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ABSTRACT

The empirical models commonly employed as alternatives for estimating evapotranspiration provide constraints and yield inaccurate results

when applied to Nigeria. This study aims to develop novel empirical models to enhance evapotranspiration (ET0) estimation accuracy in

Nigeria. The coefficients of non-linear equations were optimised using the particle swarm optimisation (PSO) algorithm for the development

of the two new ET0 models for Nigeria, Awhari1 (temperature-based) and Awhari2 (mass transfer-based). ERA5 reanalysis data with a 0.1°� 0.1°

resolution was used. The models were rigorously assessed against the FAO-56 Penman–Monteith method, resulting in Kling–Gupta efficiency

(KGE) and percentage bias (Pbias) values of 0.75, 6.49, and 0.92, 5.67, respectively. The spatial distribution analysis of performance metrics

showed both equations exhibited superior accuracy in estimating ET0 across diverse climatic zones in Nigeria. The incorporation of PSO in

model development, coupled with spatial analysis, highlights the study’s multidimensional approach. The spatial performance of the models

indicates that they can be valuable tools for water resource management, irrigation planning, and sustainable agriculture practices in Nigeria.
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HIGHLIGHTS

• A novel spatial analysis evaluates the performance of the models across various climatic zones.

• Validation against FAO-56 confirms high model accuracy, as evidenced by high KGE and low bias values.

• The research provides valuable insights into water management and sustainable agriculture practices by incorporating PSO optimisation

and spatial analysis.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Water is a precious resource, and efficient water management in agriculture is crucial for sustainable development in agricul-
tural planning (García-Tejero et al. 2011; Zaman et al. 2017). Reference evapotranspiration (ET0) is critical to understanding
crops’ water needs and planning effective irrigation strategies (Bai et al. 2017; Roy et al. 2021; Dong et al. 2024). ET0 models

serve as fundamental tools in irrigation and water resource management and represent the water requirement of well-watered
reference crops, forming the basis for calculating cropwater requirements and climate change. Accurate ET0 estimation enables
water resource managers to optimise irrigation scheduling, conserve water, and enhance agricultural productivity. In regions
like Nigeria, where water management is a recurring challenge, precise ET0 models are essential for sustainable water use.

Despite the global development of various empirical ET0 models, none have been specifically tailored to the unique climatic
conditions inNigeria. This gap in the literature underscores the need for region-specificmodels that can account for the intricacies
of Nigeria’s diverse climate. Empirical models, which rely on observed data and are often more adaptable to local conditions,

become paramount in addressing this gap and providing accurate ET0 estimates for specific needs in Nigeria.
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Many empirical models have been developed worldwide to estimate ET0, often using readily available meteorological data,

e.g., temperature, wind speed, and relative humidity (Trabert 1896; Meyer 1926; Linacre 1977; Ahooghalandari et al. 2016;
Muhammad et al. 2022). While these models offer valuable tools, their accuracy can be significantly limited when applied in
regions with unique climatic characteristics. Nigeria has a diverse landscape, ranging from humid coastal regions to arid

northern savannas, each experiencing distinct rainfall patterns, wind speed, temperature regimes, and solar radiation profiles
(Oguntunde et al. 2011; Shiru et al. 2020; Oloyede et al. 2022; Animashaun et al. 2023). This climatic heterogeneity chal-
lenges existing global ET0 models, often leading to inaccurate estimates within the country.

The consequences of inaccurate ET0 estimation can be substantial for irrigation, water resource management, and food

security (Bashir et al. 2023; Awhari et al. 2024). Overestimating ET0 can lead to excessive irrigation, wasting precious
water resources, and potentially damaging soil through salinisation (Ankindawa & Awhari 2010; Al-Bakri et al. 2022). Con-
versely, underestimating ET0 can cause water deficits, endanger crop yields, and contribute to food insecurity (Nikolaou et al.
2020). Therefore, developing dependable and region-specific ET0 models for the Nigerian climate is crucial for optimising
water management strategies and ensuring sustainable agricultural practices.

Numerous ET0 models have been developed using temperature, solar radiation, wind speed, and various combinations to

accurately predict evapotranspiration rates from surfaces such as soil, water, and vegetation canopies (Huang et al. 2021). The
FAO-PM equation is widely recognised as the most effective approach for estimating ET0 across various climatic conditions
(Hernández-Bedolla et al. 2023; Wu et al. 2023). FAO-PM estimation is resource-intensive, and the necessary data are not

readily accessible in underdeveloped countries like Nigeria. An inherent constraint in the widespread use of the universally
recognised FAO-PM approach is the lack of access to the extensive data it requires at multiple meteorological stations, com-
pounded by concerns over the quality of these data points.

This study aimed not to develop a novel approach that substitutes FAO-PM but to devise a straightforward method based on

temperature and mass transfer-based models. This method relies solely on maximum temperature, wind speed, and relative
humidity, making it suitable for areas where other climatic parameters are unavailable at the desired level of detail. The FAO-
PM was used as the reference for formulating these novel methodologies. This research evaluated the model’s effectiveness in
accurately representing the spatial distribution of the performance metrics and compared it with FAO-PM as reference ET0.

2. MATERIAL AND METHODS

2.1. Study area

Nigeria, situated in West Africa between latitudes 4°300N and 14°300N and longitudes 3°150E and 14°450E, boasts a geographi-

cal tapestry defined by diverse ecological zones. Benin bounds it to the west, Chad and Cameroon to the east, and Niger to the
north, Nigeria’s borders encompass a nation of varied topography, including plains, plateaus, and mountains, with an
elevation of approximately 2,419 m, as shown in Figure 1. The ecological richness of Nigeria is manifested in distinct

zones that significantly influence its climate and biodiversity. The southern rainforest zone features an abundance of veg-
etation and greenery in the rainforest region and high precipitation levels. In the central Savannah zone, including
grasslands, wet and dry seasons facilitate agricultural activities. The northern Sahel zone presents semi-arid conditions
with sparse vegetation, posing challenges for agriculture. Nigeria experiences a tropical climate, marked by a rainy season

from April to October, notably in the rainforest and Savannah zones, and a dry season from November to March, affecting
the entire nation. The harmattan, a dry and dusty trade wind, characterises the dry season, impacting visibility and lowering
temperatures. Mean temperatures fluctuate across the country, with coastal areas having temperatures between 25 and 35 °C,

while the northern interior may experience a range of 21–40 °C. Precipitation levels follow a similar pattern, with the
southern regions receiving more rainfall, with average annual precipitation averages of 1,900 mm. The arid north receives
an average scarce rainfall of around 400 mm. Daily air temperature, wind speed, and relative humidity data for 72 years (Jan-

uary 1950–December 2023) across Nigeria were retrieved from the ERA5 reanalysis dataset (0.1°� 0.1° resolution) (https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab¼form) and were used to develop the models. Figure 2
illustrates the stepwise methodology for developing the temperature and mass transfer-based models.

2.2. Reference evapotranspiration equation

This study relied on the widely recognised FAO-PM model as the reference standard for ET0 estimation. The accuracy of the
FAO-PMmodels is widely accepted globally, and many researchers have used it as a reference in developing models and their
suitability in different climate conditions (Ahooghalandari et al. 2016; Shiri 2017; Emeka et al. 2021). The FAO-PM model is
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mathematically represented by the following equation:

ET0 ¼
0:408D(Rn �G)þ g

900
T þ 273

� �
u2(es � ea)

Dþ g(1þ 0:34u2)
(1)

where Δ denotes the saturation vapour pressure curve gradient in kPa/°C. Rn refers to the net radiation in mm/day. G rep-
resents the density of soil heat flow (mm/day), and Ta is the mean air temperature (°C). The variable ‘ea’ represents the
current vapour pressure in kPa, whereas ‘es’ represents the saturation vapour pressure in kPa. The variable ‘u2’ represents
the wind speed (m/s) at a height of 2 m, which is derived using the ‘u10’ data via the wind profile relationship. The psychro-
metric constant γ is measured in kPa/°C, the surface resistance rs is measured in s/m, and the latent heat of vaporisation λ is
measured in MJ/kg.

This study first assessed 31 empirical models, as shown in Table 1, consisting of 20 models based on temperature and 11

models based on mass transfer. Kling–Gupta efficiency (KGE) (Gupta & Kling 2011) and percentage bias (Pbias) were used
for this purpose. KGE measures correlation, variability ratio, and mean bias between two datasets and is considered a better
metric for assessing model performance. Pbias provides the mean bias in ET0 estimation and thus serves as a simple measure

of model deviation from the observation.
Ivanov and World Meteorological Organization (WMO) performed better among these models based on their KGE values,

as shown in Table 1. These models were the main focus of our investigation. A novel temperature technique that utilises

Figure 1 | The location of Nigeria and the spatial distribution of its elevation.
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maximum temperature and relative humidity to determine ET0 was derived. Ivanov generally performs accurately across the

specified region among the temperature-based models. There is a need to build a straightforward temperature approach that
can effectively work at all locations throughout the nation. As a result, a novel empirical temperature equation using maxi-
mum temperature and relative humidity was developed. In developing a new technique, the aerodynamic term was calculated

based on the mean vapour pressure deficit (Dav). It is suggested that Dav may be estimated as 1�RH/100, where RH rep-
resents the relative humidity. ET0 is closely associated with extra-terrestrial radiation (Ahooghalandari et al. 2016). The new
equations were derived by integrating the expression (1�RH/100) with the maximum temperature.

The mass transfer method is one of the oldest and simplest methods because of its reasonable evaporation accuracy (Singh

& Xu 1997; El-Mahdy et al. 2021). The mass transfer-based models are built around the concept of Dalton’s equation, which
is the free water surface and is expressed as follows:

ET0 ¼ C(es � ea) (2)

ET0 represents the evaporation of water from the free surface, es represents the saturated vapour pressure at the water surface
temperature, ea represents the vapour pressure in the air, and C represents the aerodynamic conductivity (Singh & Xu 1997),

which is influenced by factors, such as horizontal wind speed, surface roughness, and thermally generated turbulence, as pre-
sented in the following equation:

ET ¼ f(u)(es � ea) (3)

Figure 2 | Step-by-step methodology flowchart of the study.
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Table 1 | Reference evapotranspiration model methods

No. Model Inputs Equation KGE Pbias References

Temperature-based models

1 Linacre T

ET0 ¼
700(T + 0:006z)

100� L
þ 15(T � Td)

80� T

0.092 61.0 Linacre (1977)

2 Hamon T ET0 ¼ 0:165LdRHOSAT�KPEC �47.00 �89.4 Hamon (1963)

3 FAO-Blaney T ET0 ¼ p(0:46T þ 8:13) �5,199.18 �11,031.0 Dooreng & Pruitt (1977)

4 Kharrufa T ET0 ¼ 0:34pT1:3 �0.48 86.6 Kharrufa (1985)

5 Ahooghalandari-1 T, RH
ET0 ¼ 0:252

Ra

g

� �
þ 0:221Tmean 1� RHmean

100

� �
0.001 61.5 Ahooghalandari et al. (2016)

6 Ahooghalandari-2 T, RH
ET0 ¼ 0:29

Ra

g

� �
þ 0:15Tmax 1� RHmean

100

� � �0.10 68.1 Ahooghalandari et al. (2016)

7 Ivanov T, RH ET0 ¼ 0:00006(25þ T)2(100� RH) 0.33 54.2 Romanenko (1961)

8 Papadakis T, RH ET0 ¼ 2:5(ema � ea) 0.19 73.8 Papadakis (1965)

9 Hargreaves –
Samani

T, Tmax, Tmin, Ra ET0 ¼ (0:0023)� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax þ Tmin

p
(T þ 17:8)�Ra �4.30�

106
�9.20�
106

Hargreaves & Samani
(1985)

10 Baier-Robertson T, Tmax, Tmin, Ra ET0 ¼ 0:109
Ra

l

� �
þ 0:157�Tmax þ 0:158 (Tmax � Tmin)

�537.1 �1,072.7 Baier & Robert (1965)

11 Modified Baier T, Tmax, Tmin, Ra,
RH

ET0 ¼ 0:1844(Tmax � Tmin)þ 0:1136Ra(es � ea)� 0:0039Tmax � 4:04 8.77� 105 1.93� 106 Baier (1971)

12 Modified H-S1 T, Tmax, Tmin, Ra ET0 ¼ 0:408�0:003�(T þ 20)TD0:4Ra 1.14� 106 �2.45�
106

Droogers & Allen (2002)

13 Modified H-S2 T, Tmax, Tmin, Ra ET0 ¼ 0:408�0:0025�(T þ 16:8)TD0:5Ra �4.67�
105

1� 108 Droogers & Allen (2002)

14 Trajkovic T, Tmax, Tmin, Ra ET0 ¼ (0:0023Ra)TD
0:424(T þ 17:8) �371.43 �813.5 Trajkovic (2007)

15 Ravazzani T, Tmax, Tmin, Ra ET0 ¼ (0:817þ 0:00023Ra)(TD
0:5)(T þ 17:8) �9.39�

107
�2.01�
107

Ravazzani et al. (2012)

16 Schendel T, RH
ET0 ¼ 16

T
RH

� � �1.64 163.7 Schendel (1967)

17 Dorji T, Tmax, Tmin, Ra ET0 ¼ 0:002�0:408Ra(T þ 33:9)(Tmax � Tmin)
0:296 �332.22 �695.8 Dorji et al. (2016)

18 Berti T, Tmax, Tmin, Ra ET0 ¼ 0:00193Ra(T þ 17:8)(Tmax � Tmin)
0:517 �1,031.3 �2,259.8 Berti et al. (2014))

19 Talee and Tabari T, Tmax, Tmin, R ET0 ¼ [0:0031�Ra(T þ 17:8)(Tmax � Tmin)
0:5]=l �1,817.3 �2,706.3 Tabari & Talaee (2011)

20 Drogers and Allen T, Tmax, Tmin, R ET0 ¼ [0:003�Ra(T þ 20)(Tmax � Tmin)
0:4]=l �1,336.9 �2,903.2 Droogers & Allen (2002)

Mass transfer-based models

21 Mahringer T, RH, u ET0 ¼ (0: 15072)
ffiffiffiffiffiffiffiffiffiffi
3:6u

p
(es � ea) 0.74 18.96 Mahringer (1970)

(Continued.)
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Table 1 | Continued

No. Model Inputs Equation KGE Pbias References

22 Penman T, RH, u
ET0 ¼ 2:625þ 0:000479

u

� �
(es � ea)

0.72 �10.17 Penman (1948)

23 Rohwer-2 T, RH, u ET0 ¼ (3:3þ 0:891(u))(es � ea) 0.20 59.62 Rohwer (1931)

24 Szasz T, RH, u

ET0 ¼ 0:00536(T þ 21)2 1� RH
100

� �2
3 f(u)

f(u) ¼ (0:0519u)þ 0:905

0.37 55.16 Szasz (1973)

25 Trabert T, RH, u ET0 ¼ (0:3075)
ffiffiffi
u

p
(es � ea) 0.62 27.92 Trabert (1896)

26 WMO RH, u ET0 ¼ 0:1298þ 0:0934(u)(es � ea) 0.89 6.63 WMO et al. (1966)

27 Albrecht T, RH, u ET0 ¼ 0:1005þ 0:297(u)(es � ea) �0.33 90.10 Albrecht (1950)

28 Meyer T, RH, u ET0 ¼ (0:375þ 0:05026(u))(es � ea) 0.28 54.67 Meyer (1926)

29 Brockamp–Wenner T, RH, u ET0 ¼ 0:543(u0:456)(es � ea) �0.69 121.70 Brockamp & Wenner (1963)

30 Fitzgerald T, RH, u ET0 ¼ 0:44þ 0:19u (es � ea) �3.62�
105

7.69� 105 FitzGerald (1886)

31 Saif RH, u ET0 ¼ (0:37þ 0:72u)(es � ea) �6.38�
105

1.34� 106 Islam et al. (2020)

Note: ET0 is the reference evapotranspiration (mm/day), ND is the length of time interval (day), and f is a correction factor that varies with the average annual temperature (Ta, 23.5 °C, F¼ 0.01). Ra is the extra-terrestrial radiation (MJ/

m2/day), u is the wind speed at 2 m (m/s), RH is the relative humidity (%), T, Tmax, Tmin are average, maximum, and minimum air temperature (°C), Td is the daily dewpoint air temperature in (°C), TD is the difference between the Tmax

and Tmin (°C), ema is the saturation vapour pressure at the monthly mean daily maximum temperature (kPa), and ea and es represent actual and saturation vapour pressure (kPa), except for Penman, Papadakis, and Rohwer (kPa),

RHOSAT is the saturated vapour density (g/m3), KPEC is a calibration coefficient (1.2), p is a constant having two values (0.27 and 0.28), f (u) denotes a function of wind speed, L is the latitude at each point (degree), z is the elevation

(m), λ represents latent heat of evaporation (MJ/kg), Δ is the slope of saturation vapour pressure–temperature curve (kPa/°C), and γ is the psychometric constant (kPa/°C).
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where f (u) represents the wind function, which depends on observation heights, wind, and vapour pressure. This study devel-

oped a new, simple empirical mass transfer model based on established principles and techniques.

2.3. Models development

The two models, Awhari1 (temperature-based) and Awhari2 (mass transfer-based), were developed through curve-fitting
techniques and particle swarm optimisation (PSO). These equations evaluate the fitness function for ET0 estimation,

incorporating varying ‘a’ and ‘b’ values and discrepancies between simulated and observed ET0 values. To optimise
model performance, we implemented PSO, a technique that iteratively refines the objective function for each particle.
This involves the concurrent execution of both the ET0 model and the simulated evapotranspiration model, with dynamic
adjustments to each particle’s velocity and position based on historical best positions and those discovered within the

swarm. The optimised models, identified through personal and global best positions, underwent rigorous evaluation
by comparing simulated and observed ET0. The two constants, a and b, were set with options and bounds for coefficients
[a, b], lb¼ lower bounds for coefficients [a, b], ub¼ upper bounds for coefficients, and max iterations of 100. The two

constant values for the temperature and mass transfer-based models, a and b, were calculated using PSO over the
years 1950–2022.

2.3. Theory of PSO

The PSO is a metaheuristic optimisation algorithm inspired by the social behaviour of birds flocking or fish schooling. PSO

aims to iteratively improve a population of potential solutions by simulating the behaviour of particles in a multidimensional
search space. The following are the steps, as illustrated in Figure 3.

i. Initialisation: The PSO algorithm begins by creating a swarm of particles in a defined search space. Each particle represents

a potential solution to the optimisation problem, equipped with randomly assigned positions and velocities.

Figure 3 | Illustration of the PSO technique.
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ii. Fitness evaluation: The performance of each particle is evaluated using a predefined fitness function that quantifies how

well its position conforms to the optimal solution. This feature is key in guiding the search towards the desired regions.
iii. Velocity update: Particle movement is influenced by three key factors:

• Inertia: This component encourages continued exploration by maintaining momentum in the current direction.
• Cognitive component: Each particle remembers its best-known position (personal best) and is drawn towards it, pro-

moting the exploitation of previously identified promising areas.
• Social component: Particles also possess an awareness of the swarm’s best position (global best) and are attracted

towards it, facilitating exploration of promising regions identified by others.

iv. Position update: Based on their updated velocities, particles move within the search space, effectively exploring neighbour-
ing regions.

v. Personal and global best update: Upon reaching their new positions, particles compare them to their respective personal

best positions. If an improvement is found, the personal best is updated. The global best position is also constantly tracked
and updated if any particle discovers a superior solution.

vi. Termination: The iterative process continues until a predefined termination criterion is met. This could include reaching a

maximum number of iterations, achieving a satisfactory solution quality, or exhausting a set computational budget.
vii. Final solution: The best-known position discovered by any particle in the swarm represents the optimal or near-optimal

solution to the optimisation problem.

3. RESULTS

3.1. Development of Awhari1 and Awhari2 models

The model development using PSO involved optimising the coefficients of two non-linear equations using termination criteria

based on temperature and mass transfer models. The equations optimised to develop the new models are:

ET0 ¼ a(1� bRH)Tmax (4)

ET0 ¼ aþ b(u)(es � ea) (5)

where a and b are the coefficients optimised with u, es, ea, RH, and Tmax. Equation (4) is a temperature-based model, and

Equation (5) is a mass transfer-based model. The PSO algorithm finds optimal values of a and b to fit the observed data.
The PSO algorithm was executed for 100 iterations with predefined lower and upper bounds to optimise the coefficients a
and b. During the evolution process, the PSO algorithm iteratively updated the positions of particles in the search space,
aiming to minimise or maximise the objective function (Kohler et al. 2019; Gad 2022), which is KGE between the model

simulated and observed ET0. The PSO algorithm iteratively adjusted the coefficients a and b for each equation within the
specified bounds, optimising them to fit the data best. The termination criteria guided the algorithm to stop once satisfactory
convergence was achieved. This ensures that the algorithm terminates when further iterations are unlikely to improve the

solutions significantly. The process produces two equations:

Awhari1: ET0 ¼ 0:3648 (1� 0:0104RH)Tmax (6)

Awhari2: ET0 ¼ 0:6337þ 1:6018(u)(es � ea) (7)

Equation (6) is a temperature-based model termed as ‘Awhari1’ and Equation (7) is the mass transfer-based model termed as
‘Awhari2’.

3.2. Models performance

3.2.1. Temperature-based Awhari1 model

Figure 4(a)–4(c) depicts the spatial distribution of the ET0 estimated using the Awhari1, Ivanov, and FAO-PM models. The
figures reveal that the Awhari1 model (Figure 4(c)) could accurately replicate the spatial patterns of ET0 values exhibited
by the FAO-PM models, outperforming the Ivanov model (Figure 4(b)). The ET0 estimated by Awhari1 and PM ranged

between 0 and 10 mm/day, except in the Lake Chad basin, where FAO-PM estimated ET0 had 11–13 mm/day. The
Ivanov had higher ET0 in the northern part, with range values of 6–14 mm/day and a higher ET0 of 14 mm/day at the
Lake Chad basin.
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Figure 5 shows the spatial distribution of KGE and Pbias values for the Ivanov and newly developed Awhari1 models com-
pared with the FAO-56 PMmodels across all grid cells. Ivanov’s KGE ranges from �1.65 to 0.75 with a mean of 0.33, while its
Pbias ranges from �6.30 to 205.89 with a mean of 54.20 in Table 2. Awhari1 showed KGE ranging from �0.26 to 0.89 with a
mean of 0.75 and Pbias between 0.47 and 1.82 with a mean of 0.48. This excellent performance by the new models is evident

in 98% of the grid cells, surpassing the Ivanov model, which only performs well in the northern region.
The boxplots of daily ET0 estimated by the Awhari1, Ivanov, and FAO-56 PM models in the study area are shown in

Figure 6(a). Similarly, the new model provided the ET0 distribution most similar to the PM model, with a median value of

4.6 mm/day, while Ivanov has 5.2 mm/day.
The probability density function (PDF) of the estimated ET0 using Awhari1, Ivanov, and PM models for the whole study

region is shown in Figure 6(b). PM and Awhari1 showed peak densities, ET0 of 0.18 and 2.3 mm/day, and median ET0

values of 4.6 mm/day, respectively. Compared with the PM ET0, Ivanov exhibits a lower peak density of 0.14 and a slightly
lower median ET0 of 4.4 mm/day, suggesting a tendency to underestimate ET0. The tail behaviour of PM ET0 towards tails
gradually fades towards zero, reflecting the decreasing probability of extreme ET0 values and the Awharil1 model. The shorter
left tail implies a lower probability of underestimating extreme ET0 events. The Ivanov model’s longer right tail suggests a

higher chance of overestimating extreme ET0 events.

3.2.2. Mass transfer-based Awhari2 model

Figure 7(a)–7(c) presents a spatial distribution of potential evapotranspiration (PET) estimates across the grid cell. Awhari2

and PM estimated ET0 ranged between 0 and 10 mm/day across all grid cells, except for the Lake Chad basin, where the
WMO and Awhari2 exhibit slightly higher ET0 (11–13 mm/day). Notably, the WMO displays a greater spatial variation in
ET0, reaching a maximum of 11 mm/day in the northwestern and Benue basins.

Figure 4 | Spatial distribution of ET0 (mm/day) estimated using (a) PM, (b) Ivanov, and (c) Awhari1 model.
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Figure 8 shows the spatial distribution of KGE and Pbias for the WMO and Awhari2 models compared with the FAO-56
PM model. WMO shows KGE ranging from 0.65 to 0.92 (mean 0.89) and Pbias ranging from �11.12 to 20.90 (mean �6.63).
Awhari2 exhibits better performance, with KGE ranging from 0.76 to 0.99 (mean 0.92) and Pbias between 0.010 and 0.95

(mean 5.67) in Table 2. The Awhari2 model performed excellently in all the grid cells, with absolute performance in the
southern part of the country. KGE values are not less than 0.95 in the region.

The boxplots of daily ET0 estimated by the Awhari2, WMO, and PM models are shown in Figure 9(a). The Awhari2 model

provided the most similar ET0 distribution as the PMmodel, with a median value of 4.6 mm/day, while WMO underestimated
ET0 by 4.4 mm/day.

The PDF of the ET0 estimated using PM, WMO, and Awhari2 models for the whole study region is shown in Figure 9(b).
PM and Awhari2 peaked at 0.17 and 0.16 and ET0 of 2.6 mm/day and median values of 4.6 mm/day for both the PM and the

models. WMO exhibits a higher peak density at 0.2. The tail behaviour of the Awharil2 model’s longer left tail implies a higher
probability of overestimating extreme ET0 events. The WMO model’s shorter right tail suggests a higher chance of underes-
timating extreme ET0 events.

4. DISCUSSION

The present study developed empirical PSO models for reliable ET0 estimation using the ERA5 reanalysis temperature, wind

speed, and relative humidity data. Several studies have endorsed the use of ERA5 reanalysis data for investigating the climate
of West Africa (Quagraine et al. 2020; Steinkopf & Engelbrecht 2022; Bodjrenou et al. 2023; Gbode et al. 2023). Compared
with its predecessor, ERA-Interim, ERA5 notably improves in representing various climatic aspects. Quagraine et al. (2020)
demonstrated that ERA5 provides a more accurate depiction of precipitation patterns across West Africa, particularly by cap-
turing crucial interannual variability and regional variations in summer monsoon rainfall. ERA5 also shows reduced biases in
the annual cycle, resulting in a more precise representation of seasonal temperature fluctuations (Gbode et al. 2023). In

Table 2 | Statistical performance of the models against the FAO-PM model in estimating daily ET0

S/No Performance metrics Ivanov WMO Awhari1 Awhari2

1 Pbias 54.20 �6.63 0.48 5.67

2 KGE 0.33 0.89 0.75 0.93

Figure 5 | Spatial distribution of KGE and Pbias % of the Ivanov and Awhari1 methods in estimating ET0.
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addition, ERA5 exhibits improved capabilities in capturing interannual temperature variations (Bodjrenou et al. 2023). ERA5
data have also been found suitable for agricultural study (Araghi et al. 2022). Therefore, the results obtained in this study using

ERA5 reanalysis climate data can be considered reliable.
The comparison of the newly developed models showed higher performance in terms of the statistical indices KGE and

Pbias compared with the existing widely used models. The performance of the models showed considerable and promising

improvement. For example, the newly developed temperature-based Awhari1 shows a mean KGE of 075 and Pbias of 6.49%
compared with the Ivanov with KGE values of 0.33 and Pbias of 54.20%. In contrast, the WMO shows KGE values of 0.89
and Pbias of �6.63, and Awhari2 exhibits even better performance with KGE values of 0.92 and Pbias of 5.67%. This indi-
cates a significant improvement in both the KGE and Pbias and the capability of newly developed models to estimate ET0 in

Nigeria with higher accuracy and less uncertainty. The spatial variability of a model’s parameter development is significant
because it provides an inside look at all the grid points where a model can be calibrated and validated to know it, thereby
addressing the daily percentage bias varies in design irrigation and water resource management for crop production. The

striking comparison that can be made on the performance of an equation can be seen from the spatial point of the observed
and computed daily evaporation. This study brings an insight into the spatial performance of models that can easily be ident-
ified where the Pbias of the models developed can be addressed between the observed values across the grid cell and adjusted

Figure 6 | (a) Boxplot of the ET0 (mm/day) estimated using PM, Ivanov, and Awhari1 models, (b) probability distribution function of the ET0
estimated using PM, Ivanov, and Awhari1 models.
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Figure 7 | Spatial distribution of ET0 (mm/day) estimated using (a) PM, (b) WMO, and (c) Awhari2 model.

Figure 8 | Spatial distribution of KGE and Pbias % of WMO and Awhari2 in estimating ET0.
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to the required values. This means that an acceptance level of confidence can be achieved when transferring the model’s
applicability from one region to another, even within a large region.

PSO is a potent and adaptable optimisation technique because of its global search powers, resilience, and ease of

implementation (Juneja & Nagar 2016; Wang et al. 2018). It is a viable solution for many optimisation issues because of
its unique properties, despite its strengths and shortcomings. It efficiently navigates the search space, avoiding being trapped
in local optima (Gad 2022; Zhang & Kong 2023). This is accomplished by the swarm intelligence process, in which particles

exchange information and draw insights from one another’s achievements, thus avoiding premature settling on less-than-ideal
solutions. PSO tolerates noise and complicated search landscapes, making it appropriate for situations with non-smooth
objective functions or noisy data. It may be easily adjusted for different optimisation issues by parameter modifications or
the inclusion of other processes. PSO is more computationally efficient than other population-based algorithms (Xu et al.
2023; Zhang & Kong 2023). Furthermore, PSO promotes information exchange among particles, accelerating algorithmic
convergence. Population-based approaches are effective for smooth objective functions with well-defined gradients but
may be susceptible to local optima and struggle with noisy functions. In contrast, PSO is more resilient (Gad 2022). This

advantage has contributed to the development of superior ET0 models.
Developing innovative evapotranspiration models in Nigeria might significantly impact agriculture, water resource man-

agement, environmental sustainability, and other areas. Accurate estimation of ET0 is a challenge in Nigeria due to the

Figure 9 | (a) Boxplot of the ET0 (mm/day) estimated using PM, WMO, and Awhari2 models, (b) probability distribution function (PDF) of the
ET0 estimated using PM, WMO, and Awhari2 models.
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unavailability of reliable data on the variables required for its estimation (Adesogan & Sasanya 2023). Enhanced ET0 data

using readily accessible information may guide irrigation strategies, improve water efficiency and minimise waste. This
may result in higher crop yields, enhanced food security, reduced irrigation expenses for farmers, and, ultimately, greater
economic sustainability and profitability. Irrigation water management is a major issue in agricultural development in Nigeria

(Oluniyi & Bala 2021). Localised ET0 models include area climate and soil variables to help farmers make irrigation choices
tailored to their crops and localities. Drought significantly affects agriculture in some parts of Nigeria (Shiru et al. 2020). ET0

models may pinpoint regions with elevated ET0 levels, aiding in creating drought readiness plans, reducing crop losses, and
promoting agricultural resilience.

The new models contribute to sustainable water management in Nigeria by improving the accuracy of ET0 estimates and
enabling better irrigation planning and water resource allocation. Precise evapotranspiration data may assist water managers
in distributing water resources more effectively across different sectors, such as agricultural, residential consumption, and

industrial requirements. Comprehending ET0 patterns may help develop reservoir operating plans to optimise water storage
and release to fulfil needs while preserving ecological balance. Integrating ET0 into hydrological models may enhance the
precision of flood predictions, facilitating prompt preparation and mitigation measures. Optimising water use in agriculture

reduces water footprints, decreases environmental effects, and conserves valuable resources.
Standard statistical metrics often focus solely on overall ET0 magnitude agreement, overlooking crucial aspects such as

timing, frequency, and variability of ET0 events. These characteristics are vital for comprehending drought dynamics,

where short-term deficits and episodic droughts matter more than long-term averages. While accurate ET0 estimation
based on statistical metrics is valuable, it does not guarantee optimal performance in various hydrological applications. A
model might accurately estimate observed ET0, yet its simulations can yield different drought occurrence estimations using
standard indices or depict distinct aridity patterns. This discrepancy arises from neglecting crucial ET0 characteristics rel-

evant to drought and aridity assessments, which were not evaluated during model development. In addition, models might
perform differently when used in conjunction with other variables. Further study can be conducted to assess the performance
of the models in accurately estimating drought, aridity, or other hydro-climatic events.

This study has pioneered a novel methodology for estimating ET0 tailored for Nigeria. Its focus on Nigeria may restrict its
immediate generalizability. However, developing new models that effectively estimate ET0 using a limited set of meteorolo-
gical variables significantly contributed to Nigeria’s irrigation and water resources management. Moreover, the research

contributes significantly to developing a methodology for constructing ET0 models, setting a precedent for future endeavours
to formulate ET0 equations for diverse geographical regions beyond Nigeria.

5. CONCLUSION

In conclusion, this study has successfully advanced the ET0 estimation by developing empirical models using PSO with temp-

erature, wind speed, and relative humidity data. The comparison of these models against widely used existing ones revealed a
substantial and promising improvement in performance, as evidenced by higher statistical indices, specifically KGE and
Pbias. The temperature-based model, Awhari1, emerged as a standout, showing a mean KGE of 0.75 and a Pbias of

6.49%, showing a remarkable enhancement compared with established models like Ivanov. Awhari2 demonstrated an
even more impressive performance, with KGE values of 0.92 and a Pbias of 5.67. These results demonstrate that the new
models can estimate ET0 in diverse climatic conditions with Nigeria with heightened accuracy and reduced uncertainty.

The spatial distribution analysis of model parameters, allowing for comprehensive calibration and validation at different
grid points, provides a notable novelty and addresses the insight of daily percentage bias, offering valuable implications
for designing irrigation and water resource management strategies in agricultural production. Moreover, a spatial perform-
ance comparison of observed and computed daily evaporation across grid cells provides a striking visualisation of model

effectiveness. The ability to address Pbias variations between observed and model values at the grid cell level demonstrates
the adaptability of the developed models, fostering confidence in transferring parameter values from one region to another,
even within a diverse environmental context. These findings significantly contribute to ET0 estimation, particularly in regions

with limited data availability and diverse climatic conditions.
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