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Abstract: A microarray machine offers the ability to measure the expression levels of

thousands of genes simultaneously. It is used to collect the infonnation from tissue and cell

samples regarding gene expression differences that could be useful for cancer classification.

However, the urgent problems in the use of gene expression data are the availability of a huge

number of genes relative to the small number of available samples, and many of the genes are

not relevant to the classification. It has been shown that selecting a small subset of genes can

lead to improved classification accuracy. Hence, this paper proposes a solution to the

problems by using a multi-objective strategy in genetic algorithms. This approach is

experimented on one gene expression data set, namely the lung cancer. It obtains encouraging

result on the~ set as compared with an approach that uses single-objective strategy in

genetic algorithms.

Keywords: Cancer Classification, Genetic Algorithm, Gene Expression Data, Gene Selection,

Multi-objective.

1. INTRODUCTION

Gene expression is a process by which mRNA and eventually protein are synthesised from

the DNA template of each gene. Recent advances in microarray technology allow scientists to

measure the expression levels of thousands of genes simultaneously and determine whether

those genes are active, hyperactive, or silent in nonnal or cancerous tissues. This technology

finally produces gene expression data. Current studies on the molecular level classification of

tissue have produced remarkable results and indicated that gene expression data could
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significantly aid in the development of an efficient cancel' classification [3]. However,

classification based on the data confronts with more challenges. One of the major challenges

is the overwhelming number of genes relative to the number of samples in a data set. Many of

the genes are also not relevant to "the classification process. Hence, the selection of genes is

the key of molecular classification, and should be taken with more attention.

The task of cancer classification using gene expression data is to classifY tissue

samples into related classes of phenotypes, e.g., cancer versus normal [4]. A gene selection

process is used to reduce the number of genes used in classification while maintaining an

acceptable classification accuracy. Gene selection methods can be classified into two

categories. If gene selection is carried out independently from the classification procedure, the

methods belong to the filter approach. Otherwise, it is said to follow a wrapper (hybrid)

approach. Most previous works have used the filter approach to select genes since it is

computationally more efficient than the hybrid approach. However, the hybrid approach

usually provides greater accuracy than the filter approach [3]. The application of hybrid

approaches using genetic algorithm (GA) with a classifier has grown in recent years. From the

previous works, the GA performed well but only on data that have a number offeatures that is

less than 1,000.

Multi-objective optimisation (MOO) is an optimisation problem that involves

multiple objectives or goals. Generally, the objectives may estimate very different aspects of

solutions. Being aware that gene selection is a MOO problem in the sense of classification

accuracymaximisation, and gene subset size minimisation.

Xn

X, the decision space

Zm

Z, the objective space

Figure I. The n-dimensional decision space maps to the rn-dimensional objective space.

Therefore, this research proposes a multi-objective strategy in a hybrid of GA and

support vector machine classifier (GASVM) for genes selection and classification of gene

expression data. It is known as MOGASVM,
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2. A MULTI-OBJECTIVE STRATEGY IN GA

MOGASVM is developed to improve the perfonnance of GASVM that uses single-objective

[3]. All infonnation of GASVM such as flowchart, algorithm, chromosome representation,

fitness function, and parameter values are available in Mohamad et al. [3].

In the sense of classification accuracy maximisation and gene subset size

minimisation, a gene selection can be viewed as a MOO problem. Fonnally, each gene subset

(a solution) is represented by x (n-dimensional decision vector). It is associated with a vector

objective function f(x):

f(x) == U; (x)'/2(x),···'/m (x» (I)

with x==(xp x2,... ,Xn )EX, where X is the decision space, i.e., the set of all expressible

solutions. The vector objective function f(x) maps X into 9{m, where 9{ is the objective

space and m ~ 2 is a number of objectives. /; is the ith objective. The vector z = f(x) is an

"'Objective vector. The image of X in the objective space is the set of all attainable points, z

(see Fig. 1). If all objective functions are for maximisation, a subset x is said to dominate

than another x (x·) if and only if:

x>x· iff

Vi E l..m,/;(x) ~ /;(x·) A 3} E l..m,f/x ) > fix·)

A solution (gene subset) is said to be Pareto optimal if it is not dominated by any

other solutions in the decision space. A Pareto optimal solution cannot be improved with

respect to any objective without worsening at least one other objectives. The set of all fea,sible

non-dominated solutions in X is referred to as the Pareto optimal set, and for a given Pareto

optimal set, the corresponding objective function values in the objective space are called as

the Pareto front [2].

Pareto front in this research is defined as the set of non-dominated gene subsets.

MOGASVM is one of promising approaches to find or approximate the Pareto front. The role

of this approach is guided with the search towards the Pareto front and preserving the non­

dominated solutions as diverse as possible. Therefore, original GASVM is customised to

accommodate multi-objective problems by using a specialised fitness function. The ultimate

goal of MOGASVM is to identifY a non-dominated gene subset Pareto front. This subset

(individual) is evaluated by its accuracy on the training data and the number of genes selected

in it. These criteria are denoted as J; and /2 separately, and used in the fitness function.

Therefore, the fitness of an individual is calculated such equation (4):
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f.. =Wj x A(x)

/2 =W2 X«M - R(x» 1M)

(2)

(3)

fitness(x) = f.. + J; (4)

where A(x) E [0, I] is the leave-one-out-cross-validation (LOOCY) accuracy on the training

data using the only expression values of the selected genes in a subset x, R(x) is the number

of selected genes in x. M is the total number of genes. WI and w2 are two priority weights

corresponding to the importance of accuracy and the number of selected genes, respectively,

where WI E [0.1,0.9] and w2 = 1- WI' /2 is calculated such above in order to support the

maximisation function of minimisation of gene subset size. In this paper, the accuracy is more

important than the number of selected genes (gene subset size).

Ambroise and Mclachlan (2002) have indicated that testing results could be

overoptimistic, caused by the "selection bias", if the test samples were not excluded from the

classifier building process in a hybrid approach [I]. Therefore, the proposed MOGASVM is

totally excluded the test samples from the classifier building process in order to avoid the

influence of bias.

3. EXPERIMENTAL RESULTS

3.] Data Sets

One gene expression data set is used to evaluate the proposed approach, namely the lung

cancer. The lung cancer data set has two classes: malignant pleural mesothelioma (MPM) and

adenocarcinoma (ADCA). There are 181 samples (31 MPM and 150 ADCA). The training set

contains 32 (16 MPM and 16 ADCA) of them. The rest 149 samples are used for the test set.

Each sample IS described by 12,533 genes. It can be obtained at

http://chestsurg. orglpublicationsl2002-microarray.aspx.

3.2 Experimental setup

Three criteria following its important are used to evaluate MOGASVM performances: the test

accuracy, the LOOCV accuracy, and the number of selected genes.

The experimental results presented in this section pursue two objectives. The first

objective is to show that gene selection using MOGASVM is needed for reducing the number

of genes and achieving better classification of gene expression data. The second objective is

to show that MOGASYM is better than the original version of GASVM [3] that use a single-
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objective approach. To achieve these objectives, several experiments are conducted 10 times

using different values of WI and W2 (wI E [0.1,0.9] and W2 = 1- wI)' The subset that produces

the highest LOOCY accuracy with the lowest number of selected genes is chosen as the best

subset. SYM, GASYM (single-objective), and GASYM-II [3] are also experimented in this

research as a comparison with MOGASYM.

3.3 Result analysis and discussion

Table 1 displays results of the experiments for the lung cancer data set using different values

of WI and w2 • A value of the fonn x ± y represents an average value x with a standard

deviation y. Overall, classification accuracy and the number of selected genes sets were

fluctuated because of the diversity of the solutions based on adjusted weights (WI and. w2 ).

Moreover, multiple objectives search simultaneously in a run and consequently populations

tend to converge to the solutions which are superior in one objective, but poor at others. The

highest averages of LOOCY and test accuracies for classifying lung samples were 75.31 %

and 85.84%, respectively, using WI =0.7 and w2 =OJ.

44 I8.5 average genes in a subset were finally selected to obtain the highest accuracies

(LOOCY and test) of the data set. This subset was being chosen as the best subset. It is called

best-known Pareto front because it is close to the true Pareto front. MOGASYM could obtain

the best subsets since it distributed successfully diverse gene subsets over a solution space.

Table I. Classification accuracies for different gene subsets using MOGASYM (10 runs on

average).

Weight Average for the Lung Data Set

WI w2
Accuracy (%)

Number of Selected Genes
LOOCY Test

0.1 0.9 75 ± 0 84.43 ± 4.16 4,416.5± 17.90

0.2 0.8 75 ± 0 85.24 ± 4.68 4,421.3 ± 21.53

OJ 0.7 75 ±O 84.16 ± 3.79 4,416.6 ± 13.59

0.4 0.6 75 ± 0 81.75±4.30 4,410.3 ± 26.30

0.5 0.5 75 ± 0 84.10±4.78 4,415.7 ± 25.40

0.6 0.4 75 ± 0 84.90 ± 4.04 4,423.2 ± 19.62

0.7 0.3 75.31 ± 0.99 85.84± 3.97 4,4J8.5 ± 50.19

0.8 0.2 75 ± 0 83.22 ± 4.86 4,419± 15.25

0.9 0.1 75 ± 0 83.83 ± 4.30 4,423.3 ± 19.66

Note: Best result shown in shaded cells.

lilid 20, Bil. 3 (Disember 2008) lumal Teknologi Maklumat



138

Table 2. The result ofthe best subset in 10 runs (using WI =0.8 and w2 =0.3).

Data set
Lung

LOOCV(%)
78.13

Test (%)
93.29

Experiment No.
7

Number of Selected Genes
4,433

Table 2 shows that the best performances (LOOCV and test accuracies) were 78.13%

and 93.29%, respectively using 4433 genes. The best performances have been found in the

seventh experiment.

Table 3. The benchmark ofMOGASVM with GASVM (single-objective) and SVM

Lung Data Set (Average; The Best)
Method Number of Selected Accuracy (%)

Genes LOOCV Test

Nt~~". ·~4.#1~~"$~~·:5~ll\t)';'4~~~~~'· ·:{rr$;~il.*1~f(~!f8:{.1i~J" '·:jG8'St~±9';;9<1;'~3.b9~
GASVM (single-

b
· t' ) (6,267.8 ± 56.34; 6,342) (75.00 ± 0; 75.00) (84.77 ± 2.53; 87.92)

o ~ec Ive
SVM (I 2,533 ± 0; 12,533) (65.63 ± 0; 65.63) (85.91 ± 0; 85.91)
Note: Best result shown in shaded cells.

In table 3, the LOOCV accuracy, the test accuracy, and the number of selected genes

are written in the parenthesis; the first and second parts are the average result and showcased

the best result, respectively. This table shows that the performance of MOGASVM was better

than GASVM and SVM in terms of LOOCV accuracy, test accuracy, and the number of

selected genes on average and the best results. In general, MOGASVM has reduced about

three-quarters of the total number of genes, whereas about a half of GASVM. This is due to

the ability of MOGASVM to simultaneously search different regions of a solution space and

therefore it is possible to find a diverse set of solution in a high-dimensional space. Moreover,

it may also exploit structures of good solutions with respect to different objectives to create

new non-dominated solutions in unexplored parts of the Pareto optimal set. This suggests that

gene selection using the multi-objective approach is needed for disease classification of gene

expression data.

4. CONCLUSIONS

MOGASVM has been proposed, developed, and analysed to solve the gene selection

problems. By performing experiments, this research found that classification accuracy and the

number of selected genes were more fluctuating and not equal when using different values of

WI and w2 . This result concludes that there are many irrelevant genes in gene expression data

and some of them act negatively on the acquired accuracy by the relevant genes.
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Generally. MOGASVM achieved significant the LOOCV accuracy, the test accuracy,

and the number of selected genes. and were better than GASVM (single-objective) and SVM

since the multi-objective strategy in it can find a diverse solution in Pareto optimal set.

However, MOGASYM did not achieve the higher accuracy, and the number of selected genes

was still higher. MOGASVM can also be extended to other applications such as pattern

recognitions, computer visions, and cognitive sciences.
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