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A B S T R A C T   

This study introduces a pioneering system for real-time classification and measurement of concrete surface 
cracks, a crucial aspect of Structural Health Monitoring (SHM). We harness the power of transfer learning (TL) in 
Convolutional Neural Networks (CNNs), including renowned models such as MobileNetV2, EfficientNetV2, 
InceptionV3, and ResNet50. Notably, our model excels, particularly with TL MobileNetV2, achieving remarkable 
results – a 99.87% accuracy rate, 99.74% recall, 100% precision, and an impressive 99.87% F1-score. Incor-
porating the Otsu method for image segmentation, our system accurately assesses individual crack sizes. To 
refine measurements, Euclidean distance calculations and a ’pixel per inch’ technique, accounting for video 
resolution, ensure millimeter-level width estimations. Precision is validated through manual experiments using a 
vernier caliper, specifically the Mitutoyo Absolute Digital Caliper. This tool ensures high accuracy, with an error 
margin of ±0.2 mm to ±0.3 mm, making it efficient for detailed measurements. Despite these promising out-
comes, it is crucial to acknowledge inherent limitations. These include dependence on image quality, challenges 
in generalization, sensitivity to training data, assumption of linear crack width calculation, resolution de-
pendency, and other factors. These limitations underscore the need for further refinement in our proposed 
classification model and measurement technique. This research represents a significant advancement in the SHM 
field, catering to early detection and timely maintenance requirements essential for infrastructure safety and 
longevity. As the field increasingly prioritizes rapid detection, our model presents a versatile solution that en-
hances the potential of Structural Health Monitoring.   

1. Introduction 

In the domain of civil engineering, Structural Health Monitoring 
(SHM) stands on the cusp of revolutionizing the industry by offering 
cutting-edge capabilities [1]. This method encompasses the consistent 
monitoring of a structure or mechanical system by collecting measure-
ments at regular intervals, isolating characteristics that are sensitive to 
potential damage from these measurements, and utilizing statistical 
analysis to evaluate the system’s current health status [2].Substantial 
investments are made in procuring a variety of instruments and re-
sources to identify flaws in vital infrastructure like roads, bridges, 

buildings, and bodies of water, amounting to significant financial out-
lays [3]. Concrete cracks are a widespread issue in solid structures like 
building walls, roofs, bridges, and tunnels. Detecting these cracks early 
on is of utmost importance since they serve as indicators of the structural 
integrity of concrete infrastructure. 

Cracks serve as early warning signs of aging, deterioration, or po-
tential internal structural flaws within solid surfaces [4]. Internal 
structural damages can substantially weaken the integrity and durability 
of concrete structures, rendering them vulnerable to potential structural 
failure, particularly when they are unable to bear the loads imposed by 
their surroundings. Moreover, the presence of these cracks can initiate 
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the onset of corrosion, which is often irreversible. Consequently, regular 
and precise damage assessments are crucial. Traditionally, the inspec-
tion of concrete structures for the presence of cracks has relied on 
manual methods. In the context of towering skyscrapers, it is important 
to note that visual inspections often pose challenges. These challenges 
include the consumption of significant time and labor, as well as 
subjectivity in the evaluation process. As outlined in [5], a weakly su-
pervised network has been designed for the segmentation and detection 
of cracks in asphalt concrete decks. The methodology incorporates 
autoencoder differentiation of data, accentuating features within unla-
beled data, applying k-means clustering for classification, and con-
ducting weakly supervised semantic segmentation on images depicting 
defects in bridge decks. Through experimentation on a manually anno-
tated dataset featuring six defect types, the proposed approach exhibited 
better segmentation outcomes than current methods, emphasizing its 
significance in meeting the essential requirement for accurate damage 
assessment in concrete structures. The proposed method is highlighted 
for its importance in accurately assessing damage in concrete structures. 
Arun Mohan et. al in [6], it presents a comprehensive survey of diverse 
image processing techniques employed in engineering structures to 
detect cracks, analyzing each system’s approach and highlighting 
research challenges for further investigation in image processing-based 
crack detection systems. The study concludes that a significant number 
of researchers prefer camera-type images, coupled with advanced seg-
mentation algorithms such as threshold and reconstructable feature 
extraction, for in-depth damage analysis. The study concludes that a 
significant number of researchers prefer camera-type images, combined 
with advanced segmentation algorithms like threshold and recon-
structable feature extraction, for in-depth damage analysis. 

Convolutional Neural Networks (CNNs) stand out as a primary 
category of neural networks employed in image recognition and classi-
fication [7–9]. It represents advanced artificial intelligence systems built 
on complex multi-layer neural networks. They possess the capability to 
discern, identify, and categorize objects, alongside the ability to detect 
and precisely delineate objects within images [7]. A Convolutional 
Neural Network (CNN) consists of four essential layer types, each 
serving a distinct purpose within the network’s architecture: the con-
volutional layer, responsible for feature extraction; the pooling layer, 
which diminishes the spatial dimensions of the feature maps; the acti-
vation function layer, applying activation functions; and the fully con-
nected layer. Incorporating the image as input, the convolutional layer 
combines a limited set of filters, determined by the kernel or filter size, 
to capture a wide range of relevant features. Following this, the pooling 
layer reduces the scale of the acquired features, consequently alleviating 
the computational load on the network. To gain deeper insights from 
data, researchers have proposed effective models. As presented in [10], 
CNN is now a vital tool for ensuring the stability of concrete structures 
through crack diagnosis in civil inspections. A comprehensive review 
analyzed research papers and categorizing them into methods like 
classification, segmentation, detection, and hybrids. The article dis-
cusses challenges, proposed solutions, and suggests potential research 
directions in implementing CNN for crack identification. 

In the realm of advanced image recognition and classification tech-
niques, researchers have made significant strides in developing models 
for detecting and classifying structural defects. G. Li et al. introduced 
"ResNeXt+PP" or ResNeXt with postprocessing [11] for detecting con-
crete cracks. This model automatically distinguishes between cracks and 
non-cracks in images, outperforming other methods. Bubryur Kim et al. 
introduced an exponential Conv2D ResNet exponential model [12] for 
the accurate classification of wall defects, achieving an F-Score of 
99.78%. This model outperformed popular models such as Xception, 
VGG19, and DenseNet, highlighting its exceptional predictive capabil-
ities in identifying wall defects. Additionally, Zhu et al. [13] demon-
strated the use of Inception-V3 networks for preprocessing images with 
common defects, leveraging transfer learning to enhance classification 
tasks. In [14], EfficientNetV2 emerged as the top performer, 

demonstrating outstanding results across all metrics. It excelled in 
minimizing false positives caused by non-uniform lighting and con-
struction irregularities on surfaces, boasting a remarkable accuracy of 
99.6% and precision of 99.3%. Achieving a perfect recall score of 1 
showcased its capability to capture all actual crack patches. The model’s 
overall performance was further highlighted by an impressive F1 score 
of 99.6, illustrating a harmonious balance between precision and recall. 
Moreover, an inventive wall-climbing Unmanned Aerial System (UAS) 
in [15] has been designed for crack inspection, marking the first appli-
cation of a system merging Unmanned Aerial Vehicle (UAV) and 
wall-climbing robot for Structural Health Monitoring (SHM). This sys-
tem’s unique ability to attach to structures during inspection enables 
operation in GPS-denied environments and facilitates the acquisition of 
detailed crack images. Additionally, this characteristic reduces opera-
tional difficulties and minimizes the risk of collisions, enhancing the 
overall efficiency and safety of the inspection process. 

Image segmentation methods, particularly region-based approaches 
such as threshold segmentation, offer valuable tools for detecting con-
tour cracks. Among these methods, OTSU thresholding stands out as the 
most commonly used technique [16, 17]. OTSU thresholding is a global 
thresholding method that calculates the image’s threshold value based 
on the intensity histogram, aiming to maximize the variance between 
foreground and background pixels [18]. This technique proves highly 
effective when dealing with images featuring uniform backgrounds, 
where a single threshold value can effectively separate the foreground 
and background pixels in the resulting binary image [19]. In the context 
of segmentation using Otsu’s method, Convolutional Neural Networks 
(CNNs) assume a pivotal role in automating the segmentation process. 
The synergy between CNNs and Otsu’s method significantly enhances 
this process. Integrating Convolutional Neural Networks (CNNs) with 
Otsu’s method not only simplifies the segmentation process but also 
leads to significant enhancements in both accuracy and efficiency. This 
synergy is especially advantageous in applications like object classifi-
cation and image segmentation. Furthermore, this enhances the adapt-
ability of crack recognition, leading to improved accuracy in detection 
and increased resistance to noise. This approach indicates the potential 
to address background noise stemming from diverse categories and in-
tensity levels within a unified framework. 

This research presents a novel method for image-based crack clas-
sification, utilizing transfer learning models rooted in convolutional 
neural networks (CNNs). Transfer learning is a widely acknowledged 
technique that leverages pre-trained CNNs models, celebrated for their 
robustness and high-performance capabilities, in the realm of computer 
vision. We have explored the use of pre-trained convolutional neural 
networks to improve classification accuracy for detecting different types 
of cracks while simultaneously managing concerns related to overfitting 
and addressing potential class bias, ensuring that our model performs 
effectively on all categories of cracks. In this study, we utilized pre- 
trained Convolutional Neural Network (CNN) models, which include 
MobileNetV2, EfficientNetB7, InceptionV3, and ResNet50. Subse-
quently, image segmentation was performed using Otsu’s method. It is 
important to clarify that our primary focus was directed towards the 
classification and measurement of cracks rather than the comprehensive 
analysis of building materials in exterior walls. Through rigorous 
training, we achieved optimal results, with the model’s performance 
showing considerable improvement with increased training iterations. 
Furthermore, we provide an extensive comparative analysis of their 
performance within the context of crack classification and 
measurement. 

2. Related work 

In some instances, prior research has explored the application of 
transfer learning in the context of crack detection. In [20], Guzmán--
Torres et al. took steps to refine a pre-trained CNN using transfer 
learning, aiming to further improve its accuracy. Their research delved 
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into the evaluation of five pre-trained neural networks, specifically the 
DenseNet12 model, ResNet50 model, InceptionV3, VGG-16 model, and 
MobileNet model. These networks each incorporate unique architectural 
components and assess varying sets of network parameters. As a result of 
this deep learning (DL) architecture, significant enhancements were 
observed, most notably with the VGG-16 model, which achieved 
outstanding results. It achieved a perfect F1-score of 100% and an ac-
curacy of 99.5% when tested on a large dataset. Hajar Zoubir et al., on 
the other hand, utilized the VGG16 network to optimize a loss function, 
encompassing both Binary and Multi-Class Cross-Entropy loss [21]. 
These loss functions quantify the deviation between expected outputs 
and the actual ground truth through the application of 
back-propagation. In their study, they trained a VGG16 network using 
three distinct transfer learning techniques, each affecting different 
layers of the network. The evaluation of the model’s performance in 
each learning configuration was based on classification metrics, 
computational time, and its generalization capabilities. The experiments 
clearly demonstrated that improvements in classification performance 
were achieved by retraining the classification layers and the final two 
convolutional layers of the VGG16 network. Optimization methods 
often incorporate gradient descent optimizers like stochastic gradient 
descent and adaptive optimizers to adjust the network’s learning 
parameters. 

Next, Md. Monirul Islam et al. in [22] utilized four transfer learning 
models for the experimental setup containing VGG16, ResNet18, Den-
seNet161, and AlexNet. The lack of training data and overfitting have 
been addressed using data augmentation techniques as transfer learning, 
random-resized-crop, random-rotation, color-jitter, and 
random-horizontal-flip. AlexNet exceeds all other models when it comes 
to performance indicators, obtaining accuracy rates of 99.90%, preci-
sion rates of 99.92%, recall rates of 99.80%, and F1-score of 99.86%. 
Additionally, it displayed the time taken for each model’s training 
period. In this instance, AlexNet takes first place in less time. In a study 

conducted by Stamos Katsigiannis et al. [23], transfer learning was 
harnessed in combination with well-known pre-trained convolutional 
neural networks to proficiently identify cracks in brickwork masonry. 
Their experiments yielded remarkable results, achieving 100% accuracy 
and F1-scores when utilizing models such as MobileNetV2, Inception-
ResNetV2, and Xception. Notably, MobileNetV2, due to its compact size, 
emerged as the most suitable option for applications in handheld mobile 
devices and wall-climbing robots [24,25]. Furthermore, they conducted 
a comparative analysis between end-to-end training and training 
exclusively on the final classification layers. The former consistently 
outperformed the latter, underscoring the approach’s effectiveness in 
crack detection. In another significant research effort led by Sayyed 
Bashar Ali and his team [26], a transfer learning model based on 
MobileNet was developed for the purpose of wall crack detection, 
delivering an impressive accuracy rate of 99.59%. This research delved 
into the exploration of various pre-trained CNN models, including 
MobileNet, InceptionV2, ResNet101, and VGG16, to enhance crack 
detection, especially in scenarios with limited dataset sizes. These 
models were adapted by replacing the classification layer with a Soft-
Max layer. Evaluation conducted on a relatively small dataset revealed 
that the lightweight MobileNet model outperformed the other models, 
with ResNet closely following suit. 

3. Material and methods 

3.1. Research framework 

The research framework devised for classifying and measuring 
cracks in images consists of five pivotal stages as depicted in Fig. 1. First, 
"Data Collection" entails the acquisition of diverse crack image datasets. 
Then, "Data Pre-processing" involves activities like data refinement, 
resizing, and augmentation. In the "Model Training and Validation" 
phase, pre-trained CNN models are fine-tuned to enhance their 

Fig. 1. Crack classification and measurement research framework.  
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performance in crack detection. This process involves validation, where 
the dataset is divided into an 80–20 training-validation split. Next, the 
"Testing" phase rigorously assesses these models by categorizing images 
into "crack" or "non-cracked". Then, the Otsu method in has been applied 
in Step 5 to concentrates on implementing real-time crack measurement 
which measures the size of the detected crack in millimeters. This 
structured framework guides the research process cohesively, from the 
initial data acquisition to real-world application, enabling a compre-
hensive evaluation of pre-trained CNN models and segmentation tech-
niques to boost the effectiveness of crack detection. 

3.2. Data collection 

The dataset used for this task comprises concrete surface images 
categorized into two classes: ’negative,’ indicating surfaces without 
cracks, and ’positive,’ representing surfaces with cracks. In total, there 
are 11,435 files, with 9148 designated for the training set and 2287 for 
validation. This dataset was sourced from the Mendeley Data - Crack 
Detection website, provided as a valuable resource for crack detection 
research by Çağlar Fırat Özgenel et al. in [27]. The image dimensions are 
fixed at 227 ×227 pixels, featuring RGB (Red, Green, Blue) channels. 
Importantly, no data augmentation techniques, such as random rotation 
or flipping, were applied. The dataset has been carefully prepared and is 
now ready for training and evaluating CNNs models for surface crack 
classification. The images have been uniformly resized to 224 × 224 
pixels. This dataset has been divided into two main sets: the training and 
validation sets, each serving distinct purposes. The training set is 
employed for model training, while the validation set assists in 
fine-tuning hyperparameters. 

3.3. Selection of object classification framework 

There is a wealth of pre-existing convolutional neural networks 
accessible for the task of classification. An illustrative comparison pre-
senting the manifold architectural alternatives in terms of their accu-
racy, prediction speed, and model sizes. MobileNetV2 [28,29,30], 
EfficientNetB7, InceptionV3 [28], and ResNet50 have been selected 
based on their reputation for achieving a balance between superior ac-
curacy and relatively compact model sizes. These models have gained 
recognition in the machine learning community for their efficiency in 
terms of both computational resources and memory footprint. Their 
suitability for various applications, particularly in scenarios with limited 
computational power or memory constraints, makes them preferred 
choices in many cases. Table 1 offers an overview of the principal 
characteristics inherent to these pre-existing model instances. 

Neurons serve as the fundamental components within neural net-
works (NNs), mirroring the biological neurons in the human brain. They 
facilitate the transmission of vast amounts of information by applying 
specific activation functions while considering associated weights. 
Convolutional neural networks (CNNs) represent a specialized type of 
NN characterized by multiple hidden layers, making them capable of 
deep learning. CNNs employ convolution operations between the out-
puts of various layers, thus earning their name. Activation functions are 
indispensable regulators of information propagation throughout the 
neural network and hold a central position in influencing the learning 

trajectory of the neural network. These operations imbue the network 
with a non-linear character, facilitating the automated derivation of 
data-dependent, non-linear attributes from the input images. Some 
common activation functions include Rectified Linear Unit (ReLU), 
Sigmoid, Softmax, Hyperbolic tangent activation function (TanH), and 
Scaled Exponential Linear Unit (SeLU). In this work, we have employed 
the Sigmoid activation function. Softmax is another popular activation 
function used in neural networks, particularly in the output layer for 
classification tasks. Unlike ReLU, which is used in hidden layers to 
introduce non-linearity, Softmax is primarily used in the output layer to 
convert raw scores or logits into class probabilities. The Softmax acti-
vation function accepts an input consisting of a vector of real numbers 
and then proceeds to convert this input into a probability distribution 
that spans across numerous classes. It does this by exponentiating each 
input value and then normalizing the results. The formula for the Soft-
max function for a given class (i) is depicted in Eq. (1) 

Softmax (z)i =
ezi

∑K

j=1
ezj

(1) 

In this context, the symbol Softmax(z)i denotes the i-th component 
within the vector representing the output of the softmax function. 
Similarly, zi signifies the i-th component of the input vector, where K 
stands for the overall number of classes involved, and e represents the 
mathematical constant, Euler’s number, which is approximately equal to 
2.71828. The Softmax function is employed to ensure that the output 
values are confined within the range of [0,1], with the additional 
constraint that they collectively add up to 1. The class with the highest 
probability is typically chosen as the predicted class. In the context of 
classification tasks, the Softmax function is frequently employed in the 
concluding layer of a neural network to generate probabilities for each 
class, and the predicted category corresponds to the one associated with 
the highest probability. It’s commonly used in conjunction with the 
categorical cross-entropy loss function for training classifiers. Achieving 
successful model training and accurate predictions relies heavily on the 
model’s internal parameters. Therefore, it is imperative to carefully 
choose a suitable optimizer for the purpose of fine-tuning the network’s 
parameters, with the ultimate goal of approximating or achieving the 
most favorable values. The pivotal element in the reduction of the loss 
function, adjustment of model parameters, and eventual achievement of 
convergence is the optimization algorithm. In this specific scenario, our 
preference is to utilize the Adam algorithm for updating the model’s 
weights. This model configuration specifies that a neural network will be 
trained with the Adam optimization algorithm, using a learning rate of 
0.01. The loss function employed for training purposes will be the Cat-
egorical Cross-Entropy, which serves to evaluate the dissimilarity be-
tween the predicted class probabilities and the actual class labels. 
Furthermore, Model Checkpoint callbacks will be utilized to preserve 
the optimal model weights contingent upon their validation perfor-
mance throughout the training process. The training regimen will span 
30 epochs, during which data will be handled in groups of 32 samples 
per batch. 

3.4. Transfer learning 

Transfer learning is a well-established method within the field of 
deep learning, centered on the utilization of knowledge obtained while 
addressing a particular problem to tackle related issues. This approach 
proves to be exceptionally advantageous in situations where pre-trained 
models are harnessed for classification tasks. The process of constructing 
a Convolutional Neural Network (CNN) from the ground up necessitates 
extensive training on extensive datasets to guarantee dependable 
detection results. Consequently, this methodology is frequently avoided, 
especially when confronted with constraints on the availability of data. 
In contrast, transfer learning consistently surpasses the alternative, 
which involves creating a new CNN model with a random initialization 

Table 1 
Assessing parameter count and computational workload in four prominent CNNs 
architectures: MobileNetV2, EfficientNetB7, InceptionV3, and ResNet50. 
Notably, MobileNetV2 Excels with the fewest parameters and compact size.  

Model Size (MB) Parameters (Million) 
MobileNetV2  14  3.5 
EfficientNetB7  256  66.7 
InceptionV3  92  23.9 
ResNet50  98  25.6  
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and converging it. The fundamental idea behind transfer learning lies in 
the ability to utilize a model’s pre-trained weights from a comprehen-
sive, general-purpose database, retaining these weights up to the final 
layer, and then appending additional layers as needed. Conversely, 
building and training a model from the ground up would be computa-
tionally expensive, requiring a well-defined architecture and substantial 
data resources. Transfer learning mitigates these challenges, offering 
practical solutions for detection and classification problems with rela-
tively small available datasets. Transfer learning models not only train 
rapidly due to their utilization of pre-trained weights but also tend to 
deliver superior predictive performance. We were driven to explore pre- 
trained CNN models, including MobileNetV2, EfficientNetB7, Incep-
tionV3, and ResNet50. All experiments within this paper were con-
ducted on the Windows system using Google Colab, with the following 
hardware specifications: an Intel(R) Core(TM) i5–3337 U Central Pro-
cessing Unit (CPU) running at 1.80 GHz, 4 GB of RAM, and Windows 10 
Pro as the chosen operating system. Additionally, for the post-training 
analysis, including the generation of accuracy and loss graphs, as well 
as confusion matrices, we utilized PyCharm. PyCharm served as a 
valuable tool for its capabilities in aiding the visualization and 
comprehensive analysis of our experimental results. 

We elected to employ the approach of transfer learning in the 
training of Convolutional Neural Network (CNN) models, with the pri-
mary objective of distinguishing between images labeled as either 
’crack’ or ’non-crack.’ In this particular context, our strategy was 
founded upon well-established deep learning architectures previously 
trained on a significantly larger image dataset, demonstrating their ef-
ficacy as feature extractors for image classification tasks. Transfer 
learning models, not only rapidly train by harnessing existing weight-
ings but also exhibit a propensity for delivering enhanced predictive 
performance. Concretely, we made a deliberate choice to employ four 
specific CNN architectures that had undergone pre-training using the 
extensive ImageNet dataset, comprising 1.4 million images categorized 
into 1000 distinct classes [31]. 

The chosen architectural models encompass MobileNetV2, Effi-
cientNetV2, InceptionV3, and ResNet50. It is of significance to under-
score that, in the pursuit of stabilizing the convolutional base weights 
across these divergent approaches, we uniformly established the 
’trainable’ parameter as ’false’ for all convolutional base layers within 
the Keras model implementations. In the context of transfer learning, 
one practice that we embraced involved the substitution of the fully 
connected layers, which encompassed the 2D global average pooling 
layer and a dense layer, complemented by a softmax activation function 
for the purpose of classification. The inclusion of a softmax activation 
layer served the vital function of generating probability distributions for 
the two defined classes, thereby equipping the model with the capability 
to make precise binary predictions. The global average pooling layer 
played a pivotal role in dimensionality reduction for the data originating 
from the convolutional base, while the subsequent dense layer assumed 
the responsibility of making final predictions based on these derived 

features. These layers were introduced atop a pre-trained feature 
extractor, typically a convolutional base, previously honed through 
extensive training on a substantial dataset. The said pre-trained feature 
extractor, often constituted by a convolutional neural network (CNN), 
specialized in the extraction of valuable image features. By replacing the 
fully connected layers, we tailored the model to our specific classifica-
tion task, thereby affording us the ability to harness the wealth of 
knowledge and feature representations encapsulated within the pre- 
trained model. This adaptability is invaluable, particularly in the 
context of our specific problem, which pertains to the classification and 
measurement of structural defects like cracks. A visual depiction of the 
neural network’s architectural design is elucidated in Fig. 2. During the 
training, the “model checkpoint callback” in TensorFlow has been 
applied to enable the saving of model checkpoints during training. It 
offers various filepath that specifies the directory for saving checkpoints, 
and the usage of "verbose" to controls the alert level when checkpoints 
are saved. This callback enhances model progress monitoring and 
management during training. 

3.5. Otsu segmentation 

A technique for segmenting images based on regions, such as 
threshold segmentation, can be employed to identify contour cracks. 
Among these methods, OTSU thresholding, as indicated by Cao et al. in 
2021 [32], stands out as a widely adopted approach. This global 
thresholding method calculates an image-wide threshold value by 
analyzing the image intensity histogram. It aims to identify the 
threshold value that maximizes the distinction between foreground and 
background pixels, as outlined by Chen et al. in 2019 [33]. OTSU 
thresholding is particularly effective when dealing with images that 
possess a uniform background, allowing for the clear separation of 
foreground and background pixels in the resulting binary image, a 
concept first introduced by Otsu in 1979 [19]. 

During the assessment of crack dimensions, the program meticu-
lously examines each contour, evaluates the size of individual cracks, 
and subsequently delineates bounding boxes encompassing these con-
tours. Once the bounding boxes are identified, the code utilizes the 
Euclidean distance to determine the length and width of each crack [34]. 
This distance measurement is applied to gauge the length of the cracks. 
Euclidean distance serves as a means for determining the direct spatial 
separation between two given points and subsequently transforming it 
into measurements expressed in millimeters. This is achieved using a 
specific mathematical formula, as illustrated in Eq. (2). 

Euclidean distance =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x2 − x1)2 + (y2 − y1)2

√

(2) 
Analyzing the contour information within the image frame, it helps 

determine the width of the cracks using the value of the Euclidean dis-
tance. This distance is computed by finding the square root of the sum of 
squared differences between the x and y coordinates of two points in a 

Fig. 2. A summary of the proposed approach. The base CNN’s structure (in orange box) varies depending on the chosen pre-trained model’s architecture.  
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two-dimensional space, with these coordinates being the input param-
eters. Based on the contours detected within a video frame, the tech-
nique of pixel per inch has been implemented which use resolution of 
the video to calculate the maximum width of a crack in millimeters. 

3.6. Quality metrics 

We have evaluated the effectiveness of our proposed crack detection 
method by employing standard quality metrics, such as precision, recall, 
accuracy, and the F1-score, as illustrated in Eqs. (3) through (6); where 
TP (True Positives), TN (True Negatives), FP (False Positives), and FN 
(False Negatives) correspond to the respective scores derived from the 
evaluation process. Accuracy, defined as the ratio of true positives (TP) 
and true negatives (TN) to the sum of TP, TN, false positives (FP), and 
false negatives (FN). Recall, expressed as TP divided by the sum of TP 
and FN, measures the method’s effectiveness in identifying true posi-
tives relative to actual positive cases. Precision, calculated as TP divided 
by the sum of TP and FP, assesses the method’s accuracy in correctly 
identifying true positives among the predicted positive cases. The F1- 
score, a harmonic mean of precision and recall, is computed as 2 times 
the product of precision and recall, divided by the sum of precision and 
recall. This metric proves valuable in scenarios with imbalanced data-
sets, offering insight into the algorithm’s misclassification rate. These 
metrics are mathematically defined as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
(3)  

Recall =
TP

TP + FN
(4)  

Precision =
TP

TP + FP
(5)  

F1score = 2 ×
Precision × Recall

Precision + Recall
(6)  

4. Result and discussion 

4.1. Comparative analysis of transfer learning techniques 

The graphical representation in Fig. 3 offers a comprehensive view of 
training and validation accuracy, along with training and validation 
losses, across various transfer learning (TL) methods, presented in per-
centages (%). When we examine the top row, a consistent trend emerges 
in the training accuracy of TL MobileNetV2, TL InceptionV3, and TL 
ResNet50, with the exception of EfficientNetB7, which achieves the 
highest accuracy at 88.3%. In comparison, MobileNetV2, InceptionV3, 
and ResNet50 approach an impressive accuracy level of 99–100%. It’s 
important to note that TL MobileNetV2 stands out with a unique pattern: 
its training and validation accuracy align closely, showing remarkable 
consistency and higher accuracy compared to other models. This high-
lights the robust generalization capabilities of TL MobileNetV2. 
Conversely, TL EfficientNetB7 displays validation accuracy data with 
occasional fluctuations across different data points, resulting in an 
irregular performance pattern during various training epochs. In the 
second row, both TL MobileNetV2 and TL InceptionV3 models demon-
strate rapid decreases in both training and validation loss. However, 
these losses reach a point of diminishing returns with more training 
epochs. TL EfficientNetB7 showcases a consistent reduction in loss that 
closely matches the validation loss, indicating strong agreement be-
tween the two. In the case of TL ResNet50 models, a mild phase of 
overfitting is initially observed, followed by a subsequent reduction in 
loss values. Notably, some early-epoch fluctuations in validation loss are 
evident, eventually stabilizing at a lower level. 

Table 2 presents the performance metrics, reported in percentage 

Fig. 3. Training and Validation Accuracy/Loss for Transfer Learning Models (TL) – Percentage (%) Metrics.  
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(%), of various pre-trained CNN models with Transfer Learning (TL), 
including accuracy, precision, recall, and F1-score. Furthermore, Fig. 4 
display the confusion matrices for the test set. Based on the results, 
MobileNetV2 and ResNet50 in particular, emerged as the top- 
performing models which exhibit comparable accuracy and F1-Score 
in classifying concrete cracks, with ResNet50 demonstrating a slightly 
higher recall and MobileNetV2 achieving a perfect precision. However, 
MobileNetV2 is known for its lightweight architecture, making it effi-
cient in terms of model size and computational resources. ResNet50, on 
the other hand, is a deeper and more complex model, which may require 
more computational power and memory. MobileNetV2’s lightweight 
nature may be preferred when resource constraints are a concern, while 
ResNet50’s higher recall could be valuable when ensuring the capture of 
true positive cases is critical. EfficientNetB7 achieves an accuracy of 
90.03%, while InceptionV3 surpasses it with an accuracy of 99.56%. 
InceptionV3 demonstrates a significant advantage in terms of overall 
accuracy, indicating its superiority in correctly classifying concrete 
cracks. EfficientNetB7 is part of the EfficientNet family known for its 
efficiency in terms of model size and computational resources. In 
contrast, InceptionV3 is a more complex model, which may require 
more computational power and memory. 

4.2. Crack classification outcomes and performance metrics 

In this section, we will explore the results and performance metrics of 
crack classification using different transfer learning models. Fig. 5 il-
lustrates the crack classification outcomes using the transfer learning 
models MobileNetV2, EfficientNetB7, InceptionV3, and ResNet50. The 
displayed percentage represents the "confidence" level of each image 
and is calculated as a percentage based on the highest SoftMax score 
from the model’s predictions. It indicates the model’s confidence in its 
prediction for a particular image. Based on data MobileNetV2 demon-
strates significantly high confidence percentages for every image. For 
EfficientNetB7, only one image is misclassified (False Negative, FN), 
where the model should have categorized it as Positive. In contrast, both 
InceptionV3 and ResNet50 exhibit accurate classification for each image 
and can be considered efficient. 

A performance comparison of our models with the existing similar 
works has been carried out and presented in Table 3. The most recent 
deep learning methods for crack-detection are Guzmán-Torres et. al 
[20], Hajar Zoubir et. al [21], Md. Monirul et. al [22], and Sayyed 
Bashar Ali et. al [26]. The work in [20] uses a Regularized VGG-16 
model with accuracy of 99.38%. It is a CNN model utilizing a binary 
cross entropy loss function, demonstrated impressive performance, 

showcasing its efficacy in concrete crack classification. Hajar Zoubir 
et al. in [21], the VGG16 network, was trained on the proposed dataset 
following three Transfer Learning (TL) schemes with varying layers, 
achieved impressive testing accuracy rates of 97.13%, demonstrating 
superior performance in classifying cracks, efflorescence, and spalling. 
Md. Monirul Islam et al. [22] addressed training data challenges and 
overfitting using data augmentation techniques in their experimentation 
with VGG16, ResNet18, DenseNet161, and AlexNet. AlexNet outshone 
other models with an impressive accuracy of 99.90%, precision of 
99.92%, recall of 99.80%, and an F1-score of 99.86%. Sayyed Bashar Ali 
et. al [26] developed a transfer learning model based on MobileNet for 
wall crack detection, attaining an impressive accuracy rate of 99.59%. 
Their exploration involved adapting various pre-trained CNN models, 
including MobileNet, InceptionV2, ResNet101, and VGG16, by replacing 
the classification layer with a SoftMax layer. A performance comparison 
of our models with the existing similar works has been carried out and 
presented in Table 3. 

4.3. Otsu-based real-time crack measurement 

In the past, tools like calipers were employed for the assessment of 
crack width. Nonetheless, this conventional approach had its con-
straints, encompassing restricted precision and the substantial time in-
vestment required for comprehensive measurements, particularly in 
scenarios involving a multitude of cracks. In this context, the use of high- 
quality measurement and image processing techniques becomes critical 
to obtain precise and useful data for evaluating the structural condition. 
The safety and strength of the structure depend on this last step in 
determining the extent of crack damage and the subsequent steps in the 
maintenance and repair process. In this research, after classifying cracks 
using transfer learning model, the final step involves segmenting the 
cracks using the Otsu method. To facilitate this, we leverage modern 
technology by utilizing an iPhone 14 Pro equipped with the Iriun soft-
ware. This software, installed on the device, transforms the iPhone 14 
Pro into a wireless webcam, allowing direct capture of high-quality 
images of cracks. Iriun software is a versatile tool that enables users to 
utilize their smartphones as a wireless webcam for various applications, 
including capturing images for crack assessment in structural analysis. 
The software typically consists of a mobile application that can be 
installed on smartphones and companion software for desktop plat-
forms. The software ensures that the captured images maintain a satis-
factory level of quality and resolution, crucial for accurate analysis of 
structural elements like cracks. High-quality images are essential for 
precise measurements and assessments in applications such as crack 
width evaluation. Fig. 6 illustrates images of various concrete surfaces, 
including (a) rough -textured surfaces with aggregates, (b) scratched 
surfaces, and (c) smooth surfaces with shadows. The results indicate a 
"Negative" outcome, signifying "non-cracked" areas. In Fig. 7(a), the 
results depict cracks along with width measurements in millimeters, 
revealing a maximum width of 3.8 mm. Subsequently, we performed a 
comparative test to measure the same crack using a vernier caliper, 
specifically the Mitutoyo Absolute Digital Caliper which equipped with 
an Absolute Electromagnetic Induction Linear Encoder, this caliper 

Table 2 
Evaluating Performance Metrics for Different Pre-trained Transfer Learning CNN 
Models (%).  

Transfer learning Model Accuracy Recall Precision F1-Score 
MobileNetv2 99.87 99.74 100 99.87 
EfficientNetB7 90.03 80.57 99.46 89.03 
InceptionV3 99.56 99.39 99.74 99.56 
ResNet50 99.87 99.91 99.83 99.87  

Fig. 4. Confusion matrices for transfer learning CNN models.  
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ensures high accuracy with an error margin of ±0.2 mm to ±0.3 mm. Its 
impressive resolution of 0.01 mm and a Liquid Crystal Display enhance 
precision and readability. The response speed of this caliper is unlimited, 
making it an efficient tool for detailed measurements. In Fig. 7(b), the 
results of the vernier caliper measurements show three readings along 

the same crack: 3.82 mm, 3.81 mm, and 3.77 mm. Subsequently, the 
average measurement was calculated to be 3.80 mm, aligning consis-
tently with the width measurement obtained using a smartphone image 
in real-time. This showcases the reliability and accuracy of the Mitutoyo 
Absolute Digital Caliper in providing precise crack width measurements 
for structural evaluation. 

5. Limitations 

In this pioneering study, we present a novel approach for the clas-
sification and measurement of concrete surface cracks, addressing crit-
ical challenges in structural assessment. The methodology integrates 
state-of-the-art transfer learning convolutional neural networks 
(CNNs) for crack classification and incorporates the Otsu Method for 
precise crack measurement. We explore the efficacy of four transfer 
learning models using MobileNetV2, EfficientNetV2, InceptionV3, and 
ResNet50—in the context of crack classification. Remarkably, Mobile-
NetV2 with transfer learning emerges as a highly effective CNN, 
exhibiting exceptional accuracy, recall, precision, and F1-score in our 
experiments. However, despite these promising outcomes, it is impera-
tive to acknowledge certain limitations inherent in our methodology. 
These limitations encompass factors ranging from the dependency on 
image quality and challenges in generalization to the sensitivity of crack 
width calculations and computational resource requirements. By criti-
cally examining these limitations, we aim to provide a comprehensive 
understanding of the potential constraints and areas for further refine-
ment in our proposed classification model and measurement technique. 

Fig. 5. Sample crack images for with Transfer Learning prediction using CNN models.  

Table 3 
Performance comparison of the proposed model with the existing works.  

Name of 
author 

Model used Accuracy 
(%) 

Recall 
(%) 

Precision 
(%) 

F1-score 
(%) 

Guzmán- 
Torres 
et. al  
[20] 

Regularized 
VGG-16 

99.38 Not 
specified 

Not 
specified 

100 

Hajar 
Zoubir 
et. al  
[21] 

TL VGG16 97.13 Not 
specified 

Not 
specified 

97.38 

Md. 
Monirul 
Islam 
et. al  
[22] 

TL AlexNet 99.90 99.20 99.80 99.86 

Sayyed 
Bashar 
Ali et. al 
[26] 

TL MobileNet 99.59 Not 
specified 

Not 
specified 

Not 
specified 

Our 
model* 

TL 
MobileNetV2 

99. 87 99.74 100 99.87  
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Such insights are crucial for guiding future research endeavors and 
improving the applicability of our approach in diverse concrete surface 
scenarios.  

1. Dependency on Image Quality 
The accuracy and effectiveness of the classification model and 

crack measurement heavily rely on the quality of the captured 
images. Variations in lighting conditions, camera specifications, 
and image resolution could impact the model’s performance.  

2. Limited Representation of Real-World Camera Conditions 
Smartphones may vary widely in camera specifications, 

including sensor types, lens quality, and image processing algo-
rithms. This standardization might not fully encapsulate the 
diverse imaging scenarios that can occur when employing 
different smartphone cameras in practical applications. The 
model’s performance in real-world scenarios, where users might 
employ various smartphones with differing camera capabilities, 
could be impacted. Factors such as varying lighting conditions, 
focus issues, and lens distortions inherent in different smartphone 
cameras may introduce uncertainties not fully accounted for in 
the current dataset. Future research could benefit from incorpo-
rating a more diverse set of images captured under real-world 
conditions to enhance the model’s adaptability to a wider range 
of smartphone cameras and imaging scenarios.  

3. Generalization Challenges 
The presented model’s performance is based on specific 

transfer learning models (MobileNetV2, EfficientNetV2, Incep-
tionV3, and ResNet50) and may face challenges in generalizing to 
different datasets or diverse environmental conditions, poten-
tially limiting its applicability across various concrete surface 
scenarios.  

4. Sensitivity to Training Data 
The success of transfer learning models is contingent on the 

representativeness and diversity of the training dataset. If the 

dataset does not comprehensively cover all possible concrete 
surface crack variations, the model might struggle to accurately 
classify and measure novel types of cracks. The dataset used for 
this task comprises concrete surface images categorized into two 
classes: ’negative,’ indicating surfaces without cracks, and ’pos-
itive,’ representing surfaces with cracks. In total, there are 11,435 
files, with 9148 designated for the training set and 2287 for 
validation. The success of our transfer learning model is closely 
tied to the diversity and representativeness of this dataset. The 
inclusion of various concrete surface conditions, capturing 
different types of cracks, is crucial for the model to generalize 
well. A dataset lacking in diversity may hinder the model’s ability 
to accurately classify and measure novel crack types not 
adequately represented during training. It’s worth noting that the 
careful preparation of the dataset, with fixed image dimensions at 
227 ×227 pixels and RGB channels, provides a standardized basis 
for model training. However, the absence of data augmentation 
techniques, such as random rotation or flipping, could potentially 
limit the model’s exposure to a broader range of crack variations. 
To address the sensitivity to training data, future iterations of this 
research might consider augmenting the dataset with diverse 
transformations to enhance the model’s ability to handle a wider 
spectrum of concrete surface crack scenarios during 
classification.  

5. Assumption of Linear Crack Width Calculation 
The method of determining crack width using Euclidean dis-

tance assumes a linear relationship between pixel measurements 
and actual dimensions. However, real-world crack shapes may 
not always conform to a linear representation, introducing po-
tential inaccuracies in width estimation.  

6. Resolution Dependency for Measurement Conversion 
The conversion of pixel measurements to millimeters relies on 

a pixel per inch technique, which may introduce errors if the 
video resolution is not consistently maintained. Variations in 

Fig. 6. Concrete surface variations with negative results.  

Fig. 7. Concrete surface variations with positive results.  
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resolution could impact the accuracy of the crack width 
measurements.  

7. Limited Validation Scenarios 
The manual experiments using tools like the vernier caliper 

serve as a validation method; however, they might be limited in 
representing the full spectrum of concrete surface conditions. The 
validation should be extended to a broader range of scenarios and 
environments to enhance the model’s robustness.  

8. Computational Resource Requirements 
The use of sophisticated transfer learning models may demand 

substantial computational resources for training and inference. 
This could pose practical challenges, especially in resource- 
constrained environments or for researchers with limited access 
to high-performance computing.  

9. Real-Time Implementation Challenges 
While the model demonstrates effectiveness in accuracy, pre-

cision, and recall, the real-time implementation on a smartphone 
may face constraints related to processing speed and memory, 
potentially limiting its practical utility in dynamic field 
conditions.  

10. Otsu Method Sensitivity 
The Otsu method, while widely used for image thresholding, 

may be sensitive to variations in lighting and image contrast. This 
sensitivity could impact the accuracy of crack measurement, 
especially in situations with inconsistent lighting conditions.  

11. Human Subjectivity in Manual Experiments 

The manual experiments using tools like the vernier caliper involve a 
degree of human subjectivity in measurement. Variability in individual 
operators or interpretation of crack dimensions may introduce un-
certainties in the validation process. 

These limitations highlight areas where further research and 
refinement may be necessary to enhance the robustness and applica-
bility of the proposed classification model and measurement technique 
for concrete surface cracks. 

6. Conclusions 

In conclusion, this paper introduces a groundbreaking approach to 
concrete surface crack analysis, featuring a novel classification model 
and measurement methodology. The core of our model relies on transfer 
learning Convolutional Neural Networks (CNNs) for classification, 
seamlessly integrating the Otsu Method for accurate crack measure-
ment. Our experimental setup encompasses four prominent transfer 
learning models: MobileNetV2, EfficientNetV2, InceptionV3, and 
ResNet50. Evaluation of their performance is conducted through 
essential metrics, including accuracy, recall, precision, and F1-score. 
MobileNetV2, employing transfer learning, emerges as an exception-
ally effective CNN, boasting outstanding results with 99.87% accuracy, 
99.74% recall, 100% precision, and a 99.87% F1-score in our rigorous 
experiments. We extend the application of this model to crack mea-
surement, employing the Otsu method. This entails measuring crack 
sizes on each contour, assessing individual crack dimensions, and 
delineating bounding boxes around these contours. Utilizing Euclidean 
distance calculations, we ascertain the width of each crack, enhancing 
our ability to estimate crack dimensions by scrutinizing contour infor-
mation within the image frame. The conversion of pixel measurements 
to millimeters is executed using a pixel per inch technique, accounting 
for video resolution intricacies. 

Beyond the technological advancements highlighted in this research, 
the potential applications of the developed membranes extend beyond 
crack assessment. The developed membranes, initially designed for 
crack assessment, exhibit versatile applications, including pipeline and 
infrastructure inspection, geotechnical surveys, transportation infra-
structure monitoring, and historical structure preservation, demon-
strating their potential in various structural evaluation scenarios. In 

addition to the technological advancements highlighted in this research, 
the next phase of our investigation will focus on addressing temporal 
requirements and calculation time, particularly in the context of 
embedded systems. As we delve into the practical implementation of our 
groundbreaking approach, it becomes crucial to optimize the compu-
tational efficiency of our model for real-time applications. 
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