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Abstract: The advances of computational methods and tools can greatly support other areas

in doing tasks from the most tedious or repetitive to the most complex. In this paper, these

advances were manipulated in civil structures maintenance specifically in pipeline corrosion

assessment. This paper describes mechanize method developed to automatically detect and

quantitY important parameters for future prediction of corrosion growth using In-line

inspection (Ill) data. The focal process in this system includes data conversion, data filtering,

parameter tolerance or sizing configuration, matching, and data trimming. A sensitivity

analysis using linear regression method was used to correlates defects from one inspection to

the next. Issues and advantage gain from this mechanize system is threefold~ Firstly,

timeliness (manual matching procedure consumed a great deal of time). Secondly, accuracy

and consistencies in data sampling (current implementation, different researcher obtain a

different number of sample even though the method used in matching were the same), and

finally, reduction of data matching error (manual matching was prone to human error due to

the masses of inspection data to be match. Furthermore this method is impractical when

facing the large amount of real inspection data).

Keywords: Mechanize matching system, repeated inspection data, sensitivity analysis

1. INTRODUCTION

A marine structure, e.g. pipel ine, although simple in nature, has a complex range of

continually changing, interacting events and operating conditions that must be carefully

understood and managed. Based on The Health and Safety Executive (HSE) report (HSE,

2002), they outline some possible issues which confronted by structural 3ilalysis problem
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such as, most plant engineers and inspection personnel are facing a difficulty in

understanding the analysis methods available due to the complexity of corrosion empirical

models and statistical techniques. This leads them to conduct the assessment manually.

Although corrosion assessment procedure is a well research area, little attention has been

paid on the early stage of assessment which leads to unavailability guidelines for data analysis

in simplified form to suit the application on site. The non-existence standard to analyze the

inspection data related to corrosion measurement, whilst the standard exists for statistical

analysis of laboratory corrosion test data only. In such cases, most data were applied in ffiultj

format form such as paper records, digital (spreadsheets), and databases.

As been suggested by Noor (Noor, 2006), the assessment procedure still carried out

manually. For example the feature matching processes, a manual conduct of this process is a

time consuming work and might be vulnerable to human error. The manuai process in

analyzing the corrosion means that the diagnosis and interpretation of the corrosion effects

depends solely on the experience and the capability of the engineers and inspection personnel,

as well as the reliability of the corrosion assessment growth. To compensate the

shortcomings of the assessment methods noted previously, a mechanized matching procedure

couple is believed to handle the timeliness and accuracies of the task involved. Instead of

relying on experimental data, a large amount of inspection data from real structures will give

a better insight and accurate information in corrosion assessment. Furthermore, the huge

amount of real corrosion inspection data used will need a structured and intelligent

processing; however, the technology is yet to be proven (Clausard, 2007).

The use of ILl data in accessing and predicting the remaining life of corrosion structures

in traditional engineering and analysis, evolve around the use of complex deterministic

approach (calculate an average value on every parameter which unable to eliminate the

increases number of uncertainties that occur in inspection data). Furthermore, execution of

this approach depended on many variables such as temperature, chemical substances,

penetration rate, and partial pressure, which in some circumstances are difficult to measure

correctly. This error prone process will lead to inaccurate assessment of the result. In worst

cases, this information might not been recorded or vary significantly in different period of

service. For example Melcers (MeJcers, 1999) stated there's been a conflict whereby some

variable that been recognized as a factor in laboratory testing but not in field of observation.

Engineers and inspection personnel of structure systems rely on the accurate

interpretation and assessment of condition data for decision making regarding future

maintenance. Although good inspection technology exists, the reliability of corrosion

assessment is low due to the deterministic and subjective interpretation of inspection data.

Managing this workload and transforming mountains of data into useful, practical information

is a challenges we going to cater in this study.
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To a structure maintenance engineer, gathering data is just the first step in the entire

process of maintaining the condition and reliability of the assets. The next step is to take the

various sources of data, review and combine them, interpret the data and taking action as

appropriate. The absence of mechanize and analyzing standard for exploitation of corrosion

inspection data may cause some difficulties (M. Kamrunnahar et aI., 2005; Clouston and

Smith, 2004; Yahaya, 1999; Clausard, 2006; Perich et al., 2003):

1. Often the operators focused the research on reliability assessment rather than the

preceding data analysis which tend to affect the overall result of prediction.

2. Traditional analysis process do not provide sufficient information that can be used for

reliability statistical and probabilistic analysis, while reliability method often suffers

for inaccuracies caused by less important variables that didn't reflect an actua~ data.

3. The complexity and time consuming data analysis process tends to overburden the

operators involved and may result in poor planning and maintenance scheduling.

4. The reliability assessment quantifies the degradation of the structural capacity (such

as pipeline) and provide basis for making decision regarding the rehabilitation.

This paper will focus on utilizing corrosion growth analysis with the objective of

mechanizing the feature-to-feature matching system for corrosion repeated ILl data. The term

'mechanize' refers to the consideration of using computing methods that can form a reliable

basis for quantitative assessment of structural integrity which taking into account the

availability of sufficient amount of inspection data. Furthermore the uncertainty and

ambiguity in the data will be addressed through sensitivity analysis as been used in manual

matching.

The paper is organized as follows: Section 2 discusses the corrosion growth model and

related works. Datasets and case studies includes the types of inspection data and parameters

involve was presented in Section 3. Section 4 detailing functions developed in matching

system and its subsystems. Section 5 presents the experiment and results from the matching

systems using sensitivity analysis. Finally we conclude our discussion in Section 6.

2. CORROSION GROWTH MODEL

The corrosion process is time-variant al1d the amount of corrosion damage is normally

defined by a corrosion rate with units of, say, mm/year, representing the depth of corrosion

increase per year (Paik and Thayambali, 2002). While the extent of corrosion presumably

increases with time, it is not straightforward to predict the progress of corrosion. The only real

alternative is then to pessimistically assume more corrosion extent than is likely (Paik and

Thayambali, 2002). There are theoretical and empirical models available to estimate the rate
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of corrosion growth. An empirical model such as deWaard and Milliams equation was

developed through extensive lab tests on simulated corroding environment for offshore

pipelines. Generally, empirical models are developed based on a defined relationship between

material and environmental properties to estimate the corrosion rate. Unlike an empirical

model, a theoretical model such as linear estimation can be simpler and practically available

to estimate the average growth rate based on metal loss evidence regardless the effect of

material and environment properties. Only selected model will be discuss in this section due

to its applicability to the pipeline application.

2.1 Linear Model

The corrosion growth rate can be calculated using a linear corrosion growth model. This

theoretical model is normally used on metal volume loss data or corrosion depth by

comparing two corresponding defect dimensions at different time (Yahaya and Noor, 2002).

The linear equation is performed as below:

where:
CR

CR =dn - dn
Tz - TI

= corrosion growth rate

= corrosion loss volume in year T.

= corrosion loss volume in year T2

= year of inspection T1

=year of inspection T2

Equation 2.1

2.2 The deWaard & Milliams Model

The deWaard & Milliam empirical model has been widely used to estimate the averaged

corrosion growth rate in an oil and gas pipeline subjected to COr induced corrosion

(DeWaard et ai, 1991). In this model, the charge transfer controlled reaction of carbon

dioxide and water with steel was represented algorithmically in terms of CO2 partial pressure

and an exponential temperature function. One of the main advantages of the deWaard

Milliams model is that it is capable of estimating corrosion rates without considering the

actual corresponding dimension of corrosion defect in later inspection such as in the linear

model procedure. The rates of corrosion are estimated by:
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1
Vc'R =- 1 1

-+
V, Vm

Equation 2.2

where:
1119

log(V) = 4.93 - + 0.58 10g{JJCOzJ
Tmp + 273

Equation 2.3

where:

D

Pop,

Tmp

u

and

pCOz = nCOzpop,

UO.8

Vm = 2.45o-g pCOzDh

= pipeline diameter (mm)

= hydraulic diameter of the pipe. (D-2t) (mm)

= fraction of CO2 in the gas phase

= partial pressure of CO2 (bar)

= operating pressure (MPa)

= pipeline radius (mm)

= temperature (0C)

= liquid flow velocity (m/s)

= corrosion rate (mm/year)

= flow-dependent contribution to the mass transfer rate

= flow-independent contribution to the reaction rate.

Equation 2.4

Equation 2.5

2.3 Time-Dependent Corrosion Wastage Model

Paik (2004) developed a mathematical model with statistical characteristics which are

mean, variance, and distribution of corrosion wastage as a function of time. This model will

be useful for predicting the wastage of corrosion in seawater ballast tank structures of ships.

The Joss of plate thickness due to corrosion expressed as a function of the time (year) after the

corrosion starts, namely

Equation 2.2

Equation 2.3

where,

t, = corrosion depth (or loss of plate thickness due to corrosion) in mm

r, = corrosion rate in mm/year,

Te =T-Tc-T/,

T = age of vessel in years
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Tc = life of coating in years

T, = duration of transition in years which may be pessimistically taken as T, = O.

C/ &C2 = coefficients to be determined by the statistical analysis of corrosion

measurement data.

For corrosion of marine structures, some past studies indicate that the coefficient C2 for

marine structures may be typically in the range of 0.3 to 1.5. So, the statistical analysis of all

gathered corrosion data will provide an 'average' (most probable) corrosion rate model. The

author used the upper bound (severe) or lower bound (slight) statistical characteristic of the

coefficient C/. The author stated that the methodology presented is more general and can be

applied to individual cases where sufficient data are available.

Many different models for corrosion growth assessment are used nowadays by engineers

in the oil and gas industry. Some are described in the open literature, others are proprietary

models. The latter are typically a variation of publicly available models or are uncertain

empirical correlations based on practical experience. To date, the author have seen no such

matching software been elaborate on the process involve in open literature or available

academically. Among the software provided by the oil and gas company to run a comparison

or matching between III data is NDT's Analysis Software PIXUS by NDT Systems and

Services (Reber and Beller, 2005), inspection run comparison software (RUNCOM) by

General Electric Company, and matching software by Morrison Scientific.

Morrison Scientific Inc. (MSI) developed the Goliath database comprising corrosion and

corrosion rate data (Morrison et ai, 2000a). The implementation of the Goliath database was

for the management of corrosion data from in-line inspection and the corrosion-rate analysis

results. Moreover, the Goliath database also contains related data such as pipeline dimension,

inspection dates, and vendor-company information. Corrosion data was represented by a list

of match data that associates one defect file to another defect in another file for the same

pipelines. This massive compilation of in-line inspection corrosion data indicate the effort of

using data matching procedure on multiple sets of corrosion data to estimate the likely

corrosion growth rate for individual defects.

Morrison Scientific Inc. (MSI) also carried out a validation study to assess the in-line

inspection tool's capability in finding and sizing defects (Morrison et ai, 2000b). The

inspection data was provided by BJ Pipeline Inspection Services, Canada from pigging

inspection activities using the high resolution Magnetic Flux Leakage (MFL) tool in a section

of 27 kilometres of oil pipelines. The purpose of the pig run was to qualify the tool as a

reliable means of metal loss inspection. The validation study was divided into the analysis of

pigging data against field data and comparison of the new in-line inspectivn tools against

existing technologies. As a result, the BJ MFL tool has been shown to size corrosion depth
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features with a small amount of error when compared with the field data with overall ± 80%

confidence interval. The confidence interval for total prediction error varies from ± 12% to ±

17% for triplet data set, and from ± 19% tot 22% for doublet data set.

Maintenance program planning for pipelines in the Alberta portion of the TransCanada

System employed a corrosion growth modelling procedure using repeated in-line inspection

(ILl) data (Worthingham et ai, 2000). The corrosion rates were assessed by matching

individual defects from· multiple in-line inspections and statistically analysing the observed

characteristics of every defect. Morrison Inc. has developed a method of matching anomalies

and estimating corrosion rates for large numbers of corrosion defects. The process is managed

by powerful pattern matching software which correlates the defects and accounts for

odometer slippage, orientation differences, differing tool vendor, accuracy and sensitivity;

and changes in corrosion shape and size. Manual checks are conducted throughout the process

to ensure data accuracy. The quality of the growth modelling was accessed by comparing

predicted penetrations and failure pressures to those measured in the field. The methodology

of matching corrosion features between the different ILls and estimating their severity at a

future date was constructed and has been certified as an excellent proactive cost saving

methodology with estimated future cost saving ofUS$ 10 million (Worthingham et ai, 2000).

The same methodology was applied later on two different pipelines with only single

inspection data named NPS20 and NPS36 (Worthingham et aI., 2002). The method known as

One Run Growth (ORG) uses a statistical analysis of the corrosion rates on one pipeline to

predict corrosion severity on another pipeline. The author concludes ORG method provides a

very good prediction of corrosion severity on pipelines with· only one a single in-line

inspection. The information of corrosion growth from other pipelines with multiple

inspections was proven being useful to apply on other similar pipelines that had been

inspected only once.

Noor, 2006 have proposed a solid framework for data investigation and analysis, which

fully utilize the inspection dat. Detail analysis on inspection data for generic assessment

method is not limited for pipeline only but extended to other structures as well by utilizing a

common parameter in the data such as metal loss evidence in both structures without

involving material and environmental properties. Details about the proposed framework are

described in (Noor, 2006).

In current practice this process has been conducted manually based on expert

approximation in sizing the accuracy of the data and to sample enough data to be analyse.

Furthermore the manual matching is tedious process, error prone, and time consuming (Noor,

2006; Fenyvasi and Dumalski, 2004). A mechanize method were much needed in getting the

more accurate and faster sampling (Fenyvesi and Dumalski, 2004; Clusard, 2006).The result
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from this system will be compared in term of its accuracies and timeliness '.vith the manual

method through its sensitivity analysis.

3. DATASETS AND CASE STUDIES

There are two methods in determining the corrosion rate based on ILl data (Desjardins, 2002).

Our system was developed based on multiple inspections available. The following

subsections describe the two methods:

3.1 Single Inspection

The estimation of corrosion rates from a single inspection requires a realistic corrosion

growth model. The accuracy of that model is verified by its ability to accurately reproduce the

condition of the pipeline as observed by the current in-line inspection. The model parameters

are the:

• Condition of the pipeline at the time of construction (assumed to be defect free),

• Age of the pipeline,

• Current condition of the pipeline, (from the results of an ILl run),

• Corrosion rate (which is unknown).

The current condition of the pipeline, as represented by the model, includes the number of

corrosion defects and the distribution of the corrosion depth based on the ILl data. Assumed

corrosion rates are then utilized to simulate the growth of corrosion from the time of .

construction to inspection. This statistical analysis is an iterative approach whereby the model

is continually rerun, with the assumed corrosion rate being adjusted, depending on whether

the model underestimates or overestimates the observed severity of corrosion on the pipeline.

The process terminates when it finds a corrosion rate that accurately models the current

condition of the pipeline.

3.2 Multiple Inspections

When there are two or more in-line inspections available, individual defect growth rates can

be determined with a high degree of confidence. Establishing corrosion rates from multiple

in-line inspections is conceptually quite simple. The inspection results provide the location

and size of each individual corrosion defect. Corrosion rates are then calculated from the

change in defect size between two or more inspections. Determining the change in size

however, presents the significant challenge of matching every defect from multiple ILl data
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sets. With high-resolution tools this can potentially necessitate matching hundreds of

thousands of defects. In our study, we develop a method of matching anomalies and

estimating corrosion rates for large numbers of corrosion defects. Parameters involved

include absolute relative distance, corrosion orientation, and spool number. The pigging data

for internal pipeline inspection used in this study are provided by various inspection vendors

such as Petronas, Exxon Mobile, BP Amoco and Rosen.

An extensive amount of pigging data was gathered through in-line inspection activities on

the same pipelines at different times. These databases of pigging data were collected from

three different pipelines, named Pipelines A, Band C. Pipelines A and B consist of three sets

of data, recorded in years 1990, 1992 and 1995. Pipeline C, however, includes only two sets

of data collected from inspections done twice in year 1998 and 2000. Normally, pigging data

provides valuable information on the internal and external corrosion defect geometry, such as

depth and length, orientation, defect location and types of corrosion regions. The physical

dimensions and other related information of these three pipelines are presented in Tables 1

and 2. In this study, because of the limited space, only an experiment and results from

Pipeline B will be discussed.

All data represent internal defects in the form of corrosion pits. Therefore, other types of

corrosion defects such as groove were not considered in the sampling procedure. The types of

pig tools used in the inspection for Pipelines A, Band C were magnetic flux leakage devices.

The crude data obtained from pig devices were in the form of electric signals. The

measurement system converts the leakage field into an electrical signal that can be stored and

analyzed (Nestleroth and Batelle, 1999). This electric signal was then converted by the

inspection contractors to actual dimensions. measured in distance units or expressed as a ratio.

Table 3 presents a typical form of a listing of converted corrosion data recorded by the pig

device over a certain distance. The data were collected in accordance to the direction of flow,

i.e. from the launching point to receiving point. Because of the limited space, only data from

Pipeline B will be thoroughly discuss in the experiments and results in this paper.

Table 1: Summary of recorded pigging data

INFORMATION PIPELINE A PIPELINE B PIPELINE C

Diameter (mm) 1066.8 914.4 242.1

Inspected distance (krn) 2 150 22

Wall thickness (mm) 14 22.2 9.53

Year of inspection 1990,1992,1995 1990,1992,1995 1998,2000

Year of installation 1977 1977 1967
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No. of data (all sets) .1 77_3_4__-'--__7_0_0_9__-'-__6_6_39__---'

Table 2: Number of recorded defects for each set
-

Set of PIPELINE A PIPELINE B PIPELINE C

data 1990 1992 1995 1990 1992 1995 1998 2000

Number 1425 2995 3314 1397 1528 4084 2581 4058

of data

Table 3: A typical presentation of pigging data

Spool Length Relative Absolute d% I W O'cloc t Loc.

(m) distance distance wt (mm (mm) k (mm

(m) (m) ) )

11.6 6.6 1016.5 18 32 42 6.00 14.2 Internal

11.5 11.5 1033.0 19 46 64 5.30 14.2 Internal

11.8 10.6 1043.6 12 18 55 5.30 14.2 Internal

11.7 I 1045.8 13 28 83 5.30 14.2 Internal
-- ..

where:

Absolute distance

d%wt

Lac

O'Clock

Relative distance

Spool length

w

: Distance of corrosion from start of pipeline

: Maximum depth of corrosion in terms of percentage

: Longitudinal extent of corrosion

: Location of corrosion either internal or external.

: Orientation of corrosion as a clock position of pipe wall thickness.

: Relative distance of corrosion from upstream girth

: Length of pipe between weld (10m to 12m approximately)

: Nominal thickness of pipe in pipe spool

: Extent of corrosion around pipe circumference weld

4. MECHANIZE MATCHING SYSTEM

The matching system developed follows the flowchart in Figure 1 below. The former

datasets section shows the sampling that been derive and observed. The matching system will

match the corresponding defects from different years based on three parameters namely

defect relative distance, defect orientation, and defect location (spool number). The matching

was done iteratively until a satisfied number of samples were achieved. The existence of

distance error ascertained from observation stage may cause difficulties in locating the
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corresponding corrosion defect with the closest relative distance in the next inspection.

Therefore, a reasonable error margin on the relative distance is allowed until the numbers of

matched data are highly sufficient to produce a proper distribution. This was done in this

system by specifYing the sizing tolerance of the parameters. It was suggested that the number

of matched data should be around 25% from the actual data or minimum numbers of 500 data

to increase the reliability of corrosion growth estimate as mentioned by Yahaya and Wolfram

(1999).

Observation Stage
- check the total inspected length of

pipelines
- check the inspected length of each

spool

Feature-to-Feature Data Matching
Match the corresponding defects from

different years based on:
- defect relative distance

- defect orientation
- defect location (specific spool)

NOSatisfied with the
size of matched

defects?

YES

Finish

r-Increase the sampling
tolerance

>---~., of defects distance andl
or defect orientation

Figure I: The flow chart of data sampling process

Our mechanize system consists of four main functions, namely filtering function, the

tolerance configuration, matching function, and the data trimming function. The system was

constructed using a .Net framework using C# language, and the SQL engine. Before the

execution of this system, the data acquired in excel form was converted into .csv format in

order to suites the database filtering requirements. The SQL engine was then used to filtered

the data based on parameters mentioned before. The filtrations involved, selecting the match

data and the unmatched data, and marking both data in separate worksheet.

The major difference between manual matching and this mechanize system lies in the

capabilities to derive a different set of data by just changing the sizing tolerance of its
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parameters. The sizing tolerance used in this system was assisted by expert opinion in this

assessment as well as by previous sizing used in the same data, such as works by Noor, 2006,

and Razak, 2008. Manual matching so far proved to produced an inconsistent sampling even

though using the same data (for example Noor, 2006, produces a 617 sample of match data

whereby Razak, 2008 produced a 473 sample). The sizing value of the parameters can be set

up accordingly. Below is the snippet of the sizing value in bold numbers. The example od

snippet below show that the value of 0.5 for relative distance parameter and 90 for orientation

is set up in order for the matching to cluster the data based on that criteria.

<setting name= "RelativeDistanceRange" serializeAs= "StJ"ing">

<value>0.5</value>

</setting>

<setting name= "OrientationRangeinMinutes" serializeAs="String">

<value>90</value>

For ease of used, a console been developed and the mechanized matching can be executed

by dragging two or more data files into the console. The matching process will took car'e all

the possibilities of match data depending on the sizing parameters. The stochastic nature of

the defect might produce a different number of sample for each year match (for example,

spool 580 in year 90 produce two defect whereby the same spool in year 92 might produce 4

four defects). So, the trimming of the data has to be done for consistencies of data. Example

of the console interfacing was shown in Figure 2, which shows a doublet matching (Year 90

and Year 92 data).

Figure 3: Console that shown a doublet matching
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Finally, the trimming function will further compare the match data into its closest value,

classify and grouped the match data into separate files depending on its spool number. This to

make sure that the sample produced for each data set (in our case, sample for every year being

match was equal) and enable the corrosion rate to be calculated based on observed changes in

defect depths and lengths in the same spool.

5. EXPERIMENTS AND RESULTS

The experimentation setup was done following a simple mathematical sets union. For ~ree

inspections (Pipeline B data), we derive four matching scenarios, and for each scenarios,

different sizing tolerance was applied in order to derive an optimize number of sample. The

four scenarios and the sizing tolerance setting depicted in Table 4 shows the result from the

execution of this system which produced the number of sample been matched. The result

shows that the number of match data sampling becomes smaller when we reduce the sizing

tolerance of the parameters. Furthermore, the result also shown that the matching data for

consecutive years such as for scenarios I and 3 gives a large volume of match data compared

to other scenarios. Based on previous research (Noor,2006; Yahaya and Wolfram, 1999), this

problem was arise from measurement techniques and inspection devices used during the year

of inspection.

Table 4: Mechanize matching results

Relative Orienta- Relative Orienta- Relative Orienta-

Distance tion Distance tion Distan('~
tion,

Scenarios

0.5 90 0.3 60 0.2 30

l. Year {l990, 1992} 1076 851 621

2. Year {J990, 1995} 990 777 578

3. Year {l992, 1995} 1888 1864 1819

4. Year {1990,
919 700 j

480
1992,1995}
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The variation of sampling achieved proved that it simplify the engineer task in deriving the

match sample from the large amount of inspection data. This variation can be further analyze

using sensitivity analysis as been explained in the next section.

5.1 Sensitivity Analysis

Sensitivity analysis can be divided into two processes namely, the sampling tolerance and

data correlation. The sampling tolerance was conducted in order to ascertain the quality of

matching work on the pigging data in terms of relative distance and orientation. For example,

in this process results from every spool In data matching process from each year will be

calculated as follows: Average for Tolerance RD = (R9D-R92 + R90-R95 + R92-R95)/3,

where: RD - relative distance, R - result. The average value for the whole data based on

distance and orientation parameters calculated will reflect the sampling tolerance. Small

sampling tolerance with high numbers of matched data represents the low difficulty level in

matching the data and vice versa. For scenario 4 in our case study using tolerance of 0.2 and

30 respectively for relative distance and orientation, the value of calculated average is

0.08337 which can be concluded as a low difficulty matching.

Apart from the sampling tolerance, the correlations between each corrosion related

parameters can be identified using linear regression method. This process aims at identifying

the relationship between defect depth and its length dimension. We use the scatter plot as

depicted in Figure 4 to Figure 6 to visualize the correlation between defect depth and defect

length for years of inspection been studies. From the distribution pattern it has been observed

that, the defect distribution was reflecting a Weibull shape. So, based on this in order to

predict its lifetime a Weibull formula can be used as a basis of studies. For further analysis

either statistical or probabilistic methods, a standard deviation and average (mean) for every

defect depth and length as well as its corrosion growth must be calculated.
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Figure 4: Defect length plotted against defect depth of 1990 data
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Figure 5: Defect length plotted against defect depth of 1992 data

a 10 20 30 40 50 60

Defect Depth (%wt)

Figure 6: Defect length plotted against defect depth of 1995 data

The standard deviation was derived as follows:
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:f'\v2 f'\v 2S = VIV - (lL."",) In)) I (n-l) Equation 5.1

where:

x '" sum of defect depth, length, corrosion rate for depth, and corrosion rate for length

n '" number of matching data sample; i.e. 480

Because of the limitation of space in this paper, the results of mean and standard deviation for

matching data for scenario 4 with sizing tolerance of 0.2 and 30 only was summarized in

Table 5 and Table 6.

Table 5: Average and Standard Deviation of Corrosion Depth and Corrosion Length

Setof
CORROSION DEPTH CORROSION LENGTH

data 1990(dB90) 1992(dB92) 1995(dB95) 1990(lB9O) 1992(1B92) 1995(IB95)

Average 3.552 3.402 4.0 II 21.613 22.510 23.819
(mm)

Standard
Deviation 1.978 2.066 1.836 19.824 19.609 20.013

(mm)

Table 6: Average and Standard Deviation of Corrosion Growth Rate for Defect Depth and
e'G h ~ f horroslOn rowt Rate or De ect Lengt

CORROSION DEPTH CORROSION LENGTH

1990-1992 1990-1995 1992-1995 1990-1992 1990-1995 1992-1995
Set of data

(CRDB9~ (CRDB9~ (CRDB92- (CRLB9~ (CRLB9~ (CRLB92_

92) 95) 95) 92) 95) 95)

Average -0.039 0.182 0.094 0.616 0.544 0.404
(mm)

Standard
Deviation 0.912 0.471 0.620 7.947 3.821 5.003

(mm) I

The result shows that the sensitivity analysis done on the mechanize data were as good on

data acquired through manual process, but can be achieved in lesser time and consistent

accuracy. The whole data can be manipulated by changing the parameters in involved in

corrosion growth assessment. Form each run, the analysis can be performed until it reach the

most optimize/appropriate level of confidence in growth rates and corrosion severity

prediction by incorporating the error associated with inspection tools into all observation and

calcu lations.
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6. CONCLUSION

As in line inspection technology advances and tool resolution and accuracy increases, the

traditional methods of dealing with ILl data are quickly becoming unfeasible, both from

economic and a practical point of view. Corrosion growth analysis provides a proactive

method of analyzing large quantities of ILl data, prioritizing pipeline repair programs, and

optimizing reinspectionintervals. Manual method and mechanize method in feature-to-feature

matching process for multiple inspection data is described. By comparison, the development

of the mechanize system was fulfill the advantages as been described earlier in the paper. The

variation of the matched data sampling was achieved and can be further analyzed to gain an

optimize value for further evaluation. The implementation of this system is strongly believed

to greatly assist a pipeline operator to utilize their tremendous amount of inspection data to a

useful decision-making for future planning and maintenance of pipeline structure. The

proposed approach can also be applied to minimize the overall cost of inspection and repair of

existing pipeline.
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