
ADAPTIVE INTELLIGENCE JOB ONLINE SCHEDULING

WITHIN DYNAMIC GRID ENVIRONMENT BASED ON

GRIDSIM

Siriluck Lorpunmanee l
, Mohd Noor Md Sap2, Abdul Hanan Abdullah3

IFaculty of Science and Technology,
Suan Dusit Rajabhat University,

295 Rajasima Road, Dusit, Bangkok, Thailand

2.3Faculty of Computer Science and Information Systems,
University Technology of Malaysia,

81310 Skudai, Johor, Malaysia

Email: I siriluck_lor@dusit.ac.th.2mohdnoor@fsksm.utm.my.3hanan@fsksm.utm.my

Abstract: This paper concentrates on the design and implement of the grid system for study

of adaptive job scheduling algorithm based on GridSim. The common problems of job

scheduling in grid system like heterogeneous of jobs, resources and dynamic an arrival time

of new jobs significantly changes, can be deal with this solution. The idea behind the adaptive

job scheduling algorithm is the hybrid algorithms that consist of Ant Colony Optimization

(ACO) and Tabu algorithms. Additionally, the provided common information from Grid

Information Service (GIS) and an arrival new job are calculated by Fuzzy C-Means (FCM)

algorithm in order· to evaluate the current status of resources and groups of arrival jobs.

Moreover, both dynamic and static information are handled by the solution. In static case, the

resource information such as a number of CPUs of a machine, CPU speed, a number machine

in the grid system is significantly known in advance while dynamic information like the

arrival jobs that are submitted to the system any time during simulation. In the results, this

paper shows the comparison results between the adaptive job scheduling algorithms and the

traditional algorithms.

Keywords: Ant Colony Optimization algorithm, Tabu algorithm, Fuzzy C-Means algorithm,

Grid Information Service, online job, Adaptive scheduling algorithm.

1. INTRODUCTION

Computation Grid technologies [I] are a new trend and appear as a next generation of the

distributed heterogeneous system. It combines physical dynamic resources and various

Jilid 20, Bi!. 3 (Disember 2008) Jurnal Teknologi Maklumal

174

applications. Currently, it is a great potential technology that leads to the effective utilization

of the resources. In particular, the complex problems such as scientific, engineering and

business need to utilize the huge resources and the performance potential of computation grid.

Therefore, the performance of grid system is the key to success. Scheduling is the main point

behind these successes.

Effective job scheduling in grid requires to model grid resources and computation

requests of jobs, determine the current workload of each grid nodes, and evaluate the

execution time of job before allocating to appropriate resource as well. The goals are to

achieve the best performance and load balancing across the different domain system.

However, when applying those methods to grid environment, the results often happen to be

poor performance within heterogeneous grid resources. Whereas, grid environment is open

and dynamic, the jobs often arrive at grid in various load and types. For instance, the

scheduling needs time slot to schedule a job within various workloads. Hence, the adaptive

grid scheduling is the desired algorithm to handle different jobs workload and also various

load of grid resources. One of the most important methods of a Grid Resources Management

System (GRMS) is currently capable to allocate jobs to grid resources. The realistic grid

system, it is usually be impossible for users and grid system administrators to manually find

and specifY all the needed grid resources during the arrival of jobs in fact. In the dynamic

nature of grid, the various load of grid resources availability can constantly change at the

moment. Therefore, the requirement of an automatic method to allocate jobs to grid resources

is a critical. This method is generally provided by scheduler. Typically, it is difficult to

achieve this point because the scheduling problem is defined as NP-hard problem [2] and it is

not trivial.

Traditional and heuristic scheduling algorithms [1, 3-5] are often proposed in

heterogeneous computing environment. These algorithms focus on explicit constraints and

static information of system load to schedule jobs. The dynamic grid environment, the system

workload of each grid nodes cannot be determined in advance. Therefore, grid scheduling

desires an adaptive scheduling algorithm.

The motivation of this paper is to develop a grid scheduling algorithm that can

perform efficiently and effectively in terms of grid efficiency, make-span time and job

tardiness. Not only does it improve the overall performance of the system but it also adapts to

the dynamic grid system. First of all, this paper proposes an Ant Colony Optimization (ACO)

algorithm to find the optimal resource allocation of each job within the dynamic grid

environment. Secondly, Tabu search algorithm is used to adjust performance of grid system

because online jobs are often submitted to grid system. Third, the simulation of the

experiment is presented. This simulation is an extension of GridSim [6] toolkit version 4.0,

which is a popular discrete-event simulator and grid scheduling algorithm. The simulator

liJid 20, Bi!. 2 (Discmber 2008) lurnaJ TeknoJogi Maklurnat

175

defines the different workload of resources, the arrival time of independent jobs, the size of

each job, the criteria of a scheduler, etc. Finally, this paper discusses about this idea for

dynamic grid environment within fully controlled conditions [7].

The rest of the paper is organized as follows. In section 2, the literature review is

presented. Section 3 describes the Grid simulation, job scheduling design, and briefly

illustrates how to implement an Adaptive intelligent scheduling system into GridSim toolkit

simulator. Section 4 illustrates the experiment set and the comparison between this solution

and the other algorithms. Section 5 concludes the paper. Finally, Section 6 suggests the

future works.

2. LITERATURE REVIEW

In the past few years, researchers have proposed scheduling algorithms for parallel system l8­

12]. However, the problem of grid scheduling is still more complex than the proposed

solutions. Therefore, this issue attracts the interest of the large number of researchers [3, 13­

16].

Current system [17] of grid resource management was surveyed and analyzed based

on classification of scheduler organization, system status, scheduling and rescheduling

policies. However, the characteristics and various techniques of the existing grid scheduling

algorithms are still complex particularly with extra components.

At the present time, job scheduling on grid computing aims not only to fin~ an

. optimal resource to improve the overall system performance but also to utilize the existing

resources more efficiently. Recently, many researchers have been studied several works on

job scheduling on grid environment. Those studies are the popular heuristic algorithms, which

have been developed, are min-min [5], the fast greedy [5], tabu search [5], Genetic algorithm

[18] and an Ant System [4].

The heuristic algorithms proposed for job scheduling in [5] and [4] rely on static

environment and the expected value of execution times. Whereas, [18] proposed Genetic

algorithm based on static jobs and static load of each node, while the realistic grid

environment, in which the system load of grid nodes always change during the deployment of

jobs in fact.

H. Casanova et al. [19] and R. Baraglia et al. [201 proposed the heuristic algorithms to

solve the scheduling problem based on the different static data, for example, the execution

time and system load. Unfortunately, all of information such as execution time and workload

cannot be determined in advance of dynamic grid environments.

In 1999, the Ant Colony Optimization (ACO) meta-heuristic was proposed by

Dorigo, Di Cam and Gambardella, which has been successfully used to solve many NP-

Jilid 20, Bil. 3 (Disember 2008) Jumal Teknologi Maklumat

176

problem, such as TSP, job shop scheduling, etc. In the past few years, several researchers

proposed solutions to solve grid scheduling problem [21] by using ACO.

Several studies have been trying to apply ACO for solving grid scheduling problem.

Z. Xu et al. [22] proposed a simple ACO within grid simulation architecture environment and

used evaluation index in response time and resource average utilization. E. Lu et al. [23] and

H. Van et al. [24] also proposed an improved Ant Colony algorithm, which could improve the

performance such as job finishing ratio. However, they have never used the various

evaluation indices to evaluate their algorithm.

The ACO becomes very popular algorithm to apply for solving grid scheduling problem.

However, most of the mentioned algorithms were not taken into consideration some

evaluation indices, for example, grid efficiency, makespan time, average waiting time and

total tardiness time that has been shown in [25].

3. GRID SIMULATOR AND JOB SCHEDULING DESIGN

I_ , :;-:-';" . ·1 Use,'

,~ ,', ,:. ,~ :': :rp [JJJ
I~" """" .n ,. '" "'" ~.

,-

The RC","our,"'~

Inf,.nnaliOIl MI'IIll'""Clno:nl
~nd Kno"\lled~C" L)isco...~r

Modul~

...
dJii~H;q

Metal-S~hedullng

System

The Adaptlv.. Intelligent
SeheduU"1t SY!ltem

Fig. 1 The layer of Grid Simulahon architecture

177

3.1 GRID SIMULATION ARCHITECTURE

The grid environment is a complex heterogeneous system consisting of many organization

domains or site in which no one has full control of all available resources and grid

applications Gobs). For this reason, the simulation of these systems is complicated. The

simulator presented in this research is based on GridSim [6] and [7]. It also extends internal

entities to more complex requirements. Additionally, the architecture is comprised the

distributed grid nodes, local schedulers with local queues, and grid Meta-scheduler system

with grid queue and job dispatcher. Moreover, the main idea behind an adaptive intelligent

scheduling system comprised the clustering of job and grid resource, scheduling algorithm

with rescheduling algorithm is proposed within this simulator.

In this model, the layer of all simulation is depicted in Fig I. The users can register

any time in the grid environment, after that they are able to submit jobs to the grid

environment. The submitted jobs are received at the Receiver side. The receiver side is to

automatically submit the selected jobs to the Adaptive Intelligent Scheduling System. Where,

the receiver has the function to maintain the job work load, user name, etc. Similarly, the

registration of distributed system is required in grid system in order to be grid resources and

their information are gathered at Grid Information Service (GIS). At the Meta-Scheduling

System, all of the static and dynamic information about the system state in the grid system

such as CPU speed, CPU load, number of CPUs in the grid resources, etc. has been collected

at the Grid Information Service (GIS). This process is similar to GRIS (Grid Resource

Information Server) registering with GUS (Grid Index Information Server) in Globus toolkit

[6]. Their information is then used to calculate the optimal resources for processing the job.

Therefore, the function of the Grid Information Service (GIS) is to maintain and update the

status of the grid resources. For each site, the sensor updates the local information by first

querying the local information system and then updating their owner information in GIS. For

dynamic information about current state of the system, is usually changed and needs for

updating each state change in GIS, for example an amount of executing job on CPUs and

waiting in the grid queue and also a number of free CPUs are calculated based on their

information. Moreover, the expected time complete of each job in the system is estimated.

Therefore, this model develops the mechanism as the Evaluation Resource Performance

Method to notifY and their information are used for making scheduling decision, that is, GIS

is extended in order to prepare each significant resource states information. As the local

policy, it is applied to each machine that defines their access rights. This policy is applied

through a local resource management system for example.

Before allocated the job to availably proper grid resource, the job is calculated to the

group based the similar degree of job characteristics by applying the Intelligent Job

lilid 20, BiJ. 3 (Disember 2008) Jurnal Teknologi Maklumat

178

Characteristics Clustering Group Module. At the same time, each grid resource as machine is

grouped based the similar degree of its characteristics by applying the Resource Information

Management and Knowledge Discover Module. In this module, the important current

information state of each grid node is provided by GIS and also provided by the Evaluation

Resource Performance Method. Once, the job and grid node have been already grouped after

that the job is allocated to availably proper grid node by the Adaptive Intelligent Scheduling

Module. The mechanism is the job allocated to grid node based its group, for example the

light job load should be executed in low performance of grid node, and in contrast, the heavy

job load should be executed in high performance of grid node as well. Whenever, the grid

queue is not empty, that is, some grid node that has been assigned for the new submitted job

is processing the job and have no enough time slot for new submitted job from grid queue.

Therefore, rescheduling method is proposed based the current information state of the grid

node to solve this issue.

The purpose of a Job Dispatcher is to deliver jobs to a selected grid resource which jobs are in

grid queue. The assumption is a close affinity between GIS and grid resources information.

Moreover, Meta-Scheduling system gathers the local schedule information via GIS for

making schedule decision. In fact, the job stays in the local queue before beginning execution

on the local system and the job is computed based on the local scheduling policy. The purpose

of a job dispatcher is to deliver jobs to a selected resource. Finally, all ideas mentioned above

are the support evidence of this simulator and including the Adaptive Intelligent SchedIJling

System.

3.2 UML diagram of Grid Simulation Model

In this simulation, each simulated system such as grid resources, Meta-scheduler and users,

that interacts with each other is referred to as an entity. An entity operates in parallel in its

own thread. In Fig 3, it shows the class relationship among each other, the specification of

each class comprises three parts: name, attributes, and methods. In the class diagram,

attributes and methods are prefixed with characters '+' and '-' show access modifiers public

and private respectively. The simulation implements the following classes.

G) class InitialSetup: it is main class for the starting of this simulation, !Jerforming the

whole experiment and gathering the results at the end. It generates initial parameter values

and all entities such as grid resources, Metascheduler and users by applying from the method

createGridResource and createJobSubmissionSystem. In createGridResource method, it

creates grid resource and its properties. In this simulation, a machine and its properties such

as system architecture, Operating System (OS), time zone, and local policy (time or space

shared) are generated to form a resource. Moreover, each grid resource contains one or more

Jilid 20, Bit. 2 (Disember 2008) Jumal Teknologi Maklumat

1 1':1

machines within its properties. Similarly, a machine contains one or more PEs (Processing

Elements or CPUs) within the same MIPS rating. Upon creating an entity with a specified the

centralized scheduler, this class creates a new instance of the Metascheduler class in order to

maintain all arrived jobs, grid resources status and to perfonn the Adaptive Intelligent

Scheduling system. As createJobSubmissionSystem method, its function generates the jobs

within its characteristics by creating a new instance ofJobSubmissionSystem class.

G) class GridResource: it is provided by GridSim class. The simulation creates a new

instance of GridResource class in order to simulate a resource with its properties. The

properties of a resource are defined by the entity of ResourceCharacteristics class, while a

collection of machines is simulated by an instance of MachineList class. In addition,

ResourceCalendar class implements a mechanism to support modeling a local load on grid

resource, in which the load of each grid resource may vary according to time zone, time,

weekends, and holidays. Besides, each GridResource entity contains only one local scheduler

of type AllocPolicy class. In this simulation, the GridResource only acts as an interface

between users and local scheduler, while AdvancedPolicy class inherited from AllocPolicy

class is implemented in order to handle local scheduler and to process submitted jobs.

Currently, GridSim has TimeShared and SpaceShared classes for a specific resource-based

system. These are also inherited from AllocPolicy class and they are implemented by Round

Robin and First Come First Serve (FCFS) approaches respectively. In order to simulate the

real grid system and the allocation policy for each computational node, therefore, the simple

specific resource-based system in AdvancedPolicy class exactly like as First Come First Serve

(FCFS) is implemented to manage the local queue in the local scheduler. For AdvancedPolicy

class mechanism, each job is allocated to one Processing Element (PE). If each job requires

more than one PE, consequently the local scheduler waits until these PEs are available. The

job is returned as FAILED status, the number of available PEs less than the job requirement

as shown in Fig 2. In addition, the bodyO method is implemented to handle events

communication. That is, it is automatically invoked during operated the grid resource because

it is expected to be responsible for internal events communication in AdvancedPolicy entity

and also sends the events to the other entities.

Compufational Node l

Local
Queue

Computl1lional Moor!

Local
Queur

Compillational Nodt
lll

Lonl
Queue

Fig 2: A local queue model for each Computational Node is implemented by AdvancedPo/icy class in

GridResource class.

Jilid 20, Bil. 3 (Disember 2008) Jumal Teknologi Maklumat

180

G) class MetaScheduler: this class inherited from GridSim class is implemented in order to

maintain all arrived jobs, to currently calculate all grid resources status such as the number of

available CPUs, and their rating and to perform the Adaptive Intelligent Scheduling system. It

receives job object (GridletInjo object) from JobSubmissionSystem entity. The MetaScheduler

is implemented in centralized scheduler, therefore it gathers information and access to all

available grid resources in the system. That is, its function is the selection of the appropriate

resource for the job based on all current grid resources status. Using these scheduler

algorithms and also the current jobs information, in execution the centralized scheduler is able

to approximate various parameters of the current status of scheduler, for example makespan

time, expected finish time of the jobs in each grid resource and expected tardiness time before

their execution and completion in grid resource. In this research, the Adaptive Intelligent

Scheduling system is implemented to determine where to send the job object by applying

Fuzzy C-Mean (FCM), Ant Colony Optimization (ACO), and Tabu Search (TS) algorithms.

Within these algorithms, they are depicted detail in the next section. The method, namely,

bodyO is responsible to handle the events communication among MetaScheduler,

JobSubmissionSystem and AdvancedPolicy entities. In the whole events communication, it is

asynchronous, that is, each entity is no need to wait for completing the sending or receiving

job object. When the appropriate grid resource of the job is selected, the job with the

appropriate grid resource is collected in global queue before sending this job object to

selected grid resource in GridResource entity by applying dispatchJob method. Moreover, the

grid resource information is updated current status when each completed job object sends

back from AdvancedPolicy entity by applying lowerGridletInjoList method in Resourcelnjo

entity.

@ class JobSubmissionSystem: this class inherited from GridSim class is implemented in

order to generate all jobs by applying JobGenerator method. Additionally, it also waits the

completed job object that is sent back from AdvancedPolicy entity. In JobGenerator method,

it creates a new instance of the ComplexGridlet class equal to number of jobs, in which one

ComplexGridlet entity represents one job and its properties such as a job owner, an arrival

time, a release time, a due date time, a size of job and a job requirement of number Processing

Elements (PEs). In checkStartTimeAndSend method, it is used for sending the job object

(Gridletlnfo object) to the MetaScheduler within its current time. Once the completed job

object is sent back from AdvancedPolicy entity, the JobReceiver method is applied to collect

all completed jobs and when the end completed job IS collected, therefore

sumReportsStatistices method is generated in order to summarize all information before

sending information object to InitialSetup entity. Moreover, this bodyO method and the other

bodyO methods are similarly functional in order to handle the events communication.

lilid 20, Bit 2 (Disembcr 2008) lumal Teknologi Maklumat

181

G) class ComplexGridlet: this class represents the job and its properties. As its properties, is

usually dynamic job information such as an arrival time, a release time, a due date time, a size

ofjob and a job requirement of number Processing Elements (PEs).

Q class GridletInfo: this class represents the job into the real job during operation the

simulation. Since the real job information might change between }obSubmissionSystem and

MetaScheduler entities. It stores various information of real job such as an expected tardiness

time of each real job in selected grid resource, an expected finish time of each real job in

selected grid resource.

(j) class ResourceInfo: this class is implemented in order to store or prepare dynamic

information of each resource for making scheduling decision in MetaScheduler entity. That is,

it provides several methods to calculate various dynamic information values based on the

currently collecting knowledge of each grid resource status, for example expected makes pan

time and the expected total tardiness time of each grid resource.

@The relationship among a machinesGroupByFuzzyCMeans, ajobsGroupByFuzzyCMeans

and another classes: these are showed the entities relationship each other. Once the simulation

is started and the grid resources are registered in the grid system. After that, the users are able

to submit the jobs to the grid system. Before each arrival job from grid users is assigned to

appropriate grid resource, machinesGroupByFuzzyCMeans entity is created new instance by

applying clusterMachineBasedOnPerformance method in order to arrange the groups of each

grid resource. Each collected grid resource information for calculating the groups in

machinesGroupByFuzzyCMeans entity, the information such as a set of machine in grid

resource (Host/D), the speed of processing (CPU speed) of machine (MIPS), the comparison

between the current expected time complete of the grid system and mth machine (Weight) and

an amount of free CPU in mth machine (FreePEsm) are maintained by the dataSetMachines

entity. Within machinesGroupByFuzzyCMeans entity, the Fuzzy C-Means (FCM) algorithm

is proposed by using the gathering information in dataSetMachines entity.

In computeFuzzyCMeans method, is implemented to maintain the FCM algorithm. By

all algorithms shown in algorithm [29], can be described in the following classes and

methods:

• computeCenterVectors method is the algorithm, in which is implemented for

calculating the initial value of a cluster center.

• distanceBetweenTwoObjects method is the algorithm, in which is implemented for

determining the distance between two objects' feature vectors.

• updateMembershipDegree method is the algorithm, in which is implemented for

updating a objects x's membership degree in the ith cluster.

Jilid 20, Bil. 3 (Disember 2008) Jurnal Teknologi Maklumat

182

• distancePartition method is the algorithm, in which is implemented to calculate the

distance between two partitions.

Finally, the groups of each grid resource are created and its infonnation is gathered

by applying clusterGroupMachines entity, while a getClusterMachinesResults method

provides the groups infonnation of machines to MetaScheduler entity that is above calculated.

Similarly, jobsGroupByFuzzyCMeans entity also applies the Fuzzy C-Means algorithm to

calculate the groups of the jobs. Additionally, the jobs information such as a number of arrival

job in the grid system (JobJD), the job jth owner (UserJD), the processing requirement of job

jth in the fonn of Million Instructions (Mf) (Lengthlob), the number of processors (CPU) is

required by job jth (Num.JobPEs) are applied to calculate within jobsGroupByFuzzyCMeans

entity. Eventually, getClusterJobsResults method provides the groups information of jobs to

MetaScheduler entity.

Algorilhm lI29}: Fuzzy C-MCl:Ins (FCM)

Slq'll: lnit~hzethc:ml:nJhtnhipmatrix U~nd llO)

Step 2, At k.step: calculate the centers vectors C("~[vJ with (JW

f,tu,ix,
v=~

J flp,)'
",

Step 3: Get the new distance:

,1,-11',·')1. \I, '/,Z, ... ,N, \I J '1,2,,,(',

Step 4: Update the Fuzzy partition matrix (Update if) , iI'+l~

If d'j l' 0 (m~~, X. * Vi)

Ulj = t[dij)~
k..1 dr.

Else J.1,i = I

Step 5 If maxllif+1) . ilk)11 < E: then STOP; otherwise return to step 2.

C0 The relationship among a scheduleACO, AntGraph, AntColony4Grid, Ant4Grid,

AntColony and Ant classes: Once the starting to make scheduling decision by applying ACO

algorithm in MetaScheduler entity, a scheduleACO entity is created a new instance by using

addToScheduleACO method. From referring to the paper in [14, 15], Ant Colony System

(ACS) algorithm has been introduced, the foraging behavior of artificial ants colony to

cooperate in finding good solutions for difficult optimization problems on graphs similar to

the Travel Salesman Problem. In [16], is main framework of Ant Colony System that is

extended to play with this simulation. By all algorithms and entities can be described in the

following classes and methods:

• scheduleACO class is implemented to maintain the ACO algorithm, eventually, each

(the proper machine, job) pair is added to Global queue. In initAntGraph method,

constructs the graph of the expected time complete of job on machine, as shown in Fig

4. Additionally, it also creates a new instance of AntGraph class in order to maintain the

features of a graph.

Ji lid 20, Bil. 2 (Disember 2008) Jurnal Teknologi Maklumat

Jub,~ Juh,,.,

183

MQ~",i",', £T'(..',.J>,' cTCIJ.Ji • ET<.~f,.,,_" ,} ETC,... J-,,-,
I-----!-----+---- 1-----+------1

Machine.• £"Tee ... ,.J....... , E'TC"(..,_J_., I KTC·(~.• .J-', ETC,h.#o._

-

Fig 4: Construction the graph of the expected time
complete ofjob on machine

Note that the expected execution time e;j ofjth job on ith machine mj is defined as the

amount of execution time of ith job taken by ith machine mj, in which ith machine mj

has no load during ith job is assigned. The expected completion time (ETCij) represents

the expected time complete of jth job on ith machine m;, is defined as the wall-clock

time at which ith machine mj completes jth job after having finished any previously

assigned jobs. Therefore, ETCij = bj + ey ; b} represents the beginning time ofjth job.

• AntGraph class is implemented in order to maintain realize the features of a graph for

Ant Colony System, that is, provides the methods to update the values, for example

heuristic information ('lli,m), the pheromone trails (rli,m). Besides, resetTau method

calculates the pheromone initialization by applying predictMinMakeSpanTime method.

In realize ants, they work really in parallel access asynchronously and unpredictably to

the graph. In order to handle the concurrent ant access to write or read at the same time,

consequently, AntGraph entity are implemented in form a synchronization by using the

synchronized mechanism ofjava language.

• Ant class is implemented in order to generate artificial ant behaviour. Under the

mechanism, each ant works in its own thread in parallel with all others giving to ACO

the parallelism shown by actual ant colonies. In this class, the abstract methods like

stateTransitionRule, localUpdatingRule, compare, and end are implemented and

extended into Ant4Grid class. The other methods and data members in this class, for

example initO, startO, runO,m_nCurNode, m_nStartNode. and etc. are used internally

to perform the activity of the ant.

• AntColony class is implemented in order to generate an Ant Colony behaviour. In

abstract methods, createAnts and globalUpdatingRule are implemented and extended

into AntColony4Grid class. As createAnts method, creates the new instances of the Ant

class that walk on the edges of the graph. The other methods and data members in this

class, for example startO, iterationO, m_ants, and etc. are used internally to perform the

activity of the whole ant colony.

Jilid 20, BiL 3 (Disember 2008) Jurnal TeknoJogi Makl\lmat

184

• AntColony4Grid class inherited from AntColony class is implemented in order to

generate amount of ant into its colony that each ant walks on the edges of the graph

(createAnts method). Additionally, it also applies GlobalUpdatingRule method for

updating the pheromones deposited on the arcs when an ant ends it trip.

Ant4Grid class inherited from Ant class is implemented in order to maintain a State Transition

Rule, that is, brings the artificial ant from a node to another across an arc. As Local Updating

Rule, also is performed by using localUpdatingRule method, it is used to update the

pheromone deposited on the arcs when an ant end its trip.

"'-'---'-l

~~;,:.~.;~:, -~o:J .._ .:~~_;. ~~ .~_ .• , _.~J" :~;~4 r-···';

.~,.~l;-.L I~i)-'"'=~i
, f=~~CJr=j

.~' i"

.it,i~~:::~,.·~::·~~-~··_~·""J:!fi~.:J
~~~--------'-'---'------'=""=---'--~-'----'------l

I" 'I

rt~~;~;~:~:c=~;-~~~ -~

~~;~~f~:;~~~~i
,

";;;. ~-=~~~~._-:,;...l. - . -i
r~:~i;i' .~~..~~

, ..;~'"
~~-:;-----------~-._-~--

~~;.~~~~,~.'\~~~~::~:..~:::"~,,,:_~.-~:,~.::'-:'>.~~~~ ~~;:'7~_._~.~~
,j
I

,,.
.. _~ '.~~ 1

1·- -.-- •

u _" .,-.~ ••• '-.,._-.'.

:~~~;:;_:~~~:~;:.:~:: ~
- .--

'-<.•... " ••"

.~_._.- - ~ • ~ -- <_ ••

Fig 3. A class. diagram shOWIng the relationship In UMl among GndSlm. MetaScheduler and other entitles

Jilid 20, Bit. 2 (Disember 2008) JlImal Tekno1ogi Maklllmat



185

4. EXPERIMENT AND RESULTS

The experimental simulation is designed and implemented based on Grid simulation

architecture described in section 3. The experiment is performed on Intel Pentium 4 2.6GHz

machine with 640 MB RAM. The experimentation is differently setup of the computation

workload of the job and it is shown in Table 1, and the different resource is shown in Table II.

Table I: Jobs workload attributes

Parameters Values Notations
Total number of job 3,000
Length of a job 1,000 - 5,000 MI
Arrival time 0-20,000 Uniform

--
distribution distribution
Number of CPUs 1-4 CPUs Processing
requirement Elements

(PEs)

Table II:'The Grid resources attributed

Parameters Values Notations
Total number of 10 - 20 machines
resource

"---------------
Speed of CPU 50·200 MIPS
bandwidth 10 Mbit
Number of CPUs 1-4 CPUs Processing
each machine Elements

(PEs)

In Fig 4, had shown the results of comparison between FCFS, MCT, Mil)-Min and

ACO algorithms, the results are clear that the tardiness time based on the number of available

machines in the Grid system. Although the ACO algorithm is good when was compared with

the basic algorithms but it still had not good enough when compared with MCT and Min-Min

dispatching rules that could be able to perform the sub-optimal scheduling job in value of the

objective function, where the MCT and Min-Min accounted for less than 63%of the total

make-span time in the average, when compared with ACO. ACO performed whenever every

ten new jobs arrived to the system. On the other hand, the results had been shown in Fig 5, an

FCFS algorithm performed much faster than the other scheduler algorithms because it

basically performed the calculation before the job was assigned to a resource, as, the

calculation time of MCT, Min-Min and ACO were much consumed the resource. In Fig. 6,

had shown the percentage of the utilization in Grid environment, the best value was ACO. As,

reFS lower value than the other algorithms. Fig. 7, had show total tardiness time. Make-span

time reflects demands of administrator on maximizing resource usage and throughput of all

the system. On the other hand, total tardiness focuses on the demand of Grid user.

Jilid 20, Bil. 3 (Disember 2008) Jumal Teknologi Maklumat



186

M .ike .$~an Tlnl!

)H~O(l ,----------- _

300';ilQ -h~-------------

""" +-\-\\--------------
20a~~a -j--Ir- I:-r:'!-

"- -___..er
HIJ~;)e -1-__----"'--7-"""--0='" ------,L- ........ l.I:H.UII"

~-----=::::-.._._-J ~Ad.a.trJ","tll!'On·ku

s"" +_----===-= ....=-==:;::::;-
~

'0 11 t:! !,l 14 1!- H :r I'; 1~ 21)

.Hlli"u

---~----------------~--~

Flg~. Makt·spou tim, of DYllalWC job sch'duling in Grid COlllputiug

Av,rage Waiting Time

, ~_ .._---_. -- -----.-.._..----. --'--1

" .......--I.'
I.'

.... ----~
1.~

-'~::.>.• -...:...........
~

" il.li

D.'
H

0.1 -- ,
1;) II 11 11 " I~ 1& 17 a I~ ~o

Maellln"

Flg j A\'C'ragC' Wi\lhng time ofDyuM\1C jQb !lcbed\lliug in Gnd

GIld ffli<:leney

--,--"-.-.'---- ~ --'-----1

'v " 1: oj ,.. I! 1t

llIlc:t'llnt~

Fig 6: Grid C'ificiC'ocy ofD}1l~IU1C job c,chtduling in Grid

--
Tilrdinns Time

Jilid 20, BiL 2 (Disember 2008) Jurnal Teknologi Maklumat



187

5. CONCLUSION

This paper investigates the job online scheduling algorithm in grid environments like as an

optimization problem. The solution is developed based on an Adaptive intelligent scheduling

system to find a proper resource allocation on each processing job. Moreover, the popular

GridSim toolkit for grid simulation is implemented and an Adaptive intelligent scheduling

system is capable to play with the simulation.

In the study, the algorithm is designed within dynamic CPUs load, in which the

natural grid usually occur different load of CPUs from time to time. To addition, this paper

makes effort to design probably adaptive algorithm based on multiple objective of different

stakeholder, for example makespan time, average waiting time and grid efficiency

6. FUTURE WORK

The future work will show the comparison with tradition algorithm FCFS for example and

another heuristics such as MCT, Climbing Search, Simulated Annealing and Tabu search.

Moreover, to show the evaluation of scheduling algorithms, in which this algorithm' will

probably get good enough results.

ACKNOWLEDGEMENTS

We would like to thank Suan Dusit Rajabhat University for supporting us.

REFERENCES

[1J I. Foster and C. Kesselman, The Grid: Blueprintfor a New Computing Infrastructure 1st

ed.: Morgan Kaufmann, 1999.

[2] D. Fernandez-Baca, "Allocating Modules to Processors in a Distributed System," IEEE

Transactions on Software Engineering, vol. IS, p. 1427, 1989.

[3] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, "Evaluation of Job­

Scheduling Strategies for Grid Computing," in Grid Computing - GRID 2000, 2000, pp.

191-202.

[4J G. Ritchie and J. Levine, "A Fast, Effective Local Search for Scheduling Independent

Jobs in Heterogeneous Computing Environments," in PLANSIG 2003: Proceedings ofthe

22nd Workshop ofthe UK Planning and Scheduling Special Interest Group, Glasgow, 2003.

[5] D. B. Tracy, S. Howard Jay, B. Noah, L. B. Lasislau, I, ni, M. Muthucumara, I. R. Albert,

P. R. James, D. T. Mitchell, Y. Bin, H. Debra, and F. F. Richard, "A comparison of eleven

Jilid 20, Bil. 3 (Discmber 2008) Jurnal Teknologi Maklumat



188

static heuristics for mapping a class of independent tasks onto heterogeneous distributed

computing systems," 1. Parallel Distrib. Comput., vol. 61, pp. 810-837,2001.

[6] R. Buyya and M. Manzur, "GridSim: A toolkit for the modeling and simulation of

distributed resource management and scheduling for Grid computing," The Journal of

Concurrency and Computation: Practice and Experience (CCPE), pp. 1175-1220,2002.

[7] p. Klus'a'cek, L. Matyska, and H. Rudov'a, "Alea - Grid Scheduling Simulation

Environment," Lecture Notes in Computer Science, 2007.

[8] G. F. Dror, R. Larry, S. Uwe, C. S. Kenneth, and W. Parkson, "Theory and Practice in

Parallel Job Scheduling," in Proceedings ofthe Job Scheduling Strategies for Parallel

Processing: Springer-Verlag, 1997.

[9] D. Feitelson, "Packing schemes for gang scheduling," Job Scheduling Strategies for

Parallel Processing, vol. Volume 1162/1996, pp. 89-110, 1996.

[10] K. Jochen, S. Uwe, and Y. Ramin, "On the Design and Evaluation of Job Scheduling

Algorithms," in Proceedings ofthe Job Scheduling Strategies for Parallel Processing:

Springer-Verlag, 1999.

[11] N. Randolph, T. Don, and N. T. Asser, "Performance Analysis of Parallel Processing

Systems," IEEE Trans. Softw. Eng., vol. 14, pp. 532-540, 1988.

[12] J. van den Akker, 1. Hoogeveen, and J. van Kempen, "Parallel Machine Scheduling

Through Column Generation: Minimax Objective Functions," in Algorithms - ESA 2006,

2006, pp. 648-659.

[13] E. Carsten, H. Volker, and Y. Ramin, "Benefits of Global Grid Computing for Job

Scheduling," in Proceedings ofthe Fifth IEEElACM International Workshop on Grid

Computing: IEEE Computer Society, 2004.

[14] S. Hongzhang, O. Leonid, and B. Rupak, "Job Superscheduler Architecture and

Performance in Computational Grid Environments," in Proceedings ofthe 2003 ACM/IEEE

conference on Supercomputing. IEEE Computer Society, 2003.

[15] L. Keqin, "Job scheduling and processor allocation for grid computing on

metacomputers," 1. Parallel Distrib. Comput., vol. 65, pp. 1406-1418,2005.

[16] S. Vijay, K. Rajkumar, S. Srividya, and P. Sadayappan, "Distributed Job Scheduling on

Computational Grids Using Multiple Simultaneous Requests," in Proceedings ofthe 11th

IEEE International Symposium on High Performance Distributed Computing: IEEE

Computer Society, 2002.

[17] "A taxonomy and survey of grid resource management systems for distributed

computing," Softw. Pract. Exper., vol. 32, pp. 135-164,2002.

[18] S. Lorpunmanee, M. N. M. Sap, A. H. Abdullah, and S. Surat, "Meta-scheduler in Grid

environment with multiple objectives by using genetic algorithm," WSEAS TRANSACTIONS

on COMPUTERS vol. 5, pp. 484 - 491,2006.

Jilid 20, Bil. 2 (Disembcr 2008) Jurnal Teknologi Maklum:lt



189

[19] C. Henri, Z. Dmitrii, B. Francine, and L. Arnaud, "Heuristics for Scheduling Parameter

Sweep Applications in Grid Environments," in Proceedings ofthe 9th Heterogeneous

Computing Workshop: IEEE Computer Society, 2000.

[20] B. Ranieri, F. Renato, and R. Pierluigi, "A static mapping heuristics to map parallel

applications to heterogeneous computing systems: Research Articles," Concurr. Comput.

Pract. Exper., vol. 17, pp. 1579-1605,2005.

[21] P. Fibich, L. Matyska, and H. Rudov'a, "Model of Grid Scheduling Problem," in In

Exploring Planning and Schedulingfor Web Services, Grid and Autonomic Computing 2005.

[22] X. Zhihong, H. Xiangdan, and S. Jizhou, "Ant algorithm-based task scheduling in grid

computing," in Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian

Conference on, 2003, pp. 1107-1110 vol.2.

[23] E. Lu, Z. Xu, and J. Sun, "An Extendable Grid Simulation Environment Based on

GridSim," in Grid and Cooperative Computing, 2004, pp. 205-208.

[24] H. Yan, X. Shen, X. Li, and M. Wu, "AN IMPROVED ANT ALGORITHM FOR JOB

SCHEDULING IN GRID COMPUTING," in In Proceedings ofthe Fourth International

Conference on Machine Learning and Cybernetics, Guangzhou, 2005.

[25] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, second ed.: Prentice Hall,

1995.

[26] ''http://www.globus.org/toolkit/.''

[27] A. Pugliese, D. Talia, and R. Yahyapour, "Modeling and Supporting Grid Scheduling,"

Journal ofGrid Computing.

[28] F. W. Glover and M. Laguna, Tabu Search led.: Kluwer Academic, 1997.

[29] "A Tutorial on Clustering Algorithms: Fuzzy C-Means Clustering,

hnp://www.e1et.polimi.it/upload/matteucc/Clusteringltutorial htmllindex.html."

Jilid 20, Bil. 3 (Disember 2008) Jurnal Teknologi Maklumat


