties i and j with domain Y and range S, equivalentProperty(j composedWith i, f
composedWith j) implies equivalentProperty(i, j).

Similarly, a property fwith domain S and range T is an epimorphism (surjective) iff for

every properties g and h with domain Tand range X, equivalentProperty(g composedWithj, h

composedWithjJ implies equivalentProperty(g, h).

These definitions may be more convenient for reasoning in OWL engines.

4. ApPLICATION OF THE CONSTRUCTS: N-ARY RELATIONS AND ASSOCIATION CLASSES

Suppose we wanted to say that Ian Thorpe won a gold medal for the 400 metre freestyle in

the 2004 Olympics. This is easily expressed as a 4-ary relation

<Ian Thorpe, 2004, 400m Freestyle, gold>

UML, Object Role modelling, and many dialects of Entity-Relationship modelling have

constructs permitting this to be directly expressed (respectively n-ary association, n-ary fact

type, n-ary relationship).

Jilid 20, Bil.4(Disember 2008) Jumal Teknologi Maklumat

52

Jurnal Teknologi Maklumat

awarded

Jilid 20, Bi\. 4 (Disember 2008)

enrolment

Figure 3: Example of association class in augmented OWL

The original property is enrolment. We represent it as the class Enrolment, identified by id

whose range is the Cartesian product Student x Course with projections ps and pc. The

property s is equivalentProperty to ps composedWith id, c is equivalentProperty to pc

composedWith id, and si is inverseOfs. We can defme enrolment as equtvalentProperty to c

composedWith si, Finally Enrolment is the domain of the property awarded.

Note that we need never materialize the Cartesian product nor the projections ps and pc. It

is used solely as a constraint on the triples representing the properties s and c.

N-ary properties can be represented in a similar way, as illustrated in Figure 4. The notation

is the same as Figure 3, with the addition of the arrow with a solid head denoting Outcome

rdfs:subClassOf CxExOxM. To avoid clutter, the projection properties are not shown.

The quaternary property is represented by the class Outcome. As a subclass of CxExOxM,

si

Further, it is often convenient to consider that something modelled as a binary relation has

an attribute, or participates in a relation. For example, if we represent the fact that a student is

enrolled in a course as a 2-relation <Student, Course>, it makes sense to represent the

students' grades as also a 2-relation «Student, Course>, Grade>. Or we might want to

represent that a student's enrolment is managed by a Faculty. UML has a facility called

association class to model this representation, and Object-Role modelling has a facility called

reification of fact types. It is also supported by some dialects of ER modelling.

The two can be combined. We can represent that a person is booked on a flight on a date as

a ternary association, and represent the seat allocated as an attribute on that association seen

as an association class.

On the other hand, many modelling and knowledge representation tools do not provide one,

or indeed either, of these facilities. In particular, OWL provides neither.

It happens, though, that the machinery already introduced provides a good facility for

representing both. First, the association class, as in Figure 3. The Figure uses a UML-style

notation. The rectangles denote classes, the arrows properties with range at the end with the

arrowhead.

53

I Medal I

Jurnal Teknologi Maklumat

I Olympiad II Event I

Figure 4: Example ofn-ary property

I Competitor I

5. CORRELATION AMONG CLASSES

WorkItem

Suppose we have two classes, each a subclass of the domain of a property whose range they

share. There are often constraints on the ontology involving correlation of instances of the

domains as they are associated with instances of the range. For example, we might be a motor

vehicle service establishment with an ontology fragment as shown in Figure 5. WorkItem is a

charge for labor of a particular specialist, while Partltem is a charge for parts. In both cases

the class Product has price, tax rate and other such general properties. We want there to be no

instance of Product which the object of both laborFor and partFor. That is, no Workltem

refers to a part and no Part/tem refers to a kind of labor.

Outcome inherits the projection properties. Outcome can be identified in two different ways.

Given Event, Olympiad and Competitor, we know Medal. Given Event, Olympiad and Medal,

we know Competitor. These identifications are represented by the two properties idl and id2.

laborFor

Jilid 20, Bil.4(Disember 2008)

Figure 5: Ontology fragment where range instances not shared

On the other hand, there are applications where we want every instance of the range to be

the target of links from both domains, as in the ontology fragment shown in Figure 6. Here,

Skill is a class of specific skill needed for problem solving. Problem is a class of standard

problem situations, and neededFor links problem situations to the skills needed to solve them.

Staffis a class of staff members. Each staff member has some skills. We want the constraint

that for, each skill needed for a problem there is at least one staff member who has that skill,

54

6. PARAMETERIZED FAMILIES OF PROPERTIES

Jumal Teknologi MaklumatJilid 20, Bil. 4 (Disember 2008)

Figure 7. Binary property derived from quaternary association

So n-ary associations can be viewed as properties in a number of ways, but these

neededFor

Problem

N-ary associations can be conveniently represented as classes, as in Figure 4. But note that

it is possible to derive binary properties from the n-ary, as in Figure 7. The property

competedln equivalenti'roperty po composedWith ci, with ci inverseOj pc, is a perfectly

normal property, associating every instance of Competitor with the instances of Olympiad in

which they competed in any event. It works because pc is a total property, so its inverse is

surjective. Any of the pairs of classes can be associated with a derived property of this kind.

competedln

Figure 6: Ontology fragment where all range instances are shared

Finally, we might be interested in the subclass of skills for which there is both a problem

and a staff member, not a constraint but what amounts to a query.

We can define these constraints (or create these classes) by intersection of images, in the

same sort of way that we can intersect restriction classes. In the first example, if the images of

laborFor and partFor are disjoint, then no instance of Product is linked to both a WorkItem

and a Partltem. This can be made a constraint by defining the intersection as a subclass of

Nothing, the built-in empty class.

That every instance of Skill is neededFor an instance of Problem and some instance of Staff

has that skill can be specified as a constraint by defining Skill as a subclass of the intersection

of the images of neededFor and has.

Finally, the query is a defined class obtained by declaring the intersection of the images to

be equivalentClass to a desired class name.

and that staff members only record skills potentially needed for solving standard problem

instances.

55

associations are complex and often need to be analysed. For example, we might want to

restrict attention in Figure 4 to the outcomes in a particular event, say Mens' 400 metre

freestyle, so we can see the medals awarded to competitors in Olympiads for just that event.

We can do this by creating a restriction class has Value the particular event, in the normal

way.

We might then want to look at the result using properties. For example, we might want the

Olympiads in which a competitor won a particular medal, say gold. Creating a further

restriction class has Value gold and intersecting the two results in an association class as

shown in Figure 8 which has only two non-trivial projections, on Competitor and Olympiad.

(The other two are fixed by the restriction classes.)

hasValue

gold

hasValue
menOs400m gold
Freestyle

Figure 8 Quaternary association of Figure 4 reduced to a parameterised property

The notation we have been using for the diagram begins to fail us, but Figure 8 is intended

to read that the domain of the properties c and 0 is the intersection of Outcome with the two

restriction classes. The property ci is inverseOf c, and gold is 0 composedWith ci. The

property gold is therefore the property sought, linking instances of Competitor to instances of

Olympiad in which the competitor won a gold medal (for the nominated event).

Notice that we can create a property corresponding to each of the (in this case three)

instances of Medal. Each of these is a subproperty of the property competedfn of Figure 7,

indexed by instances of Medal. Further, since OWL Full allows objects to be both Individuals

and Properties, there is nothing to stop us using the URI of the medal instance to name the

subproperty, as has been done in the diagram.

Note that we can use the family of subproperties indexed by Medal for the result of any

restriction on Event in the diagram, since the result is to associate competitors with Olympiads

in which they have been awarded medals of the kind named by the property. So the

subproperty of competedfn indexed by the Medal instance gold can be analysed further into a

family of subproperties indexed by instances of Event. Of course the naming trick cannot be

repeated since the URI notation does not support an algebra of combinations.

Jilid 20, Bil.4(Disember 2008) Jurnal Teknologi Maklumat

S6

7. INDEXED FAMILIES OF CLASSES

If indexes families of properties can be useful, so can indexed families of classes. Many

ontologies have very large numbers of classes organized into deep hierarchies of subclasses.

Probably the largest ontology is the Linnean system for organizing biological species, of

which there are many millions. This system is complicated, but has a basic organizing

principle that there is a small number of most general superclasses which are indexed by the

term kingdom. Each kingdom is divided into a number of direct subclasses, all of which are

indexed by the term phylum. Phyla in tum are subdivided into direct subclasses indexed by

class, each class by order, each order by family, each family by genus and each genus by

species. Wikipedia gives the example.':

As an example, consider the Linnaean classification for modem humans:

•	 Kingdom: Animalia (with eukaryotic cells having cell membrane but lacking cell

wall, multicellular, heterotrophic)

•	 Phylum: Chordata (all animals with a notochord)

•	 Class: Mammalia (vertebrates with mammary glands that in females secrete milk

to nourish young, hair, warm-blooded, bears live young)

•	 Order; Primates (collar bone, eyes face forward, grasping hands with fingers, two

types of teeth: incisors and molars)

•	 Family: Hominidae (upright posture, large brain, stereoscopic vision, flat face,

hands and feet have different specializations)

•	 Genus: Homo (s-curved spine, "man")

•	 Species: Homo sapiens (high forehead, well-developed chin, skull bones thin)

An individual human is therefore an instance of the increasingly general subclasses of

biological organism: Homo sapiens, Homo, Hominidae, Primates, Mammalia, Chordata and

Animalia.

Many other systems have this sort of organization. The Standard Industrial Classification

system (SIC) maintained by the US Department of Labor consists of about 10,000 classes

indexed by the increasingly specific terms division, major group, industry group and industry.

The company Google.com is an instance of the increasingly general subclasses Information

Retrieval Services; Computer Programming, Data Processing and Related Services; Business

Services and Services.

It is usual for a user to navigate among these subclasses by passing from a more specific to

a more general class (rolling up) or from a more general to a more specific class (drilling

down). This can be done in OWL either by following the rdfs;subClassOf links among the

classes or by following a link from one class to the index object, following links among the

I http://en.wikipedia.org/wikiILinnaean_taxonomy#Example_classification:_humans

Jilid 20, Bil. 4 (Disember2008)	 Jurnal Teknologi Maklumat

57

index objects, then following a link back to another class, as shown in Figure 9.

Classes

Industry
indexedBy at

Group
Industry

code: strinz
Group

r Level

!]\
nextMoreGeneralIndex rdfs:subClassOf

I I
Industry

indexedBy
Classes .-... at

code: strinz Industry
Level

Figure 9 Indexed System of Classes

In Figure 9, the classes IndustryGroup and Industry have instances which are individuals,

and are the domain of a datatype property code whose range is xsd:string. The other two

classes have instances which are themselves classes (whose instances in turn are individual

companies).

The property nextMoreGeneralIndex whose domain is Industry and range IndustryGroup is

equivalent to the composition of the subproperty of the inverse of indexedBy whose range is

Industry, rdft:subClassOfand the subproperty of indexedBy whose range is IndustryGroup.

Some systems have a different organization. For example, SNOMEDz is a system of

hundreds of thousands of concepts used to classify medical records. The concepts are divided

into 19 hierarchies. Concepts in each hierarchy are disjoint from concepts in all other

hierarchies. An individual record can be an instance of concepts in many of the hierarchies.

This sort of system is called afaceted system in the library community [9], and is probably

most familiar as the stereotypical oriental noodle restaurant menu: choose one type of noodle,

one type of protein ingredient and one type of sauce. Each root concept in SNOMED de'fines

afacet containing all its subconcepts.

OWL Full has facilities for specifying indexed collections of classes. Since Class and

Individual are not disjoint, it is possible to defme a property say classIndex whose domain is

rdfs:Class and whose range is a class containing the index terms.

OWL DL can be used to represent faceted systems, since an individual can be an instance

of several classes, even though representation of the class systems themselves requires OWL

Full.

It is common to have a faceted system each facet of which is an indexed system (although

2 http://www.snomed.org/

Jilid 20, Bil.4(Disember 2008) Jumal Teknologi Maklumat

58

SNOMED is not organized this way). The whole field of data warehousing is based on

systems of this kind. A fact table (for example sales in USD) is classified by a number of

dimensions including time, product and store. Each dimension is an indexed system of

subclasses. The most specific classes for time might be days, which are aggregated to weeks,

months, quarters and years. The most specific classes for product are bar codes, which are

aggregated into increasingly general classes of product. The most specific classes for store are

the individual stores, which are generally aggregated into increasingly larger groups of store

by geographic region.

Consider the collection of objects consisting of individual athletes completing events in the

Olympics. This collection is classified by Olympiad (Beijing will be the 29th
) , by gender

(men, women, mixed), by event (301 at the Athens Olympics) aggregated by Discipline

(Swimming, Track) then Sport (Aquatics, Athletics, 28 in total), by country (202) which can

be aggregated by region, and by finishing position, which can be aggregated by medal vs non

medal.

In these systems the indexing properties would be naturally represented as an indexed

system of subproperties as described in the preceding section.

8. AGGREGATION

If we are going to have individuals like Olympic athletes organized into systems of

subclasses, an obvious question is to ask how many individuals there are in a given class.

Query languages like SQL support a number of standard aggregation functions:

•	 Count: the cardinality of a class

•	 Sum: the sum of the values of a numerically valued datatype property of

instances of a class

•	 Average: the average of the values of a numerically valued datatype property of

instances of a class (average = sum/count)

•	 Max: the maximum of the values of a numerically valued datatype property of

instances of a class

•	 Min: the minimum of the values of a numerically valued datatype property of

instances of a class

Not all logical systems can support aggregation. One requirement is that the extents of

classes must be finite, and another is that the individuals in the extent of a class satisfy the

unique name assumption. OWL satisfies the first requirement but not the second. OWL does

have a construct owl:alIDifferent, with which the user can declare a specified list of

individuals to be different.

The reason OWL does not default the unique names assumption (like SQL does) is that

OWL defaults the open world assumption (SQL defaults the closed world assumption).

Jilid 20, Bil. 4 (Disember 2008)	 Jurnal Teknologi Maklumat

59

However, there are ontologies in which the extents of the classes are known definitively. The

Olympics ontology is of this kind. The set of athletes who competed in the 2004 Athens

Olympics is known for certain, and the list kept by the International Olympic Committee is

definitive. Every individual who competed is on that list, and all the individuals are uniquely

identified. Also, every event is known, as is every medal won. This is the case because the

International Olympic Committee (lOC) commissioned the Athens Organizing Committee for

the Olympic Games (AOCOG), the AOCOG registered the athletes, organized the events,

created the results in speech acts and kept the official records of the results, then turned the

set of records over to the IOC.

The same is true of the classlist my University gives me of students enrolled in a course I

am assigned to teach. If a student is not on that classlist, they are not enrolled, even though

they may be attending classes. Conversely, a student on that classlist is enrolled in the course,

even if they never attend, even if they have died. The list of zip codes in the US is kept

definitively by the US Postal Service. The list of member nations of the United Nations is

definitively kept by the UN Secretariat. The list of states of the United States is definitively

kept by the US Government. All these are examples of collections of institutional facts [10]

which are records of decisions made by specific institutions created in order to make such

decisions. The closed world assumption can safely be made for all these classes as published

by their respective institutions, if not to copies kept by other organizations such as Wikipedia

whose records are not necessarily definitive.

It would be convenient for cases where the closed world assumption applies for

owl:allDifferent to apply to a class. This would separate the definition of the class and its

characteristics from population of its extent. Aggregation functions could then apply to these

classes. The count function itself could be defined as a datatype property whose domain was

owl:Class. The other aggregation functions from SQL could be defined in a way parallel to

the defmition of restriction classes.

A restriction class is

restriction (an anonymous class)

onProperty (a property)

restriction kind (maxCardinality, hasValue, aliValuesFrom, ...)

range (literal, individual, class)

where restriction is a subclass of the domain of the property designated by onProperty.

An aggregation is

aggregation (an anonymous datatype property)

onClass(a class, domain of the aggregation)

aggregation kind (sum, average, max, min)

of (a datatype property P).

where the range of the anonymous aggregation property is the same as the range of P.

Jilid 20, Bil.4(Disember 2008) Jumal Teknologi Maklumat

60

It is common to want a collection of aggregations on an indexed system of classes (eg count

of gold, silver and bronze medal winners). In SQL this is achieved using a GROUP BY

clause. In OWL it would.be possible to use a collection of indexing properties on the one/ass

to index the aggregation datatype properties in an aggregation definition.

9. SUMMARY

We have proposed a number of enhancements to OWL which can be used to increase the

functionality ofthe language.

Table I Summary of enhancements and consequent functionality

Enhancement Consequent functionality
isOneToOneTo
imageOf
mono
epi

Injection constraint
Surjection constraint
Identity (single property)

Correlation of classes
Composite identity

imageOf alone
Cartesian product
Property composition n-ary property

property class
parameterised families of

properties
Derived properties
Principle ofconsistent dependency
Indexed families of classes
Aggregations
Indexed families of aggregations

Property composition alone

allDifferent to a class
Aggregation

10. DISCUSSION AND CONCLUSION

The proposals in this paper need to be considered in the context of a variety of proposals to

address weaknesses in the expressivity of OWL made in recent years.

In particular, the concept of role composition is well known in description logics (Baader et

al. 2003). Roles in DL are properties in OWL, but DLs including role composition are

generally not decidable (e.g. [3]). Therefore only very restricted property composition has

been proposed for OWL [5]. So the present proposal for property composition, and its

consequences, would be features of OWL Full not included in OWL DL.

On the other hand, property composition is implicit in the logic programming extensions

proposed for OWL, including SWRL [6] and the proposals of [7]. These proposals are

definitely not decidable [7].

Further, the rule language proposals for OWL do not carry with them the data-oriented

Jilid 20, Bil. 4 (Disember 2008) Jurnal Teknologi Maklumat

61

implementations SQL and datalog, since the open world semantics of OWL requires blank

nodes, which are existentially quantified variables. For example, the well known ancestor

predicate does not necessarily terminate in SWRL. If we define parent, then ancestor as

either parent or parent composed with ancestor, and include the constraint that every person

has a parent, then given a seed person, say bob, an SWRL adaption of the datalog evaluation

algorithm must generate the non-terminating sequence ancestor(bob, _1), ancestor(bob, j),

ancestor/bob, _3), and so on. So implementations are limited to Prolog at best unless closed

world constraints along the lines ofthis proposal are included.

That the present proposals are not decidable should not automatically rule them out. In

particular, OWL Full exists. Further, the kinds of applications motivating the present

proposals are interoperating information systems. Information systems typically are

represented in systems in which subsumption is either NP-hard (in the case of SQL [12] or

undecidable (in the case of datalog) [II]. However, satisfiability is decidable for datalog [II]

and hence for SQL. Information systems applications are typically focussed on query

evaluation, for which both SQL and datalog have good implementations. The present

proposals are all straightforward translations of datalog and SQL constructs. For closed world

applications, adaptations of these can be used.

The present proposals have a number of advantages over the rule language proposals. First,

no new kinds of constructs are introduced, while rule languages introduce the (universally

quantified) variable. Second, the category theory style reasoning used does not depend on

individual-level reasoning at all so is not affected by open world semantics. Third, the present

proposals address the problem of identity, essential for information systems applications but

which is not addressed at all by the rule language proposals. Further, the present proposals

include as applications parameterised families of properties, indexed families of classes, and

aggregations, which are not addressed by the existing rule language proposals.

REFERENCES

[1] Michael Barr and Charles Wells. Category Theory for Computer Scientists. Prentice-Hall,

1990.

[2] Robert Colomb, Kit Dampney and Michael Johnson. Category-Theoretic Fibration as an

Abstraction Mechanism in Information Systems. Acta Informatica 38:1-44,2001.

[3] Fabio Grandi. On Expressive Description Logics With Composition of Roles in Number

Restrictions. in Matthias Baaz and Andrei Voronkov, editors, LPAR 2002, Springer

LNAI 2514, pages 202-215, 2002.

Jilid 20, BiI.4(Disember 2008) JurnaJ Teknologi Maklumat

I

I

62

[4] Nicola Guarino and Chris Welty. Evaluating Ontological Decisions with OntoClean.

Communications ofthe ACM, 45(2):61-65, 2002.

[5] Ian Horrocks, Oliver Kutz and Ulrike Sattler. The Even More Irresistible SROIQ. in

Proceedings ojthe 10f" International Conference on Knowledge Representation and

Reasoning (KR2006), AAAI Press, pages 57-67, 2006.

[6J Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof and

Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

W3C member submission 21 May 2004, latest version

http://www/w3/org/Submission/SWRL, 2004.

[7] Boris Motik, Ian Horrocks, Riccardo Rosati and Ulrike Sattler. Can OWL and Logic

Programming Live Together Happily Ever After? in Isabel Cruz et aI., editors, ISWC

2006. Springer LNCS 4273, pages 50 I-514,2006.

[8J Peter Patel-Schneider, Patrick Hayes and Ian Horrocks, editors, OWL Web Ontology

Language Semantics and Abstract Syntax. W3C Recommendation 10 February 2004,

Latest version is available at http://www.w3.org/TRlowl-semantics, 2004.

[9] Jennifer Rowley and John Farrow. Organizing Knowledge: An Introduction to Managing

Access to Information. Gower Publishing Company 3rd edition, 2000.

[10] John Searle. The Construction ofSocial Reality. The Free Press, New York, 1995.

[II] Oded Shmueli. Equivalence of Datalog Queries is Undecidable. Journal ofLogic

Programming, 15(3):231-241, 1993.

[12] Jeffrey Ullman. Principles ofDatabase and Knowledge-Base Systems. Volume II,

Computer Science Press, Rockville, MD, USA, 1989.

COMPREHENSIVE

EFFICIENCY SP

FF

lAb

Faculty 01

Email:

Abstract: The rapid develc

speaker recognition to becoi

from speech signal rernai

recognition system, includir

speaker recognition researc

processing problems. Due t

system, this research focus

model from front end to ba:

the front end process, we i

signal. Whereas, for the b:

quantization techniques to

processing time. Fxperir

yielded better improvemen

this paper, a new, robu:

technique for speaker id

intended to develop a f

modeling.

Keywords: Speaker Ide]

Hybrid Vector Quantizat

"! Jilid 20, Hi!. 4 (Disembei
lilid 20, Hi!. 4 (Disember 2008) Jurnal Teknologi Maklumat

