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A B S T R A C T   

Sediment data pertains to various hydrological variables with complex sediment hydrodynamics such as sedi-
mentation rates which are often incompletely presented. Thus, the availability of sedimentation data is of utmost 
necessity for data accessibility. A comparative analysis on the missing fine sediment data imputation perfor-
mance was made based on four different techniques, namely the k-Nearest Neighbourhood (k-NN), Support 
Vector Regression (SVR), Multiple Regression (MR), and Artificial Neural Network (ANN), under the single 
imputation (SI) and multiple imputation (MI) regimes. Across different missing data proportions (10%-50%), the 
ANN demonstrated optimal results with consistent performance metrics recorded over both SI and MI regimes. 
For the highest missing data proportion (50%), the ANN presented the best imputation performance with a 
reported root mean squared error (RMSE) 0.000882, mean absolute error (MAE) 0.000595, coefficient of 
determination (R2) 71%, and Kling-Gupta Efficiency (KGE) 72%. The imputation performance ranking is as 
follows: ANN, SVR, MR, and k-NN.   

1. Introduction 

1.1. Background and problem Statement 

The transport mechanism of sediment particles constitutes a critical 
aspect of the hydrological cycle, influencing the sustainability of the 
aquatic ecosystems, balance of water quality and quantity, maintaining 
the aquatic habitat conditions, and the overall ecosystem preservation. 
Throughout the recent years, the intensified anthropogenic activities 
stemming from urbanisation, timber extraction, and agriculture have 
introduced heavy sediment loads into the locations of dams, rivers and 
oceans, carrying detrimental impacts to both the environment as well as 
the economy [1,2]. The motion of fine sediment particles during the 
settling process in water bodies wields substantial influence towards 
siltation rates [3]. Additionally, it is common that real data derived from 
the hydrological studies typically encounters data incompleteness issue 
such as instrumental failures or budget constraints [4]. Thus, the pivotal 
role of missing data imputation techniques must not be trivialized in the 
context of sedimentation data. In fact, the existence of missing data 

presents an obstacle in deciphering the complex sediment hydrody-
namics such as sedimentation rate of fine sediments in water [5]. 
Furthermore, lacking of a complete series of data and / or using inac-
curate data values for analysis would produce misleading results and 
eventually lead to invalid research studies and decisions being made. In 
order to properly handle missing data without sacrificing the data reli-
ability and validity, appropriate imputation techniques must be 
considered. In this regard, different types of imputation techniques were 
analyzed and compared in this study, ranged from basic methods, to 
complex and algorithm based modeling techniques. The missing data 
imputation process was carried out on the missing sedimentation data-
base based on four stipulated missing proportion, 10 %, 20 %, 30 %, 40 
%, and 50 %. The proportion of missing data is a dominant factor in the 
studies of missing data imputation as the availability of the complete 
oservations from the data set reduces [6]. Past literatures had suggested 
that a common range between 10 % and 50 % of missing proportion was 
adapted in missing data related studies [6,]. Based on the rule of thumb, 
the underlying assertion regarding the missing proportion in this study is 
that the missing data imputation procedure is not cost effective and is 
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considered to be insignificant whenever the missing proportion is below 
5 % [7]. On the contrary, excessive missing data has extremely high 
potential of introducing bias to the analysis as a result of an imbalanced 
data set [8]. As a consequence of a biased analysis which was extracted 
from analyzing the remaining available data from a largely incomplete 
data set, biased estimated parameters with high error fluctuation will be 
produced. Besides, the characterization of the data depends heavily on 
the completeness of the data set and thus there will be a high likelihood 
that the data that were missing carried significant properties and 
influential information from the original complete data set. Such results 
hold utterly deficient statistical power which would hinder the 
computed statistical analyses [8,9]. 

1.2. Missing data mechanisms 

Over the past decades, it had been widely recognized that issues 
invited by the presence of missing data is a pervasive concern within a 
multitude of hydrological databases. Such examples encompasses of 
missing observations from precipitation data [10], riverflow data [7], 
rainfall and runoff data [10], water quality index data [8,12], and 
sediment load data [5]. There were handful of factors that contributes to 
the presence of missing sedimentation data. For instance the discrepancy 
in calibration readings [10], ramification of defective sensor compo-
nents and failure of in-situ measuring instruments [13,14], occurrence 
of unexpected catastrophic disasters like landslides and flash floods due 
to excessive downpour of stormwater [15], and error-prone manual data 
entry processes [16]. 

While it is vital to develop a reliable and technically sound approach 
to impute the missing sedimentation data, the missing mechanisms must 
be understood to ensure the imputation techniques appropriately 
address the underlying association between the studied variables as well 
as the probability of the observed data that is missing [17,18]. Gener-
ally, the types of missing data mechanisms can be broken down into 
three principal categories, which are the missing completely at random 
(MCAR), missing at random (MAR), and missing not at random (MNAR) 
[19]. 

First and foremost, the MCAR mechanism suggests the scenario of an 
almost zero or absolute absence of a relationship between the de-
pendency of the variables observed and the likelihood of the unobserved 
data being missing [15]. In other words, missing data classified under 
the MCAR mechanism assumes that the original data value is fully in-
dependent of the missingness, which is completely random. Cases such 
as missing recorded data due to the inappropriate use of measuring 
tools, impaired laboratory equipments, non-responsive data trans-
missions and overlooked value caused by human related errors are clear 
examples from the MCAR mechanism [20]. MAR instead interprets the 
missingness to be related to the observable complete data values, but is 
unrelated to the unobserved missing data values. Hence, it can be said 
that MAR claims that non-available missing data as a result of dis-
regarded records follow a random stochastic manner which is predict-
able from the data pattern discoverable from the observed data [21]. 

Last but not least, the MNAR missing mechanism states that the miss-
ingness of the unobserved data is directly associated with the other 
missing unobserved data values. This means that the likelihood of the 
data point being missing with the observed data supplied, has full 
dependence of the remaining unobserved missing value, and completely 
independent of the observed complete data set. In this regard, the MNAR 
mechanism is known to be the most challenging missing mechanism to 
address [20,22]. 

By defining a general set of data matrix, D that consists both the 
observable and missing data variables denoted by D→O and D→M respec-
tively, the interconnected relationship between the different variables 
based on the data missingness could be visualized in Fig. 1, where Q 
represents the cause of the missingness that is unrelated to the D→M, and 
R represents the resulting missingness. 

More specifically, the likelihood of the sample observation, θ , 
associated with the missing data patterns that are described by the three 
distinct missing mechanisms can be expressed in accordance with the 
mathematical equations for MCAR (Eq (1), MAR (Eq (2), and MNAR (Eq 
(3) [19]. 
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where θ is dependent of D→M. 

1.3. Missing data imputation techniques 

In the past decade, there were a large number of studies carried out 
to perform missing data imputation accross various fields such as ap-
plications in financial data [23], biological gene expressions [24], 
educational production functions [25], ground electromagnetism from 
the magnetic data acquisition system [20], drill cutting settling rate 
predictotion [26], and more. Nevertheless, missing data imputation is 
also actively being researched in the context of missing hydrological 
databases as mentioned previously. The nature of imputation techniques 
could be generally grouped into two variations, namely the theoretical 
based imputation technique, and the empirical based (i.e. function 
modelling) imputation technique [10,27]. In most cases, the theoretical 
based approach requires fundamental theories derived from the domain 
knowledge of the specific field. Such approaches are usually supported 
by a list of theoretical assumptions which are required to be satisfied. 

Fig. 1. Missing mechanism relationship illustration.  
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Hence, to solve the missing data problem via the traditional theory 
based methods, researchers have to clearly identify the underlying dis-
tribution of the data set, ensuring the aspects of data characteristics and 
data quality aligned with all of the distribution assumptions. 

On the contrary, empirical based approaches gain information 
through inferences that is drawn from the real-world data [28]. 
Empirical methods are prevalent due to the flexibility in the modelling 
technique and computational algorithms applied. The most straight-
forward and well known technique of all is the simple arithmetic 
average (SAA), which imputes the missing data point values according 
to the computed arithmetic average of the variable of interest [10,29]. 
Although the SAA technique is simple enough, the imputed missing data 
values were undesirable in almost all cases, especially when the varia-
tion within the data variables were large, or/and when outliers existed. 
Similarly, the simple median (SM) imputation replaces the unobserved 
missing data with the computed median of the variable of interest. 
Median presents a robust statistical measure compared to mean, and 
studies have also shown that the SM imputation technique yielded 
slightly improved results compared to the SAA technique in the presence 
of data outliers [6,29]. 

Besides SAA and SM, hot deck (HD) is another common imputation 
technique that was commonly used [20,30]. Under the HD technique, 
missing data values were substituted with the most similar observed 
data point based on the closest neighbour which is assumed to best 
resemble the missing observation itself. Some studies have applied a 
similar approach known as the k-nearest neihbourhood (k-NN) impu-
tation technique [29]. Overall, the aforementioned approaches were not 
developed based on the idea of function fitting but rather relied on the 
closeness between the missing data and the k observed neighbouring 
point(s). Therefore, such mechanisms have high potential of introducing 
an inductive bias towards the imputation techniques [31]. 

Furthermore, regression models are one of the alternatives of the 
missing data imputation techniques. Multiple regression (MR) is an 
extended version of the basic linear regression model, enabling not just 
an interpretation of a bivariate linear relationship, but from a multi-
variate aspect, with a richer analysis on the correlation of the investi-
gated variables [15]. Subsequently, a multivariate relationship is 
established between the explanatory variables and the response variable 
under the MR imputation technique, and the combinations between the 
variables with the corresponding best weight coefficients is finalized for 
the missing data imputation. Based on several studies on the missing 
hydrological data imputation (e.g. wind, temperature and rainfall), it 
had been discovered that the MR model outperformed the SAA and k-NN 
techniques respecively by producing a higher estimation accuracy 
[32,33]. 

In addition to the MR imputation technique, the support vector 
regression (SVR) pressented a non-traditional approach, extended from 
the support vector machine (SVM) model. Particularly, SVR performs 
regression for estimations in contrast to the SVM which performs clas-
sification for target data labels. Briefly, the SVR creates a hyperplane 
and performs estimation based on the location relative to the decision 
boundary lines with a specific margin. The strength of SVR lies in its 
robustness against data variations, with no underyling distributional 
assumptions [26]. 

On top of the regression models, the artificial neural network (ANN) 
model garnered immense professional acclaim and popularity especially 
in the recent years revolutionized by artificial intelligence (AI). An ANN 
is a general model under the subset of the machine learning category 
where it mimics the human brain, applying the same mechanism to 
facilitate machines to learn from instances (i.e. training), and generate a 
prediction output [34]. There is an abundance of types of ANN models, 
each with different layout structures as well as training mechanisms, 
serving for different prediction purposes. Despite of the various avail-
able types of ANN models, the basic layout structure of a typical ANN as 
illustrated in Fig. 2 follows the standard design by having a single input 
layer, followed by one or more hidden layers, and a single output layer 

at the terminal part [3]. Nodes representing input data in the input 
layers are called input nodes whereas the final node that provides the 
output value is called the output node. Similarly, nodes found within the 
hidden layer(s) are known as hidden nodes. 

Each layer contains information transmitters known as the nodes 
which is similar to the biological neurons in the human brain, feeding 
input signals to the subsequent connected nodes through a learning 
mechanism, stimulated by the input instances. In addition, for a typical 
ANN model, adjacent nodes in the same layer are not interconnected. 
Furthermore, in the ANN model training process, the nodes processes 
the input data and computes a temporary net value, Ω to be fed to each 
of the subsequent nodes in the next layer. Iteratively in a feed-forward 
manner, the training continues layer by layer within each of the nodes 
from the consecutive layers, until the net output value is finally passed to 
the terminal node where a prediction output is generated [35]. Each 
node is associated with two vital components known as the weight, W 

and bias, B, and is assigned with a pre-defined transfer function. As the 
name suggested, the weight term informs a particular node on the 
weightage of receiving the input data X, to calculate the net output value 
that are generated by each of the previous nodes as shown in (Eq. (4)) 
[29]. 
Ω = W • X+B (4)  

where Ω is the net value received at each node; W and B represents the 
weights and biases matrices respectively. 

The bias term enables the ANN model to offset the null weighted 
sum, preventing the nodes from ignoring a particular node during the 
training process. The transfer function must meet the monotonicity 
criteria, and must be differentiable at all points. It processes the 
weighted sum and computes the output value at each node based on the 
pre-defined function [36]. Table 1 shows the commonly used examples 
of transfer function, including the linear function, logistic (i.e. sigmoid) 
function, hyperbolic tangent function (i.e. tanh), and the rectified linear 
unit (ReLU) function. Although the linear function is a choice for the 
transfer function, it is not implemented as most study requires ANN 

Fig. 2. General layout structure of an ANN model mimicking information 
received by biological neural network in human brain. 
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models to address the non-linear complexity among variables during the 
training process. 

Notably, the ANN models, also known as universal approximators 
due to the non-parametric modelling mechanism are possible to 
approximate any form of functions [36,37]. Together with the stellar 
performance across the estimation performance in numerous hydro-
logical applications [6], the ANN model is an excellent candidate with 
great potential of producing highly accurate results. 

Despite of the dozens of missing data imputation techniques dis-
cussed, the case deletion method may be a solution, subjected to the 
percentage of missing data and the condition of missing mechanism. 
Based on the literatures, the deletion method includes listwise deletion 
and pairwise deletion [38,39]. Given the missing proportion is 5 % or 
less, the listwise deletion technique can be used to discard the entire 
observation if one or more variables is found missing. Pairwise deletion 
on the other hand was more preferred over listwise deletion as it at-
tempts to preserve the size of the available data set. In pairwise deletion, 
a statistical analysis, usually the correlation between the pair of missing 
data variables is assessed, and the pair of variables will be deleted 
together if the correlation is insignificant. Else, other imputation 
methods will be used to replace the missing data points [40]. However, 
the use of the deletion techniques are only suitable in the context of the 
MCAR mechanism. 

A summary on the performances of the existing estimation approach 
from different studied was presented in Table 2. However, the results 
from the studies cannot be compared directly due to different applica-
tion type and context. In particular, the commonly used error metrics 
such as the mean absolute error (MAE) and the root mean squared error 
(RMSE) from the studies possessed distinct unit measurements, which 
leaded to the highly disparate in their values. Hence, the error metrics 
were not able to directly differentiate model performances across 
different studies. However, a smaller error value is always preferred in 
all cases of model estimations. Fortunately, the unitless coefficient of 
determination, R2 is a sensible indicator to compare model perfor-
mances. In general, it could be examined that the ANN technique out-
performed other modelling techniques since a higher R2 was discovered 
across the studies. The ANN exhibited superior performance regardless 

of the type of the study which consisted missing data, or has no missing 
data at all (i.e. 0 % missing percentage). 

Nevertheless, possessing a complete and valid data set in the context 
of sedimentation studies is highly significant as the hydrodynamic 
properties of sediment particles plays an important role in governing the 
sediment transporation mechanism, affecting siltation rates. The pri-
mary objective of this study is to compare the efficacy of applying some 
of the most renowned missing data imputation techniques on the 
missing sedimentation data set. Particularly, a comparative analysis on 
the missing data imputation techniques was performed by implementing 
the k-NN, SVR, MR as well as the popular ANN. 

2. Methodology 

2.1. Missing sedimentation data set and workflow 

The original complete sedimentation data set was collected from the 
particle image velocimetry (PIV) experiment. The PIV machine captured 
instantaneous images of each of the fine seedling particles in the water 
with laminar flow from the sedimentation basin and then the particle 
positions as well as other hydrokinetic properties such as the particle 
sedimentation rate were computed via the Dantec Dynamics PIV soft-
ware [3,46,47]. The sedimentation data set comprised of 6240 complete 
observations of the captured sedimentation rate of fine particles asso-
ciated with four hydraulic parameters which were the fine seedling 
particle sizes within 5 µm to 50 µm; the inlet depth of water flow ranged 
between 6 cm and 10.5 cm, and the horizontal as well as vertical posi-
tion (in pixels) of the particles that was extracted from the captured 
images under the PIV experiment [46]. Table 3 presents the descriptive 
statistics of the studied variables in the fine sediment data set. 

Based on the MAR mechanism, the missing sedimentation rate data 
points were simulated at a stipulated proportion of 10 %, 20 %, 30 %, 40 
%, and 50 %. The missing data points were imputed by the selected 
imputation techniques according to two distinct imputational proced-
ures, called the single imputation (SI) and multiple imputation (MI). All 
the selected missing data imputation techniques were implemented 
under both procedures. At the end of the procedures, each of the 
imputation techniques were evaluated based on the three performance 
indicators which includes the mean absolute error (MAE), root-mean 
squared error (RMSE), the coefficient of determination (R2.), and the 
Kling-Gupta Efficiency (KGE) [48]. The best imputation technique was 
selected at the final stage of the comparative analysis. The general 
workflow of this study is illustrated in Fig. 3. 

2.2. Data pre-processing 

The sedimentation data set were pre-processed before used. Firstly, 

Table 1 
Commonly used examples of transfer functions [29,36].  

Type of Transfer Function Mathematical Formula 
Linear ϕ(Ω) = Ω 

Logistic 
ϕ(Ω) =

1
1 + e−Ω 

Hyperbolic Tangent 
ϕ(Ω) =

2
1 + e−2Ω

−1 
Rectified Linear Unit 

ϕ(Ω) =

{ 0,Ω < 0
Ω,Ω ≥ 0  

Table 2 
Performance of the common estimation techniques in different application.  

Source Context of Study Maximum Missing Percentage Techniques Applied MAE RMSE R2 

[41] Total Suspended Solid 0 % ANN NIL 0.475––0.993 0.623–0.920 
[42] Local Scour Depth DownStream 0 % ANN 

MR 
0.130 
0.200 

NIL 
NIL 

0.740 
0.670 

[43] Suspended Sediment Concentration 0 % ANN 
MR 

28.06–29.89 
31.55–64.93 

50.00–61.74 
105.88–210.46 

0.470–0.630 
0.560–0.625 

[44] Suspended Sediment Load 21 % ANN 
MR 

820–1614 
3285–3246 

1646–4731 
5444–7535 

0.65–0.97 
0.59–0.75 

[45] Streamflow 30 % k-NN NIL 0.313 0.644 
[22] Air Quality 40 % k-NN 0.852 1.067 NIL 
[26] Drill Cuttings Settling Velocity 40 % ANN 0.065 0.090 0.612 
[18] Water Quality 45 % k-NN NIL 0.411 0.4823 
[20] Ground Electromagnetism 80 % SAA 

Hot-Deck 
k-NN 
SVR 
ANN 

9.432 
7.93 
2.600 
0.510 
0.100 

10.604 
10.130 
7.282 
0.560  
< 0.100 

NIL 
NIL 
NIL 
NIL 
NIL  
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the outlier observations which could be caused by the variability or 
discrepancies in the data values recorded from the experimental mea-
surements were removed. This is because the presence of outlier is more 
susceptible to errors, which would highly affect the quality of the data 
set as well as the missing data imputation results. After the outlier ob-
servations were removed, each data variable, z was rescaled to obtain a 
unitless value, znorm via the min–max scaler equation as defined in (Eq 
(5) [49]. 

znorm =
z − zmin

zmax − zmin

(5) 

The purpose of applying the min–max data normalization process 
was to improve the variable interpretability as each variable was pro-
jected onto a value bounded between 0 and 1, avoiding the dominance 
of variables due to larger unit values, while the data set distribution 
properties and their characteristics were preserved. In addition, the 
normalized data set allowed the computational task to be simplified 
[49]. 

2.3. Single imputation (SI) 

The SI imputational procedure generates a single estimated value for 
each of the missing data points. In this study, the imputation techniques 
of k-NN, SVR, MR, and ANN were selected for the comparative analysis. 
The computational steps of each of the imputation technique to obtain 
the imputation value θ̂ were provided below: 

2.3.1. k-Nearest Neighbourhood (k-NN) 
Under the k-Nearest Neighbourhood technique, each of the missing 

data value was imputed based on the simple arithmetic average ac-
cording to the k-nearest data reference points towards the input data 
learned (Eq (6) [11]. The Euclidean distance metrics was used as the 
reference measure for the k nearest data. 

θ̂i = θ̂ =

∑k

i=1yi

k
(6)  

where y is the observable data values based on the variable of interest. 

2.3.2. Support vector regression (SVR) 
Under the SVR technique, each of the missing data value was 

imputed based on the modelled hyperplane that best fits the missing 
data points. Using the applied kernel function Φ, the input data variables 
xi were transformed into a high dimensional feature space for which the 
hyperplane minimizes the margin distance between the hyperplane and 
the nearest data points. The regression function was computed based on 
(Eq (7) [50]. 
f (xi) = w T Φ(xi)+ b (7) 

The SVR fits a hyperplane which will be located geometrically at the 
middle of the boundary lines and only input data points within the de-
cision boundary lines of minimum error rate around the hyperplane 
were considered. The minimization process was performed based on (Eq 
(8) with a band width margin ±ε, and slack factors ξi

+, ξi
− [50]. 

min
w ,b,ξ,ξ*

1

2
w T w +

λ

2

∑N

i=1

(ξi
+ + ξi

−) (8) 

The constraints involved in the minimization process are defined in 
(Eq (9). 
−(ε+ ξi

−) ≤ yi − f (xi) ≤ ε+ ξi
+ (9)  

where ξ−,ξ+ ≥ 0. Both factors equals to zero if the data points fall within 
the boundaries. 

The applied non-linear Gaussian kernel function in the SVR is 
defined in Eq. (10). 

Φ(xi) = e−
‖x−xi‖

2

2σ (10) 
where σ is the variance hyperparameter of the Gaussian kernel 

function. 

2.3.3. Multiple regression (MR) 
Under the MR technique, each respective missing data value was 

imputed based on the mathematical regression formula as shown in Eq 
(11) [10,44]. 
θ̂k = β0 + β1yk1 + β2yk2 + β3yk3 + β4yk4 + ∊ (11) 

where yk is the observable data values of each of the non-missing 
variable data points, β0 is the constant (intercept) term, β1, β2, β3 and 
β4 are the slope coefficients, also known as the regression weights for 
each of the variables, and ∊ is the residual (random error) term. 

2.3.4. Artificial neural network (ANN) 
The ANN employed in this study combined both the feed-forward as 

well as the back-propagation learning rule in the model training phase. 
Through the trial and error approach, the number of nodes were 
explored for a single hidden layer. The ANN model was trained with the 
available observations first through the feed-forward rule from the input 
layer, to the hidden layer, then the terminal node in the final output 
layer. The moment the feed-forward learning completed, the output 
value will be compared with the true data observations. The sum of 
squared error was calculated, and this was where the back-propagation 
rule commence. The weight parameters of the previous nodes were 
adjusted in a backwards passing fashion based on the computed sum of 
squared error [49]. For the ANN model in this study, the logistic transfer 
function was employed. 

2.4. Multiple imputation (MI) 

As the name suggested, the MI imputational procedure generates 
multiple estimated values (i.e. point estimates) from the fitted models to 
each of the imputed data set containing the missing data points [28]. In 
this particular study, the bootstrap resampling was integrated with the 
MI procedure [51] was carried out with 100 sets of sample data that 
were obtained under the bootstrap resampling method. The integrated 
boostrapping with the MI approach is a straightforward application of 
the standard percentile-based bootstrap confidence interval for the 
estimator [17]. The conceptual framework of the bootstrap resampling 
method was illustrated in Fig. 4, to collect a total of 10 bootstrap 

Table 3 
Descriptive statistics of the studied variables in the fine sediment data set.  

Variables Unit Mean Median Minimum Maximum Standard Deviation 
Fine particle size µm  25.8974  20.0000  5.0000  50.0000  18.3509 
Inlet depth cm  8.7747  9.0000  6.0000  10.5000  1.6007 
x- particle position cm  13.8357  12.0000  0.0000  42.0000  9.3779 
y- particle position cm  8.7840  10.0000  0.0000  20.0000  5.6787 
Sedimentation rate m/s  0.0017  0.0009  8.4900 

x 10-8  
0.0844  0.0026  
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Fig. 3. General workflow based on the comparative analysis for the missing data imputation techniques.  
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samples. 
Applying the bootstrap method, the same size of data samples were 

obtained through sampling with replacement. Hence, it is definitely 
possible to have repeated data (indicated by the light blue sample points 
in Fig. 4) being resampled in the formation of more robust bootstrap 
samples. After producing 10 sets of bootstrap samples, the missing data 
imputation techniques were applied. As a result, 10 sets of imputed 
values of the missing data points will be generated. Then, the imputed 
results from the 10 sets of bootstrap samples were aggregated by 
computing their means. To ensure the reliability of the boostrap sam-
ples, the imputed values must not have a standard error greater than 0.5 
%. Once the reported standard error exceeds 0.5 %, the bootstrap 
method will be reinitiated to produce another 10 sets of boostrap sam-
ple, and the previous sets will be discarded. In this study, the best 
network layout setting of the ANN model was determined under the SI 
procedure under the trial and error method separately for the 10 %, 20 
%, 30 %, 40 %, and 50 % missing proportion. The best ANN layout 
settings were implemented in the MI procedure based on the corre-
sponding data missing proportion. 

2.5. Performance metrics 

The performance metrics, namely the mean absolute error (MAE) in 
(Eq (12), the root-mean squared error (RMSE) in (Eq (13), the coefficient 
of determination (R2) in (Eq (14), and the Kling Gupta Efficiency (KGE) 
in (Eq (15) were applied to evaluate the performance of each of the 
missing data imputation techniques in estimating the missing values of 
the sedimentation rates [48]. 

MAE =

∑N

i= 1 |yi − yi|

M
(12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N
i=1

(yi − yi)
2

M

√√√√√ (13)  

R2 = 1−

∑N

i=1(ŷi − yi)
2

∑N

i=1(yi − yi)
2

(14)  

KGE = 1−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − R)2 + (1 − α)2 + (1 − β)2

√
(15) 

where the ratio between estimated and observed mean (bias ratio), 

Fig. 4. Illustration of the bootstrap resampling method.  
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α =

∑N

i=1 ŷi∑N

i=1yi 

the ratio between estimated and observed standard deviation (vari-
ability ratio), 

β =
N
∑N

i=1(ŷi
2) −

(∑N

i=1 ŷi

)2

N
∑N

i=1(yi
2) −

(∑N

i=1yi

)2 

The MAE and RMSE are error metrics, for which the lower the error 
value based on the imputed results, the more favourable the imputation 
technique. R2 on the contrary quantifies the amount of variability that 
the imputation techniques addressed by comparing the imputed value 
and the observed value. The value of R2 usually lies between 0 and 1, 
signifying the strength of the model in capturing the variability of the 
predicted data. More specifically, the estimations could be considered as 
perfect if the value of R2 is exactly one, whilst a zero R2 value suggests 
the equivalence of the estimated error variation and the deviation be-
tween the mean and data points. In other words, the zero R2 value sig-
nifies that the used model for imputation has an equal performance 
compared to the case of estimation using the mean. Furthermore, the R2 

if found to fall below zero (negative), it suggests that the model had a 
poorer imputation performance as compared to when using the mean as 
estimator [48]. The mathematical interpretation of this consequence can 
be inspected from the method of computing the R2, for which a poor 
prediction assoaciates with a very large difference between the pre-
dicted and observed data resulting in the large numerator, dominating 
the denominator which takes the total squared difference between the 
individual data and their mean. On the whole, the imputation tech-
niques should account for the unvertainty about the missing observa-
tions and so, higher R2 value is always preferred. On top of that, the KGE 
has been prominently applied to assess the mode calibration and eval-
uation performances, where it is able to confront the inadequacy of the 
R2 metric in terms of the variability and bias. Extended beyond the 
correlation index term, R, the constitutive components of the KGE are 
collectively considered to be more comprehensive than other indicators 
although they cannot be directly compared due to the distinct depen-
dence of the coefficients. Similarly, the KGE of value 1 indicates a perfect 
match between imputations and observations. Moreover, the zero value 
in R suggests the particular imputation model has equivalent explana-
tory power as the mean estimator. On the contrary, negative KGE values 
indicates that the model suffers from poor imputation results. Also, 
while most studies suggested that a positive KGE reflects that the 
simulated output results were better than when the mean was used as 
the estimator, there were several cases which allude that the prediction 
results are less satisfactory when the value of KGE is 0.5 or less 
[48,52,53]. It should be noted that the mentioned results from the 
different studies were analyzed based on the estimation using a fully 
complete data set. 

3. Results and discussion 

3.1. Single imputation (SI) results 

The optimum number of hidden nodes which allowed for the best 
ANN layout setting was searched through a trial and error approach. 
Table 4 below provides the statistical performance metrics for each of 
the combination based on the layout setting of the ANN model with the 
10 % stipulated missing proportion. It is clear that the layout setting of 
4–13-1 produced the lowest MAE and RMSE, as well as the highest R2 

and KGE values. 
After the best ANN model layout setting was selected, the imputed 

results of the other three imputation techniques under the SI procedure 
when the missing proportion was set as 10 % were compared as shown in 
Table 5. Remarkably, the SVR technique was able to provide the 
imputation results of the minimum MAE and RMSE, with a significantly 

high R2 value of 0.782048 as well as moderate KGE value of 0.660030. 
On the other hand, the 4–13-1 layout of the ANN exhibited a comparable 
imputation results with similar error metrics and slightly lower R2 value 
of 0.761318, but a remarkably high KGE value of 0.804456. With the 
reported zero R2 and negative KGE values, the k-NN technique showed 
unsatisfactory performance. The MR technique offered better imputed 
results when compared to the k-NN due to the positive R2 and KGE in-
dicator as well as the lower error metrics. However, the relatively low 
KGE value obtained by the MR technique implied its imputation per-
formance were lacking. In brief, both ANN and SVR in this case pre-
sented excellent results. The distinct difference in the KGE and R2 

indicated that ANN had an overall better performance in the missing 
data imputation. This could be explained by the nature of KGE indicator 
which considered multiple aspects of the model performance beyond 
considering solely on the correlation measure among the imputed data. 
The greatly discounted KGE from the R2 indicator suggested that SVR 
had performed well in addressing the correlation but sacrificed on the 
bias and variability component. 

The imputation results for 20 % missing proportion from the 15 

Table 4 
Missing data imputation results for 10% missing proportion (ANN) under the SI 
regime.  

Number of Hidden Nodes MAE RMSE R2 KGE 
1  0.000651  0.000839  0.631794  0.655818 
2  0.000582  0.000761  0.695583  0.708435 
3  0.000570  0.000779  0.681679  0.653111 
4  0.000511  0.000699  0.744196  0.765093 
5  0.000563  0.000751  0.714241  0.782966 
6  0.000514  0.000696  0.745174  0.754854 
7  0.000500  0.000682  0.756698  0.789241 
8  0.000527  0.000711  0.733548  0.735433 
9  0.000515  0.000677  0.759363  0.779460 
10  0.000492  0.000674  0.761004  0.767331 
11  0.000503  0.000675  0.761476  0.788914 
12  0.000513  0.000696  0.745903  0.766781 
13  0.000510  0.000676  0.761318  0.804456 
14  0.000512  0.000689  0.753664  0.804014 
15  0.000520  0.000697  0.746321  0.788073  

Table 5 
Missing data imputation results for 10% missing proportion under the SI regime.  

Missing Data Imputation 
Technique 

MAE RMSE R2 KGE 

k-NN  0.001025  0.001409  0.000000  −0.396031 
SVR  0.000454  0.000649  0.782048  0.660030 
MR  0.001017  0.001335  0.157921  0.187814 
ANN (4–13-1)  0.000510  0.000676  0.761318  0.804456  

Table 6 
Missing data imputation results for 20% missing proportion (ANN) under the SI 
regime.  

Number of Hidden Nodes MAE RMSE R2 KGE 
1  0.000674  0.000925  0.566330  0.586693 
2  0.000617  0.000864  0.622859  0.663409 
3  0.000602  0.000856  0.631051  0.670494 
4  0.000540  0.000795  0.000795  0.725605 
5  0.000566  0.000812  0.673774  0.740200 
6  0.000557  0.000810  0.669106  0.723263 
7  0.000523  0.000771  0.701544  0.745460 
8  0.000539  0.000787  0.686504  0.727239 
9  0.000520  0.000734  0.726823  0.766121 
10  0.000575  0.000819  0.660236  0.693826 
11  0.000520  0.000749  0.714415  0.738909 
12  0.000524  0.000759  0.707430  0.737259 
13  0.000486  0.000685  0.761331  0.788649 
14  0.000489  0.000716  0.739128  0.763032 
15  0.000549  0.000762  0.707044  0.754183  
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combinations of the ANN model layout settings were summarized in 
Table 6. The ANN model with 13 hidden nodes was seen to outperform 
others with the least MAE value of 0.000486, and RMSE value of 
0.000685, and also with the largest R2 of 0.761331 as well as KGE value 
of 0.788649. 

Table 7 shows the imputed results under the SI procedure when the 
missing proportion was set as 20 %. Similarly, the selected best ANN 
model with the network layout setting of 4–13-1 was seen to provide 
better imputation results with the smallest RMSE among the imputation 
techniques, with a substantially high R2 value of 0.761331 and KGE of 
0.788649. Moreover, the calculated error metrics from each of the 
imputation techniques had increased on the overall as compared to the 
missing proportion of 10 %. This is due to more unknown data values 
introduced to the sedimentation data set in the model fitting or training 
phase, affecting the quality of imputation results. Notably, the perfor-
mance of the ANN has not declined drastically. Comparatively, the SVR 
had a slightly poorer performance than ANN in both cases of 10 % and 
20 % missing proportion, as indicated by the lower R2 and KGE values. 
The k-NN techniques yielded the largest MAE and RMSE, associated 
with the lowest R2 and KGE values, indicating the poorest performance 
across all of the imputation techniques. 

Similarly, the imputation results of the 30 % missing proportion from 
the 15 combinations of the ANN model layout settings were summarized 
in Table 8. By careful inspection, it could be discovered that the 4–13-1 
and 4–14-1 settings for the ANN model achieved a similarly optimum 
results as compared to the other layout settings. Considering the trade- 
off by the lower KGE value but with similar values in the error metrics, 
the 4–13-1 ANN layout had marginally better imputed results compared 
to the 4–14-1 setting. 

After the ANN model with the optimum layout setting has been 
chosen, the results were further compared with the other imputation 
techniues based on the imputed results under the SI procedure when the 
missing proportion was set as 30 %, provided in Table 9 below. Despite 
of the increased missing proportion, the ANN model with a 4–14-1 
layout setting managed to obtain the R2 value of 0.743228 and KGE of 
0.779721, which signified that the ANN model have successfully 
explained the missing data correlation by approximately 74 % as well as 
the variability and bias component based on the overall imputed missing 
data. The best ANN model results were also supported by the lowest 
RMSE of 0.0.000755. The SVR was able to secure the lowest MAE but 
possessed a lower R2 and a greatly discounted KGE value. Besides, the 
MR technique had shown poor performance whilst the k-NN technique 
failed to provide reasonable imputation results based on all of the per-
formance metrics. In brief, the results implied that the ANN model 
outperformed other imputation techniques. 

Similarly, the imputation results for the 40 % missing proportion 
from the 15 combinations of the ANN model layout settings were sum-
marized in Table 10. Evidently, the 4–14-1 ANN had outperformed other 
layout settings. The lowest MAE and RMSE as well as highest R2 and KGE 
were reported. 

In spite of a suffered greater observation loss due to the higher 
proportion (40 %) of missing data, the 4–14-1 ANN managed to main-
tain a similar R2 and KGE of approximately 0.754960 and 0.763172 
respectively as shown in Table 11. The remarkable imputation results by 
ANN was more significant compared to the SVR technique that has an R2 

of 0.704345 and KGE of only 0.563332. Similarly, the MR technique 

yielded a below average performance with a positively low values in the 
R2 and KGE values. The MR has similar error metrics values with the k- 
NN technique but it has produced an unsignificant value in the R2 of 
0.009222, and an undesirable KGE value of − 0.346660, suggesting its 
uncomparable imputational performance. 

Last but not least, the imputation results for the 50 % missing pro-
portion from the 15 combinations of the ANN model layout settings were 
summarized in Table 12. By careful inspection, it was found that the 
4–14-1 and 4–15-1 layout settings for the ANN model shared disputable 

Table 7 
Missing data imputation results for 20% missing proportion under the SI regime.  

Missing Data Imputation 
Technique 

MAE RMSE R2 KGE 

k-NN  0.001036  0.001453  0.040873  −0.266534 
SVR  0.000469  0.000744  0.718325  0.648367 
MR  0.001027  0.001354  0.157044  0.211024 
ANN (4–13-1)  0.000486  0.000685  0.761331  0.788649  

Table 8 
Missing data imputation results for 30% missing proportion (ANN) under the SI 
regime.  

Number of Hidden Nodes MAE RMSE R2 KGE 
1  0.000678  0.000919  0.615703  0.594434 
2  0.000629  0.000864  0.661436  0.659542 
3  0.000629  0.000859  0.664972  0.619862 
4  0.000594  0.000835  0.684209  0.689598 
5  0.000575  0.000819  0.696266  0.709078 
6  0.000587  0.000817  0.697809  0.702790 
7  0.000577  0.000800  0.709408  0.721948 
8  0.000556  0.000788  0.718347  0.731169 
9  0.000532  0.000745  0.747788  0.750139 
10  0.000541  0.000789  0.717855  0.722174 
11  0.000544  0.000772  0.729387  0.731315 
12  0.000545  0.000772  0.729766  0.740193 
13  0.000551  0.000755  0.743228  0.779721 
14  0.000507  0.000716  0.766998  0.759619 
15  0.000554  0.000753  0.743254  0.758095  

Table 9 
Missing data imputation results for 30% missing proportion under the SI regime.  

Missing Data Imputation 
Technique 

MAE RMSE R2 KGE 

k-NN  0.001012  0.001480  0.004297  −0.360414 
SVR  0.000494  0.000770  0.733351  0.631397 
MR  0.001055  0.001397  0.178645  0.206801 
ANN (4–14-1)  0.000551  0.000755  0.743228  0.779721  

Table 10 
Missing data imputation results for 40% missing proportion (ANN) under the SI 
regime.  

Number of Hidden Nodes MAE RMSE R2 KGE 
1  0.000709  0.001038  0.593693  0.559312 
2  0.000697  0.001023  0.605138  0.557732 
3  0.000661  0.000972  0.644193  0.612560 
4  0.000626  0.000953  0.659425  0.676419 
5  0.000574  0.000904  0.692583  0.698257 
6  0.000576  0.000899  0.695631  0.695575 
7  0.000595  0.000889  0.701798  0.679867 
8  0.000562  0.000871  0.713924  0.698408 
9  0.000556  0.000835  0.736975  0.735783 
10  0.000566  0.000874  0.712259  0.703029 
11  0.000557  0.000848  0.728627  0.721976 
12  0.000635  0.000921  0.681241  0.687482 
13  0.000595  0.000882  0.707401  0.718822 
14  0.000544  0.000807  0.754960  0.763172 
15  0.000576  0.000876  0.711190  0.710878  

Table 11 
Missing data imputation results for 40% missing proportion under the SI regime.  

Missing Data Imputation 
Technique 

MAE RMSE R2 KGE 

k-NN  0.001058  0.001623  0.009222  −0.346660 
SVR  0.000524  0.000893  0.704345  0.563332 
MR  0.001112  0.001537  0.174784  0.180469 
ANN (4–14-1)  0.000544  0.000807  0.754960  0.763172  
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imputation results. However, the 4-14-1 ANN attained the highest KGE 
value of 0.665640, with the correspondingly sifnificant R2 value of 
0.648297, slightly lower than the R2 value when the layout setting 
employs 15 hidden nodes (4-15-1). Additionally, there were no signifi-
cant difference between the evaluated error metrics. 

The performance measures for the different missing data imputation 
techniques when the missing data proportion was set at 50 % were 
tabulated in Table 13 below. Based on the performance masures, the 
ANN model had exceptionally outperformed compared to other impu-
tation techniques although a great deal of data were missing. The re-
ported values of R2 and KGE were approximately 65 % or more. The 
remarkable imputation results by ANN showed distinct significance 
compared to the SVR technique that has an addressed R2 of 0.617921 
and KGE of only 0.457485. Similarly, the MR technique yielded a below 
average performance with a positively low values in the R2 and KGE 
values. Also, the MR has similar error metrics values with the k-NN 
technique but it has an unsignificant value in the R2 of 0.047152, and an 
undesirable KGE value of − 0.271489, restating its uncomparable 
imputational performance. 

The overall imputation results by each of the imputation techniques 
were illustrated in Fig. 5, Fig. 6, Fig. 7, and F8 respectively, with each of 
the sub-plots presenting the scatterplot of the imputed against observed 
missing data values. Fig. 5 depicted the ANN model with superior 
imputation performance, followed by the SVR technique depicted in 
Fig. 6, MR shown in Fig. 7, and finally k-NN in Fig. 8 that has the worst 
performance. Data points which coincide with the red linear line rep-
resents a perfect match between the imputed and observed missing data 
values. 

For lower missing proportion such as 10 % and 20 %, ANN and SVR 
were compatible in terms of the imputation results. This was examined 
between Figs. 5 and 6, where the point estimates generated by both 
imputation techniques followed closely along the linear line which 
indicated a good match between the imputed and observed missing data 
points. However, as the imputation performance of the ANN dominated 
the SVR as the missing proportion increased to 30 %, 40 %, and 50 %. 
Specifically when the 50 % missing proportion scatterplots for the ANN 
and SVR were compared, majority of the data points with larger 
observed values were located far below from the red linear line. On the 

contrary, the data points were located closer and spreaded more uni-
formly, balancing along the red linear line. These results suggested that 
the ANN was not only able to capture the missing data correlation and 
variability, but also with a relatively low bias. The SVR imputation 
technique however produced results with high bias (i.e. underestimate) 
despite of addressing the correlation and variability. 

Furthermore, the illustrated scatterplots for the MR imputation 
technique in Fig. 7 suggested that the imputed missing data were mostly 
inaccurate as majority of the data points were located far away from the 
red linear line. The pattern of imputation were consistent across all 
missing proportions. For smaller values of missing data observations, the 
MR technique presented a uniform imputation along the red linear line 
resembling some unbiasness although they were all far aways from the 
actual data points on the red linear line. Apparently, the major source of 
bias contribution existed on the larger values of the missing data ob-
servations. Specifically, all of the imputed data points were lower and 
greatly distanced from the red linear line, signifying low accuracy with 
high bias in the MR imputation technique. Thus, the MR ecxhibited a 
low estimation ability with a high tendency to perform underestimation 
based on the imputation results. 

Nevertheless, the k-NN technique has not provided plausible impu-
tation results across all missing data proportions as depicted in Fig. 8. 
The thick horizontal trend formed by the imputed data points showed 
that the imputed values were very similar, regardless of the magnitude 
of the observed missing data value. The k-NN imputation performance 
was seen to be slightly better than the SAA and SM method where an 
identical estimated value is assigned to all missing data points. In the 
case of the SAA and SM method, a linear horizontal line represents the 
imputed missing data points. The k-NN has some variation in the im-
putations but failed to capture the correlation and variability of the 
missing data points. Besides, the k-NN has showed biasness where most 
of the imputed data points lied below the red linear line. Hence, the k- 
NN imputation technique has underperformed and tends to underesti-
mate based on the imputation results. 

3.2. Multiple imputation (MI) results 

The bootstrap resampling method followed by the MI procedure was 
implemented. In the bootstrap resampling phase, 100 bootstrap samples 
were generated and the respective imputation techniques were applied 
to produce the point estimates based on the bootstrap samples. To 
ensure the results validity, the standard error of the point estimates from 
the respective imputation techniques must be consistent, without 
exceeding a standard error of 0.5 %. Specifically, the layout setting for 
the ANNs in the MI regime were derived from the best selected layout 
setting from the ANN under the SI regime. Consequently, the same 
network setting was applied to the MI imputation regime corresponding 
to each of the stipulated missing proportion. 

The overall results including both SI and MI regime across the five 
missing proportions for all imputation techniques were reported in 
Table 14. The error metrics (MAE and RMSE) yielded from the MI 
regime were all slightly above the error metrics from the SI regime. On 
the other hand, the R2 values were mostly lower for the MI regime except 
for the k-NN where a higher R2 across all missing percentage was 
observed in the MI imputation results. In addition, the ANN technique 
showed a minor increase in the R2 value when the missing proportion 
was 10 %. Similarly, the KGE values were reported to be lower for 
majority of the cases of missing proportions as well as the types of 
imputation technique. On top of that, it was evident that there were 
substantial differences in the KGE value for the SVR and MR techniques 
when the missing proportion was at 50 %. Also, it was inspected that the 
higher the stipulated missing proportion, the poorer the missing data 
imputation performances. This was reflected by the increased error 
metrics and declined R2 and KGE values as the missing proportion 
increased. 

Figs. 9–12 depicted the summarized performance measures 

Table 12 
Missing data imputation results for 50% missing proportion (ANN) under the SI 
regime.  

Number of Hidden Nodes MAE RMSE R2 KGE 
1  0.000733  0.001240  0.520683  0.453899 
2  0.000721  0.001230  0.528905  0.452593 
3  0.000677  0.001163  0.579600  0.503165 
4  0.000626  0.001136  0.598677  0.547326 
5  0.000609  0.001114  0.612906  0.561521 
6  0.000619  0.001129  0.603464  0.550496 
7  0.000604  0.001078  0.637705  0.585148 
8  0.000605  0.001091  0.628832  0.561462 
9  0.000574  0.001036  0.665606  0.614285 
10  0.000602  0.001065  0.646686  0.580699 
11  0.000598  0.001056  0.652570  0.584719 
12  0.000609  0.001053  0.654744  0.624656 
13  0.000595  0.001064  0.647025  0.585714 
14  0.000581  0.001066  0.648297  0.665640 
15  0.000563  0.001015  0.678511  0.628115  

Table 13 
Missing data imputation results for 50% missing proportion under the SI regime.  

Missing Data Imputation 
Technique 

MAE RMSE R2 KGE 

k-NN  0.001087  0.001777  0.047152  −0.271489 
SVR  0.000551  0.001118  0.617921  0.457485 
MR  0.001160  0.001680  0.167987  0.139492 
ANN (4–14-1)  0.000581  0.001066  0.648297  0.665640  
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Fig. 5. Scatterplots of imputed against observed missing data values of the best ANN under different missing proportion.  
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Fig. 6. Scatterplots of imputed against observed missing data values of SVR under different missing proportion.  
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Fig. 7. Scatterplots of imputed against observed missing data values of MR under different missing proportion.  
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Fig. 8. Scatterplots of imputed against observed missing data values of k-NN under different missing proportion.  
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respectively under the results comparison between the SI and MI re-
gimes across all missing proportions. The MR imputation technique (in 
yellow) has the most undesirable results with the highest value across all 
missing proportions by comparing and contrasting the MAE metrics 
between the SI and MI regimes (Fig. 9). The k-NN (in red) has slightly 
lower MAE on the overall when compared to the MR. On the contrary, 
the ANN technique (in green) showed highly satisfactory results with 
significantly lower MAE compared to the MR and k-NN techniques. The 
MAE yieled from the ANN was comparable with the SVR technique (in 
blue) with minor differences. In brief, the lower MAE exhibited by the 
SVR and ANN techniques indicated smaller absolute differences be-
tween the imputed and observed missing data values. 

Similarly, the comparison of SI and MI results based on the RMSE 
metric in Fig. 10 suggested that the ANN and SVR were the most 
desirable missing data imputation techniques as both techniques yielded 
the lowest RMSE across all missing proportions for both SI and MI re-
gimes. The relatively smaller RMSE indicated that the average magni-
tude of the differences between imputed values and observed values 

have smaller deviations, implying a higher accuracy and better overall 
imputation performance. For the ANN technique, the overall RMSE 
values were seen to be greater for a lower missing proportion (10 % and 
20 %) but smaller for higher missing proportion (30 %, 40 %, and 50 %) 
when compared to the SVR. In addition, there was a significant differ-
ence between the RMSE values of ANN and SVR in the MI regime. When 
the missing proportion was set at 10 %, the RMSE of the SVR was 
comparatively lower than the ANN. On the contrary, the RMSE of the 
SVR was comparatively higher than the ANN when the missing pro-
portion was set as 50 %. The phenomenon suggested that the ANN was 
abel to provide more accurate imputation results although the missing 
proportion was high whereas the higher accuracy exhibited by the SVR 
technique was constrained by the missing data proportion. 

The compared coefficient of determination, R2 values as illustrated 
in Fig. 11 has again confirmed the distinctive ability of the ANN and SVR 
imputation techniques for missing data across all missing proportions. 
There were minor discrepancies between the values for ANN and SVR 
except for the case where the stipulated missing proportion was 50 %. 

Table 14 
Missing data imputation results for 10% missing proportion under the MI regime.  

Missing Data Imputation Technique – Missing Percentage MAE RMSE R2 KGE 
SI MI SI MI SI MI SI MI 

k-NN (10 %)  0.001025  0.001167  0.001409  0.001515  0.000001  0.013691  −0.396031  −0.380688 
SVR (10 %)  0.000454  0.000546  0.000649  0.000661  0.782048  0.776147  0.660030  0.572782 
MR (10 %)  0.001017  0.001092  0.001335  0.001413  0.157921  0.157919  0.187814  0.198678 
ANN(10 %)  0.000500  0.000607  0.000682  0.000836  0.756698  0.763547  0.789241  0.728016 
k-NN (20 %)  0.001036  0.001104  0.001453  0.001491  0.040873  0.044134  −0.266534  −0.295501 
SVR (20 %)  0.000469  0.000516  0.000744  0.000792  0.718325  0.712380  0.648367  0.649496 
MR (20 %)  0.001027  0.001075  0.001354  0.001402  0.157044  0.156415  0.211024  0.229867 
ANN (20 %)  0.000523  0.000538  0.000771  0.000780  0.701544  0.707102  0.745460  0.759609 
k-NN (30 %)  0.001012  0.001123  0.001480  0.001543  0.004297  0.020080  −0.360414  −0.357956 
SVR (30 %)  0.000494  0.000592  0.000770  0.000880  0.733351  0.726479  0.631397  0.555964 
MR (30 %)  0.001055  0.001148  0.001397  0.001493  0.178645  0.178511  0.206801  0.199345 
ANN (30 %)  0.000551  0.000558  0.000755  0.000823  0.743228  0.716493  0.779721  0.747770 
k-NN (40 %)  0.001058  0.001123  0.001623  0.001647  0.009222  0.022097  −0.346660  −0.343940 
SVR (40 %)  0.000524  0.000588  0.000893  0.000958  0.704345  0.694568  0.563332  0.557826 
MR (40 %)  0.001112  0.001182  0.001537  0.001592  0.174784  0.173684  0.180469  0.197149 
ANN (40 %)  0.000595  0.000617  0.000882  0.000987  0.707401  0.679630  0.718822  0.681925 
k-NN (50 %)  0.001087  0.001253  0.001777  0.001861  0.047152  0.052643  −0.271489  −0.333830 
SVR (50 %)  0.000551  0.000775  0.001118  0.001349  0.617921  0.610742  0.457485  0.255491 
MR (50 %)  0.001160  0.001372  0.001680  0.001893  0.167987  0.166821  0.139492  0.045922 
ANN (50 %)  0.000595  0.000677  0.001064  0.001168  0.647025  0.637247  0.585714  0.577463  

Fig. 9. Results comparison based on the MAE metric.  
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The larger value of R2 for the imputation results of ANN under both the 
SI and MI regimes indicated that the ANN was more capable in imputing 
missing data of larger missing proportions compared to the SVR tech-
nique. In other words, both the ANN and SVR had shown good perfor-
mance in capturing larger proportion of the observed data variation with 
high accuracy. The imputation performance was relatively lower for the 
MR technique as it was able to attain small values of R2. Lastly, the k-NN 
technique yielded the worst imputation performance with the lowest R2 

reported across all missing proportions for both the SI and MI regimes. It 
was expected to have a decreasing trend for the R2 as the missing pro-
portion increased. The random fluctuation in the R2 for the k-NN and MR 
imputation techniques further suggested that their imputation perfor-
mances were not consistent with the missing proportion. In short, the 
ANN and SVR were evidently reliable imputation techniques based on 
the distinguishable results of R2. 

Based on the illustration in Fig. 12, the KGE value was the highest for 

the ANN imputation technique, followed by the SVR, MR, and the k-NN 
techniques. Evidently, the KGE for the k-NN was the least across all 
missing proportions for both the SI and MI regimes. Such imputation 
results were undesirable as the yielded KGE were all negative values. 
The overall KGE exhibited a declining trend as the missing proportion 
increased except for the SVR and k-NN techniques. The fluctuation in the 
KGE values across the increased missing proportion suggested that the 
SVR and k-NN were not able to provide consistent imputation perfor-
mances. With the highest KGE values and all above 0.5, the ANN 
exhibited remarkable imputation performance across all missing pro-
portions as well as in both SI and MI regimes. Although the SVR 
managed to produce satisfactory KGE values in most cases under the SI 
regime, the results under the MI regime revealed that the SVR was less 
reliable due to the discounted KGE values and a huge declination in the 
value from 40 % to 50 % missing proportion. The lowest KGE value was 
between 0.2 and 0.3 which was lower than 0.5. The MR showed 

Fig. 10. Results comparison based on the RMSE metric.  

Fig. 11. Results comparison based on the R2 metric.  
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positively small and consistent values of approximately 0.2 except for 
the case of 50 % missing proportion under the MI regime. The results 
suggested that MR has shown some, but highly limited imputation 
performance, with low consistency. 

In essence, the different performance measures aided in under-
standing how well the imputation techniques estimated the missing data 
values from different perspectives. Firstly, the ANN and SVR imputation 
techniques were able to secure low values of MAE and RMSE. The low 
error metrics signified that the imputed values by the ANN and SVR 
closely aligned with the actual observed data values, showing high ac-
curacy (low error). However, the MR and k-NN techniques provided 
comparatively larger MAE and RMSE values, showing lower imputation 
accuracy (higher error). Notably, the selected best ANN models from the 
SI regime, which the identical layout setting were applied to the MI 
regime were capable in producing highly satisfactory imputation results 
with significant values in both R2 and KGE values, all at least 0.5 in all 
cases of missing proportions. 

Although when the missing proportion was large, the ANN imputa-
tion technique was exceptionally able to provide promising imputation 
results of low error metrics as well as KGE and R2 values of at least 0.5. 
The concurrently high values of R2 and KGE signified the distinct ability 
of the ANN in capturing the variability within the missing data during 
imputation. In particular, the high KGE could be interpreted by the 
successful imputation results that leveraged the three performance as-
pects, which are the correlation, variability bias, and mean bias that are 
considered by the KGE when the imputation results were examined. 

In general, the KGE provided a more comprehensive assessment to-
wards the imputation performance as compared to the R2 although the 
maximum value of both performance measures are 1 (indicating a per-
fect score). Hence, it is not surprising that an imputation technique 
would have higher R2 but lower KGE. From this perspective, the ANN 
outperformed the SVR technique because the produced R2 results were 
considered to be close to the value of KGE for the ANN but not for the 
SVR. Based on the analyzed imputation results, the SVR tended to pro-
duced higher R2 values but traded with a greatly discounted KGE value 
compared to the R2 values. This indicated that the SVR has limited 

ability in addressing the variability bias and mean bias when imputing 
the missing data values for the fine sediment data. 

Collectively, most of the imputation results under the MI regime in 
this study yielded a slightly lower performance than the SI regime based 
on the imputation performance measures. This was due to the process of 
the MI regime which involved in generating multiple sets of imputed 
data. Subsequently, randomness or variability were introduced into the 
MI processes to account for the missing data uncertainty for better 
generalization of the results. The inherent variability within the imputed 
data resulted in the larger discrepancies between the imputed and 
observed data values which ultimately leaded to the slight lower 
imputation performances. On the contrary, imputations under the SI 
regime has slightly better performances as only one imputed data value 
was generated. Consequently, this leaded to the potentiality of the 
imputation process to fail in capturing the underlying missing data un-
certainties. The exhibited lower apparent error was traded with a cos of 
underestimated variability associated with the imputed missing data 
values. 

Nevertheless, the differences between the performance measures 
were relatively small for the imputed results of the ANN across the 
different missing data proportions. This reflects that the ANN imputa-
tion technique is reliable as it produced consistent imputation perfor-
mance. Conversely, the SVR technique exhibited less reliable 
performance when it was compared between the SI and MI regimes. 
Specifically, there was a notable fall in the KGE value in the SVR 
imputation results when the missing proportion was specified at 50 %. 

Moreover, the MR imputation technique showed insignificant 
imputation results. The highly evaluated error metrics but low R2 and 
KGE values across all different missing proportions as well as the SI and 
MI regimes confirmed that the MR was not capable of capable of 
capturing the complex dynamics of fine sediment within the dataset, 
thus producing inaccurate imputation results. Likewise, the k-NN has 
also failed to provide plausible imputation results as it exhibited the 
poorest performance with the largest error metrics, very low R2 values, 
and undesirably negative KGE values. Similaly, it is highly possible that 
the k-NN failed in producing sensible imputation results due to the 

Fig. 12. Results comparison based on the KGE metric.  
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sophisticated underyling dynamics within the sedimentation data. Since 
the k-NN imputation mechanism was based on similarity between the 
targeted missing data and its surrounding k most similar instances, it 
would be the case that there were no obvious groups of similar obser-
vations for the k-NN to successfully impute the missing data accurately. 

To rank the overall performances based on the four imputation 
techniques implemented in this study, it was evident that the ANN had 
the best imputation results, followed by the SVR, the MR, and then the k- 
NN. Firstly, for the missing proportion of 10 %, the ANN under the SI 
regime with layout setting 4–13-1 showed the overall best imputation 
performance with the lowest error metrics of 0.000500 in the MAE and 
0.000682 in the RMSE, and highest KGE of about 79 %. However, the 
highest R2 was resulted from the SVR technique with a value of 
approximately 78 %. Secondly, for the missing proportion of 20 %, the 
4–13-1 ANN has the best imputation results. The SI and MI regime both 
have negligible differences in their error metrics. Both had the lowest 
value compared to other imputation techniques with an approximate 
value of 0.0005 in the MAE and 0.00077 in the RMSE. The ANN under 
the MI regime returned the best KGE value of 76 %. However, the best R2 

value was held by the SVR technique under the SI regime with a value of 
approximately 72 %. Thirdly, the best imputation performance again 
belonged to the ANN under the SI regime and with layout setting of 
4–14-1 for the 30 % missing proportion. This was associated by the 
lowest RMSE of 0.000755, and highest R2 of 74 % as well as KGE of 78 
%. The lowest MAE was held by the SVR results of 0.000494. For the 40 
% missing proportion, the ANN under the SI regime and with layout 
setting of 4–14-1 exhibited the best performance. It has the lowest RMSE 
of 0.000882, and highest R2 of 71 % as well as KGE of 72 %. However, 
the lowest MAE was attained by the SVR with a value of 0.000524. 
Ultimately, the best performance for the 50 % missing proportion 
belonged to the 4–14-1 ANN under the SI regime, with the lowest RMSE 
of 0.001064, and highest R2 of 65 % as well as KGE of 59 %. In brief, the 
lowest error metrics in this study provided the MAE ranged between 
0.0005 and 0.0006, while the lowest RMSE ranged between 0.00068 
and 0.00011. The maximum R2 ranged between 65 % and 78 % whereas 
the maximum KGE ranged between 59 % and 79 %. The outstanding 
results were comparable to the existing studies that were aforemen-
tioned [18,26,41,42,43,44]. 

4. Conclusions 

Overall, the best imputation performances were exhibited by the 
ANN technique under both SI and MI regimes, for all missing pro-
portions. The corresponding imputation results were consistent between 
two regimes, signifying that the ANN imputation technique was not only 
highly accurate, but highly reliable with good generalization from the 
imputed results. The main goal in this study is to perform a comparative 
analysis on the different imputation techniques. As a results, the ANN 
with such promising results are very appealing especially when the 
missing proportion was specified at high values such as 40 % and 50 %. 
Despite the loss of a huge portion of data, the ANN was able to retain a 
highly satisfactory imputation performance. This was confirmed by the 
significant performance metrics of R2 and KGE which were at least 59 %. 
On top of that, the SVR imputation technique had also shown satisfac-
tory results with some limitations especially in addressing the imputa-
tion bias. Moreover, it was evident the coefficient of determination, R2 

alone could not fully decipher the imputation performance. As such, it 
should be always studied along with other performances metrics such as 
the KGE which was utilized in this study. 

Based on the best superior performance of the ANN imputation 
technique, there are future improvements that could be made to 
enhance the imputation performance. In particular, the best ANN layout 
setting which may not the be the global optimum network design in 
terms of the number of hidden layers and number of nodes within each 
hidden layers. Although the trial and error approach was used to search 
for the best ANN layout setting, the number of hidden layers was 

restricted to a single layer, where the maximum exploration of the op-
timum number of hidden nodes were capped at a maximum number of 
15 number. However, an increased node number increases the overall 
network complexity which then increases the computational complexity 
and the corresponding computational time. Therefore, it would be rec-
ommended that further enhancement on the imputation technique could 
be implemented by extending the current work of methodology. For 
example, the incorporation of hybrid models, ensembled learning al-
gorithms, as well as the integration of metaheuristic optimization al-
gorithms such as the particle swarm optimization (PSO) to boost the 
performance of the existing ANN model. 

Nevertheless, the MI regime was preferred although it may provide 
an increased error metrics. The MI acknowledges and quantifies the 
uncertainty associated with the missing data values. It generates mul-
tiple sets of imputed values, incorporating variability to address 
different possible values. The MI regime was able to impose the genuine 
uncertainty in a comprehensive approach, which cannot be achieved by 
the SI regime. Noneless, this study have yielded insights of the superiror 
imputation performances of the ANN, which is one of the machine 
learning models commonly applied in missing data imputation. The 
study suggested that the ANN could provide highly reliable estimation 
results but researchers were highly recommended to implement hybrid 
techniques which potentially works better than single developed 
models. 
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approaches for imputing missing data into monthly flows series. Rev Ambien Água 
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