
Pipeline Implementation of Secure Hash Algorithm
(SHA-l) for Cryptographic Application in

Network Security
Mohamed KhaJil Hani Ahmad Zoo Sha'ameri Chong Wei Sheng

Microelectronic & Computer Engineering Dept. (MiCE)
Faculty of Electrical Engineering, Vniversiti Teknologi Malaysia,

80310 VIM Skudai, Johor, Malaysia
tel: 07-5505003 fax: 07-5566272

Email: chongweisheng@nadi.fke.utm.my

II DESIGN ARCHITECTURE

Pipelining is one of the design principles in high
speed hardware design, it exploits parallelisms for
shorter clock cycle and higher throughput. Thus
pipeline becomes the design principle of this SHA-I
implementation [I].

M(1)
(511 :01

M(n)
[511:0)

MD(1)
[159:01

~
M(2)

SHA·1 (511:0)

MD(2)
[159:0)

initial seed(159:01

I

Message Digest,
MD(159:0)

input message,
M(i)(L:01
i= 1,2,..n

0<= L = ~-1

s
1

Message Digest,
MD(159:0)

Figure I: Flow of Iterative Operations in SUA-I
Hashing

the overall system [I, 6]. In the paper entitled" SHA: A
Design for Parallel Architectures?", Bosselaers,
Govaerts and Vandewalle (1997) have shown that
SHA-I offers a number of parallelisms- [I]. Based on
their research, this paper proposes a pipeline
architecture to exploit these parallelisms. The next
section explains the pipeline SHA·I architecture.
Section III investigates the pipeline operations of SHA
I. The simulation results and discussion are presented
in section IV followed by the conclusion in section V.

I. INTRODUCTION
Hash function is a compression function that

produces a digest of an input message.
Cryptographic hash function is a one-way and
collision free hash function. It is related to the
notion of checksum, because it produces a
checksum that is infeasible to be inverted [6]. The
secure digest can be used for password storage,
digital signature and authentication. Therefore
cryptographic hash function is essential for
network security, for instance e-cornmerce and
remote access.

SHA-I [2] is a strong one-way hash function
that is being employed in various standards,
algorithms and products such as Pretty Good
Privacy (PGP), Secure Hash Standard., Yarrow and
Intel Pro/ I00 S server adapter. It is a block-chained
digest algorithm, computed over the data in phases
of 512-bit blocks. The first block is initialized with
an 160-bit initial seed., the seed for the next block
is generated from current block. Digest of the last
block would be the 160-bit message digest of the
entire stream. Conceptual flow of SHA-I hashing
operation for an input message is depicted in
Figure I while the SHA-I algorithm that is related
to this paper is shown in Appendix A.

Abstract- This paper presents a pipeline
implementation of the Secure Hash Algorithm,
SUA-I. This design is targeted for the Altera
FlexlOKE50 Field Programmable Gate Array
(FPGA) on a PCI card. All input output data
interface and internal operations are performed
in 32-bit width. The major advantage of this
design is the higher throughput gained from the
pipeline operations. therefore double speed
performance is obtained compared to the
equivalent software implementation on Sun
SPARC 20/71. The higher throughput shows the
potential of this design to support critical
network security system, for example the digital
signature in e-commerce.

Although SHA-I is a strong cryptographic hash
function, its operation is rather computational
demanding, thus cause a performance bottleneck in

Besides that, this design adopts 32-bit buswidth and
big-endian design architecture to comply with the data
structure of SHA-I. In general, control unit (CU) and

E·39

One of the sixteen words from M(i)

II K1, K2. K3. K4

{32 i128

I ~'"~ it,
I

W(t K(t)

Reg2E 32

Reg1C I
-L.....L..,...L__---.:L

..•
Reg2A

Message digest(m)
m =0,1..4

Figure 2. Datapatb Unit of Pipeline SHA-l

datapath unit (DPU) (Figure 2) are the main
modules in this design.

i. Datapatb Unit

The DPU consists of functional units and storage
elements. The functional units are logical units,
modulo 32 bit adders, multiplexers and barrel
shifters; whereas registers are the storage elements.

For each M(i) processing of SHA-I, M(i) is fed
into DPU in the sequence sixteen 32-bit words and
output message digest is fed out as sequence of
five 32-bit words. Initialization vectors, IV_H's
and constants, K' s are hardwired. Reg2's stores the
current H's for each processing block (Appendix
A). Since these H's are used in the beginning and
last few steps in each block. thus registers are
needed for their storage. Regl keeps variables that
are read and updated in each step. Msg_conv
converts input messages, M(i) into eighty words,
W(t) (Appendix A: equation a and b). Outputs of
modulo-32 bit adders are pipelined with RegP's.
Logical units generate its 32-bit output according
to the logical functions in Appendix A. A 4: I
multiplexer selects output message digest.

For each block of input message M(i), the 80
step operations are performed in six rounds (Figure
3). Since the first to fourth round perform the same

operations (Appendix A: equation d), they are grouped
as intermediate rounds. There are a few overlapping
among these six rounds due to the available
parallelism~ in SHA·l and the pipeline architecture in
this design. These overlapping reduce the number of
clock cycles in pipeline SHA-I implementation.

Input message
of block M(i)

[159:0J

1
Message digest

of block M(i)
[159:0]

Figure 3: Sequence of SHA-l operation

ii. Control unit
This design applies counter-based control unit to

generate timing signals that coordinate the operations in
DPU. Although there are only eighty steps in SHA-l

E-40

algorithm, mod-84 cOUDter is used because of the
latency in the pipeline operations. The state
diagram of the CU is attached in Figure 6
(Appendix B). Initial round of fIrst message block
follows the state diagram in Figure 6.a. After this
initial round, all coming rounds in the every
message block use common state diagram (Figure
6.b) as they have similar operations. As shown in
Figure I, SHA-I processing of M(2) to M(n) takes
the message digest of previous block and produces
the seed or the final message digest, therefore they
also share the same state diagram (Figure 6.b). The
message digest is delivered starting from the fmal
round of final message block (Figure 6.b). 160-bit
message digest of entire message stream is
completed within two steps after the processing of
final block (Figure 6.c).

means they are available for the addition of the seeds in
each message block (Appendix A).

i. Initial Round and Final Round Operations

Two operations in the initial round are the
initialisation of Regl's and Reg2's. ReglC and ReglD
are always initialised with Reg2C and Reg2D
respectively. For the first message block, Reg2's are
initialised with the IV_H's. In the fmal round of every
block, updated H's are stored in the Reg2's to become
the message digest of current block and the seed of
coming block, thus the Reg2's of coming block are
initialised. (Appendix A: equation e).

ii. Intermediate Rounds Operations

III PIPELINE OPERATIONS

Data dependency is one of the criteria in pipeline
design. Since SHA-l is an iterative algorithm, data
dependency between each step becomes the focus
ofour pipeline design. Critical path analysis on
consecutive steps in SHA-I has shown that
updated variable A in current step is to be circular
shifted and added before becoming the next
variable A [I]. In this design , since the fixed
circular shifting is implemented through barrel
shifter, the operations of modulo 32 addition
become the only critical path operation to be
pipelined.

During the intermediate rounds (Figure 6.b),
MS8-conv supplies Wet) by selecting either the 32·bit
input message or the circular shifted data, which is
the xor of four previous W(t)s (Appendix A: equation
a and b), In current design, register are used to store
the these previous W(t)s. Since up to W(t-16) is
needed, minimum registers required are sixteen
(Figure 5). The Regl 's and RegP's are updated in the
intermediate rounds (Figure 6.b) according to
equation d (Appendix A). K(t) is selected from K's
according to the sequence of rounds (Appendix A).

inM(i)[511 :011' 18(31:0]

IV SIMULATION RESULTS & DISCUSSION

W(t)[31:0]

Figure 5 Structural Diagram of MSlLconv

32

32

The timing simulation results are shown in Appendix
C. The operating frequency is IOMhz on FlexlOKE50
at speed grade of -3 [4]. It takes a total of 84 clock
cycles to compute the message digest of 512-bit
message block, thus the speed of 61 Mbps is obtained.
This speed is about double compared to the software
implementation on Sun SPARC 20171 [5].

'-3

'-2

Figure 4: Pipelining Modulo-32 bits Adders
in SUA-l

In SHA-l, There are a total of five 32-bit
variables to be added. These additions are
pipelined as shown in Figure 4, parallel operations
in one clock cycle are drawn in the same horizontal
level and operations of the same step are shown
between dotted lines.

Due to the latency of four clock cycles, some
adders are not occupied at the fmal round, which

This hardware optimization design excludes the
operations that can be efficiently handled by software.
For examples, padding the input message, breaking the

E-41

input message into 512-bit blocks, dividing each
block into 32-bit inputs and cascading 5 words into
a message digest. The design is coded in 800 lines
of VHDL using behavioral description. On the
Flex IOe50 FPGA, this implementation consumes
hardware resources of 1191 logic cells including
879 flip-flops.

Parallelism of consecutive steps and block are
exploited by pipeline architecture. To optimize the
critical path operations, zero cost barrel shifters
and hardware consuming carry look ahead adders
are used.

V CONCLUSION

Beside achieves the security strength of SHA-I,
this design also optimizes the parallelisms in the
SHA-I using pipeline architecture and the design
flexibility of Altera Flex10KE50. Positive
preliminary result indicates its potential to support
critical network security applications, such as e
commerce and secure file transfer. For current
design, storage elements of Msg_conv are
implemented in flip-flops, however for future
design, embedded RAM in FlexlOKE50 would be
used to obtain area efficiency. Future design will
also use another 32-bit pipeline register to store the
outputs of logical function for next immediate step
in SHA-I. This extra pipeline should reduce the
delay of feeding the logical function output to the
adder.

ACKNOWLEDGEMENT
This research was supported in part by Altera
Corp. (M) under research grant Vot. no. 68838.

REFERENCE:
[I] Bosselaers, Govaerts, Vandewalle

(1997), "SHA: A Design for Parallel
Architectures?".
ftp://ftp.esat.kuleuven.ac.be/pub/COSICIb
osselae/oaralleLos.gz

[2] National Institute of Standards and
Technology(1995) , "Secure Hash
Standard", April 17, USA:
http://www.itl.nist.gov/fiosoubslfip 180
1.htm

[3] Schneier (1996), " Applied
Cryptography" USA: John Wiley & Sons

[4] Altera Inc. (1999), "Device Data Book
1999"

[5] 1. Touch, "Performance Analysis of
MD5", Proceedings of ACM
SIGCOMM'95, Compo Comm. Review,
Vol.25, No.4, 1995, pp. 77-86.
ftp://ftp.isi.edulpub/hpcc
papers/touch/sigcomm95.ps.Z

[6] K.S. McCurley (1994), "A Fast Portable
Implementation of the Secure Hash
Algorithm III", Technical Report
SAND93-259I

[7] Sherigar, Mahadevan, Kumar,
David(1997) "A Pipelined Parallel
Processor to Implement MD4 Message
Digest Algorithm on Xilinx FPGA"
http://dlib.computer.orgiconferen/vlsid/82
24/pdti'82240394.pdf

APPENDIX
A. SHA-l Operations for Pipeline Architecture
(following the standard notation in [2])

Partial initial round of first block
Before processing any blocks,
the H'S are initialized.

Message conversion by Msg conv
Divide M(i) into 16 words W(O), W(I), .

.. , W(l5), where W(O) is the left-most
word. (a)

S"n(X) = (X« n) OR (X » 32-n).

For t = 16 to 79 let
W(t) = SI\I(W(t-3) XOR W(t-8)

XOR W(t-14) XOR W(t-16». (b)

Initial and intermediate rounds operations all blocks
Let A = HO, B = HI, C = H2, D = H3,

E =H4. (c)
For t = 0 to 79 do

TEMP = SI\5(A) + f{t;B,C,D) + E +
W(t) + K(t);

E = D; D = C; C = SI\30(B); B = A;
A=TEMP; (d)

Final round of all blocks
Let HO = HO + A, HI = HI + B,
H2 = H2 +C, H3 = H3 + D,
~=~+E 00
Message digest,
MD[159:0] = HO HI H2 H3 H4

Ouput ofof logical unit and K(tl
First round
f{t;B,C,D) = (B AND C) OR «NOT B) AND D)
K(t) = 5A827999 hex (KI)
(0 <=t <= 19)

Second round
f(t;B,C,D) = B XOR C XOR D
K(t) = 6ED9EBA I hex (K2)
(20 <= t <= 39)

Third round
f{t;B,C,D) = (B AND C) OR (B AND D) OR

(C AND D)
K(t) = 8FIBBCDC hex (K3)
(40 <= t <= 59)

Forth round
f(t;B,C,D) = B XOR C XOR D
K(t) = CA62ClD6 hex (K4)
(60 <= t <= 79).

E-42

B. State Diagram of Pipeline SHA·l

i from (b) final round ~o I
I of final block ~r-R-eg-28-.->-M-O-(1--')~:'-R-eg-2A-.->M-O-(O-)""1,... end I'

goto(b) I '---_~_-l!
l-. -:-:-_~-:---_-----_-_---~I

(a) Partial initial round of (c) selecting message digest after
first message block finish processing the final block

from (a) initial round of first mesaage block
or

final round of intermediate message blocks
i

t=O I_----------N-O--<
Iadder": W(O) + K(?) a> RegP"

I
i
I

go to (e) select I
message digest i

I
I
i

~1
3

t
1280 I

•
ta8i I

, j~
Iadder2 : f(RegPi «30, Reg1 C. Reg10) +
I RegP3 => RegP2
Iadder1 : (Reg2A«S) + RegP2 => RegPi
I RegiC => Regi0
IRegP1 « 30 => RegiC

Iadder3 : Reg10 + Reg2C :0> "Reg2C. "MO(2)
Iadder2 : RegP1 and Reg2A :0> ·Reg2A

ta82 r
I

!adder3: RegiD + Reg2D => "Reg2D. UMO(3)
iadder2: RegiA and Reg2B -> "Reg28
iadderi : (Reg2A«S) + RegP2 -> RegPi
iReg1C:o> Regi0

adder" : W(1) + K(1) -> RegP..
adder3 : Reg2E + RegP4 => RegP3
Reg20 a> Reg10
Reg2C => RegiC

1=2 !
~

adder4 : W(2) + K(2)-::=7">""R07eg'::'ip"'4~---'
adder3 : Reg10 + RegP.. :0> RegP3
adder2 : f(Reg2B. RegiC, Reg1D) +

RegP3 -> RegP2
RegiC => RegiD
Reg2B« 30 => R,1C

adder" : '1'1(3) + K(3) => RegP"
adder3 : RegiD + RegP" a> RegP3
adder2 : f(Reg2A. RegiC, Regi0) +

RegP3 a> RegP2
adderi : (Reg2A«S) + RegP2 -> RegPi
RegiC a> Regi0
Reg2A« 30 => RegiC

(b) - partial initial round, intermediate rounds and final
round of first message block

- complete rounds for intermediate and final message
blocks

"ovel1apped operations from
initial round of intermediate
and final message blocks 10
initialiZe Reg2
"ovel1apped operations from

(c) selecting output message
digest

Figure 6 : State Diagram of Pipeline SHA-l

£-43

C. Timing Simulation Results of Pipeline SHA-l

,/

Specification of the timing simltt~tlon :

,...,
........

.•....

Using the test vector from,d~e APP.~Jldli"Aof (21

Message digest s A9991'E36'4706816A BA3E257t 7850C26C 99000890
..

....

Clock frequency = IOMhz on FlexlOKE50 speed -3.

Total clock cycles to process 512 bit message = 84 clock cycles

Speed = 5121 (84*0. Ius) bitls
=61 Mbps

Figure 7: Timing Simulation Results ofPipeJine SHA-l

E-44

