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A B S T R A C T   

Optimizing reservoir operation is a complex problem with non-linearities, numerous decision variables, and 
challenging constraints to simulate and solve. Researchers have tested various metaheuristics algorithms (MHAs) 
to reduce water deficit in reservoirs and presented them to decision-makers for adoption. Optimization methods 
vary depending on objectives, reservoir type, and algorithms used. The paper utilizes the CSS algorithm to study 
the impact of various scenarios on the optimal operation of the Mujib reservoir in Jordan to reduce water deficits 
using historical date between 2004 and 2019. The study explores different scenarios, including sediment impact, 
water demand management, and increasing the storage volume for the reservoir, to identify the optimal oper-
ation of the reservoir. The study compares the results of these scenarios with the current operation of the 
reservoir. Risk analysis (volumetric reliability, shortage index (SI), resilience, vulnerability) and error indexes 
(correlation coefficient R2, the root mean square error (RMSE), and the mean absolute error (MAE)) were used to 
compare results between scenarios, in addition to the annual water deficit values from the CSS algorithm for each 
scenario. The simulation of monthly sediment values in the Mujib reservoir showed that sediment accumulation 
accounts for 14.6% of the reservoir’s volume at the end of 2019. Removing sediments retained by the dam can 
reduce water deficit by 19.42% when using the CSS algorithm. Additionally, reducing agricultural water demand 
by 11% and removing sediment reduced water deficit by 42.40%. The study also examined the impact of 
increasing the storage capacity of the reservoir by 10%, 20%, and 30%, revealing a decrease in water deficit by 
35.44% when sediment removal was included in the analysis. The study examined the scenario of increasing the 
storage capacity of the Mujib reservoir by 30%, reducing water demand by 11%, and removing sediment. This 
scenario resulted in a 53.59% decrease in water deficit, providing decision-makers with viable solutions to 
address the water deficit problem in the reservoir.   

1. Introduction 

Reservoir operation optimization aims to balance diverse objectives, 
including ensuring water supply reliability, maximizing hydropower 
production, minimizing flood risk, and preserving the environment. 

Algorithms, considering constraints like storage capacity and inflow/ 
outflow rates, play a pivotal role in this optimization process (Almu-
baidin et al., 2022; Zhang et al., 2019). Leveraging modern computing 
power enables these algorithms to process extensive data and offer 
real-time solutions for effective reservoir management (Asadieh and 
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Afshar, 2019; Ashofteh et al., 2020). 
Algorithms are vital for optimizing reservoir operations, determining 

optimal water release and managing inflow and outflow (Bozor-
g-Haddad et al., 2018). Sediment calculations, crucial for assessing ca-
pacity and lifespan, help estimate deposition, erosion, and transport. 
Addressing sedimentation is essential, considering risks like reduced 
storage, water quality compromise, and impaired hydraulic structure 
functionality (M. A. Almubaidin et al., 2023; Chamoun et al., 2016). 
These calculations contribute to effective reservoir management and 
long-term operational efficiency. Algorithms, incorporating sediment 
calculations, assist in formulating release strategies, aiding water man-
agers in balancing competing demands and ensuring the reservoir’s 
sustainability (Hajiabadi and Zarghami, 2014; Khan et al., 2012; Yin 
et al., 2014). 

The optimization of reservoir operations presents a complex chal-
lenge characterized by non-linear functions, numerous decision vari-
ables, and multiple constraints (Chong et al., 2021). Historically, 
researchers have explored diverse metaheuristic algorithms (MHAs) to 
enhance water supply operations in reservoirs, addressing goals like 
minimizing water deficits and maximizing the utilization of released 
water from dams (Zhang et al., 2019). The optimization methods 
employed differ based on objectives, reservoir types, and the specific 
algorithm utilized (M. A. A. Almubaidin et al., 2022). Various MHAs 
have been employed and developed for this purpose, including: genetic 
algorithm (Ashofteh et al., 2021; Mendoza Ramírez et al., 2021), arti-
ficial bee colony (Moeini and Soghrati, 2020), particle swarm optimi-
zation (Bayesteh and Azari, 2021), grey wolf optimizer (Donyaii et al., 
2020), crow algorithm (Banadkooki et al., 2020), spider monkey algo-
rithm (Ehteram et al., 2018), shark algorithm (Allawi et al., 2018), 
firefly algorithm (Patle et al., 2017), krill herd algorithm (Karami et al., 
2018), bat algorithm (Jamshidi and Shourian, 2019), Jaya Algorithm 
(Kumar and Yadav, 2020), Water Cycle Algorithm (Qaderi et al., 2018), 
Charged System Search (Asadieh and Afshar, 2019), and invasive weed 
optimization algorithm (Kalhori et al., 2023; Moghadam et al., 2022). 

The challenge faced by decision-makers in reservoir management is 
the inadequate availability of data concerning the gradual accumulation 
of sediments over time. This limitation hinders the accurate monthly 
simulation of sediment levels, despite their substantial impact on the 
reservoir. The scarcity of data stems from irregular sediment sample 
collection or reliance on remote sensing techniques (Cimorelli et al., 
2021; Su et al., 2022). Additionally, valuable data sources like water 
inflow, erosion rates, and watershed land use changes, which can in-
fluence sedimentation, remain underutilized (Shi et al., 2019). The 
deficiency in sediment accumulation data poses a significant hindrance 
for decision-makers striving to make well-informed choices regarding 
reservoir system management. 

The examined rainwater-dependent reservoirs, typically located in 
arid regions, face a significant challenge in water management. Relying 
on unpredictable storms for inflow, these reservoirs experience varying 
monthly and annual water inflows, impacting storage and leading to 
losses from evaporation, seepage, and sedimentation. While demand 
remains constant, optimizing operation becomes crucial (Md. Azama-
thulla et al., 2008). Algorithms simulating reservoir behavior offer 
optimal solutions to navigate these challenges, considering variables 
like sediment, water demand, and storage capacity. 

The study aims to simulate monthly sediment volume in the Mujib 
reservoir using the linear regression method and measured values. 
Additionally, it seeks to reduce water deficits through the CSS algorithm, 
considering scenarios like sedimentation impact, water demand, and 
increased storage. Simulations will identify effective strategies for 
sediment management, water optimization, and enhanced storage. The 
CSS algorithm is expected to significantly decrease water deficits, 
ensuring a sustainable water supply. Evaluation criteria include annual 
deficit values, risk analysis (reliability, resilience, and vulnerability), 
and error indices like mean absolute error (MAE), the root mean square 
error (RMSE), and the correlation value R2. 

2. Materials and methodology 

2.1. Sedimentation calculation 

One of the main challenges that dams around the world encounter is 
the accumulation of sediment behind them. As water inflows from the 
upstream watersheds into the reservoir, it causes erosion of the drainage 
area, resulting in the deposition of sediment either upstream of the 
reservoir or in the calm waters of the reservoir, which may affect the 
storage capacity of the dam or reduce the ability to Hydroelectric power 
production, which reduces the life of the reservoir (Ijam et al., 2020). 
And because these sediments greatly affected this dam, it was necessary 
to enter them into the reservoir simulation system, and for that, the 
Mujib reservoir’s cumulative sediment impact was simulated using the 
Modified Universal Soil Loss Equation (MUSLE) model. The MUSLE 
model, which is widely used for soil erosion prediction, is actually an 
improved version of the Universal Soil Loss Equation (USLE) (Benavidez 
et al., 2018). 

The model will be calibrated and verified using the cumulative 
sediment yield data obtained from Eco-sounder device obtained from 
the Dams Directorate in the Jordanian Ministry of Water and Irrigation 
and the MUSLE model is expressed as in Eq. (1) (Williams, 1975). also 
expressing the steps of using this equation in Fig. 1. 
Y = 11.8

(

Q.qp

)0.56
(K)(C)(P)(LS)(CFRAG) (1)  

Where Y is sediment Yield (Tones); qp is peak flow rate (m3/s); Q is water 
runoff (m3); C is the cover management factor (dimensionless); K is the 
soil erodibility factor (MJ-1 mm-1); LS is the slope length and slope 
steepness (dimensionless); P is the erosion control practice factor 
(dimensionless); CFRAG is the coarse fragment factor (dimensionless). 

2.2. Surface runoff and peak flow rates 

Runoff refers to the volume of water discharged from a specified 
drainage basin over a specific period. The maximum flow rate of runoff 
that occurs during a particular rainfall event is referred to as the peak 
flow rate (qp). It is an important parameter that indicates the erosive 
power of the storm and is often used as a predictor of sediment loss 
(Neitsch et al., 2011). 

The Mujib Dam’s daily surface runoff volume values spanning from 
November 2003 to December 2019 were acquired from Jordan’s Dams 
Directorate, Ministry of Water and Irrigation. However, to calculate the 
peak runoff rate, it was essential to determine the time of concentration 
(Tc) for the Al-Mujib catchment area. The Soil Conservation Service 
(SCS) formula was employed for this calculation, with parameters ob-
tained through the Watershed Modelling System (WMS) 10.1 software. 
A digital elevation map (DEM) with a 30-meter resolution was extracted 
using Global Mapper 19 software. After WMS software utilization, the 
catchment area of the Mujib Basin exhibited an average slope of 5.67%, 
a hydraulic length of 185.90 km, and a weighted curve number (CN) of 
89.07, sourced from a relevant study within the same area (Ijam and 
Al-Mahamid, 2012). Then lag time of 16.43 h and a time of concentra-
tion of 27.39 h. 

2.3. Soil erodibility factor and coarse fragment factor (CFRG) 

Soil erosion (K) indicates the rate at which soil particles are sepa-
rated and transported due to the quantity and velocity of runoff during a 
specific storm event (Farhan and Nawaiseh, 2015). CFRG expresses the 
percentage of rocks in the upper soil layer from the percentage returned 
for each soil sample on sieve No. 4 and sieve No. 10 (Neitsch et al., 
2011). 

Ijam et al. (2020) gathered 21 soil samples from various points 
within the Mujib basin to assess soil erodibility factors (K) and the 
Coarse Fragment Factor (CFRG). The average K value obtained was 
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0.164. According to the soil classification triangle, the soils in the 
catchment area are classified as silt loam to loam soils. The average 
CFRG value recorded was 0.384. 

2.4. The support practice factor (PUSLE) 

Practices that support erosion control typically involve redirecting 
runoff away from slopes prone to erosion or slowing it down to minimize 
sedimentation. Examples of such practices include concave slopes, 
vegetation strips, and terraces. The effectiveness of a conservation 
practice in reducing soil erosion can be determined by the value of P, 
with lower values indicating more effective erosion control. In the 
absence of supporting practices, erosion control may be insufficient, the 
factor P is 1 (Arekhi et al., 2012). In this study, the support exercise 
factor (P) is presumed to be 1, as no measures have been implemented to 
mitigate ground erosion in the catchment area. 

2.5. The slope length L and slope steepness S 

The LS factor help to show the effective topography in the erosion 
model in MUSLE where the increase in the slope length L leads to an 
increase in the erosion due to the gradual accumulation of runoff in the 
along of the downward slope and the increase in the slope steepness 
factor S leads to an increase in soil erosion and thus an increase in the 
erosion speed (Khassaf and al Rammahi, 2018). The LS factors are 
measures of the potential for soil loss on a given slope length and 
steepness to soil loss from a slope of 72.6 feet in length and 9% steepness 
where all other conditions are identical (Wischmeier, 1978). 

The slope length factor LS was calculated by using ArcMap10.3 
software and using unit stream power erosion and deposition model 
(USPED) by following the steps used in Ijam et al. (2020), where the 
average LS value is 265.137. 

2.6. Cover management factor (C) 

The C factor is a measure of the ratio of soil loss under a specific land 
use condition relative to that of the base soil and ranges from 1 in bare 
soil, 1–9/10 in root crops and tubers, 1/1000 in forests, 1/100 in 
grasslands, and cover plants. C is a sensitive value for soil erosion 
because it is directly proportional to soil erosion, so the C factor is a 
useful parameter for calibrating sedimentation models and conducting 
soil erosion studies (Bekele, 2021; Ijam et al., 2020). 

The value of the land cover and management factor (C) remains in 

the Eq. 1. It will be used to calibrate a MUSLE model regarding sediment 
productivity in the Mujib Dam reservoir to find the monthly sediment 
quantity to be used in the reservoir simulation system. 

2.7. Case study: Mujib reservoir 

The Mujib reservoir holds significant importance in Jordan as it 
serves various purposes such as domestic use, irrigation, and industrial 
operations. Its construction was completed in 2003, and it has a height 
of 62 m, a storage capacity of 31.2 MCM, and relies on a water catch-
ment area of 4408.5 km. The reservoir receives an average annual 
inflow of 22.23 MCM of water, and its primary objective is to harness 
and conserve excess rainfall water in the Mujib Basin’s catchment areas. 
This reservoir of water is stored in the reservoir, ensuring its availability 
for future use. Fig. 2 displays the catchment region of the Mujib reser-
voir. This type of reservoir experiences significant fluctuations in daily, 
monthly, and yearly inflow, as well as variable evaporation rates that are 
determined by the surface area of the reservoir. Unfortunately, sediment 
accumulated under the dam is a persistent problem, which leads to 
reduced storage capacity in the future and lower overall efficiency of the 
reservoir (Ijam et al., 2020). 

A study was conducted using historical data on the monthly inflow 
for the Mujib reservoir from 2004 to 2019. This data was collected from 
the Jordanian Ministry of Water and Irrigation and analysed to obtain 
information on the average monthly evaporation rate and statistical 
values for the average monthly inflow in the reservoir. The results of this 
analysis are shown in Table 1. 

2.8. Reservoir operation optimisation 

2.8.1. Charged system search algorithm 
Similar to numerous meta-heuristic methods that draw inspiration 

from natural phenomena, the CSS algorithm relies on the well-known 
Coulomb’s law of electrostatics and the laws of motion from Newto-
nian mechanics developed in 2010 (Kaveh and Talatahari, 2010). The 
CSS algorithm contains agents called charged particles (CPs) and con-
siders each CP as a charged sphere having a uniform charge density that 
can be imposed by an electrical force on other CPs according to Cou-
lomb’s law (Asadieh and Afshar, 2019; Kaveh and Talatahari, 2010). 
The attractive force between CP varies depending on their separation 
distance (Kaveh and Talatahari, 2010). 

After calculating the net force acting on each CP, Newton’s law is 
applied to determine the acceleration of each CP. Newtonian mechanics 

Fig. 1. Steps for calculating sedimentation amounts in Mujib Dam, according to the available data.  
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is then used to compute the position of each CP at each given time step 
depending on its prior location, velocity, and acceleration in the search 
space (Asadieh and Afshar, 2019). Each CP has a radius of ’a’ and a 
uniform charge density (qi) as shown in Eq. 2: 

qi =
fit(i) − fitworst

fitbest − fitworst
, i = 1, 2,…,N (2) 

This equation updates the variable (qi) based on the fitness of the (i) 
th solution relative to the best and worst solutions in the population and 
N being the total number of CPs This normalization aids in making 
fitness values comparable and influences the selection process in opti-
mization algorithms. The initial positions of the CPs are randomly 

allocated within the problem’s specified limits in the search space. 
Meanwhile, the initial velocities of the CPs are set to zero. 

The CPs are distributed throughout the exploration area and have the 
capability of exerting electric forces on one another. The magnitude of 
the force acting on a CP located inside or outside of the sphere is 
computed in a distinct manner. The electric force acting on the CPs in-
side or outside of the sphere is obtained by applying Eq. (3) (Kaveh and 
Talatahari, 2010). 

Fj = qj

∑

i,i∕=j

(

qi

a3
riji1 +

qi

rij
2
i2

)

pij(Xi −Xj)

⎧

⎨

⎩

j = 1, 2,…,N
i1 = 1, i2 = 0 ↔ rij < a

i1 = 0, i2 = 1 ↔ rij ≥ a

(3)  

Where rij denotes the distance of separation between two particles, and 
Fj represents the resultant force acting on the jth CP. 

rij =

⃦

⃦Xi − Xj

⃦

⃦

⃦

⃦

⃦

⃦

(Xi+Xj)
2

− Xbest

⃦

⃦

⃦

⃦

+ ε

(4) 

Eq. (4) represents the probability of moving each CP towards the 
others, where Xi and Xj indicate the positions of the ith and jth CPs, 
respectively. Xbest represents the position of the current best CP, while ε 

is a small positive value utilized to avoid singularity. The value of pij is 
determined by the Eq. (5). 

pij =

⎧

⎪

⎨

⎪

⎩

1
fit(i) − fitbest

fit(j) − fit(i)
> randor fit(j) > fit(i)

0otherwise

(5) 

According to Eq. (3), the force exerted on a CP positioned inside the 

Fig. 2. The catchment area of Mujib Reservoir.  

Table 1 
The Mujib reservoir’s monthly hydrological data.  

Month Average 
Evaporation rate 
monthly (m) 

Average 
inflow 
(MCM) 

Standard 
deviation 

Maximum 
Inflow (MCM) 

January  0.054  5.28  8.80  30.58 
February  0.066  5.17  7.23  25.26 
March  0.138  2.91  5.97  18.53 
April  0.229  4.48  16.03  64.50 
May  0.291  0.38  1.51  6.02 
June  0.336  0.01  0.03  0.11 
July  0.359  0.00  0.00  0.00 
August  0.347  0.00  0.01  0.04 
September  0.269  0.00  0.01  0.06 
October  0.199  1.20  2.90  11.23 
November  0.144  1.64  4.81  19.31 
December  0.089  1.16  2.24  8.06  
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sphere is directly proportional to the distance between CP. Conversely, if 
the CPs are located outside the sphere, the force acting between them is 
inversely proportional to the square of the distance between them. After 
computing the resultant forces acting on the CPs, their new positions are 
determined using the laws of motion. To achieve this, each CP goes 
towards its new position considering the resultant forces and its previous 
velocity, as indicated in Eqs. (6) and (7) (Asadieh and Afshar, 2019). 

Xj,new = randj1.Ka.
Fj

mj

.Δt2 + randj2.kv.Vj,old.Δt+Xj,old (6)  

Vj,new =
Xj,new − Xj,old

Δt
(7) 

Eq. (8) presents the acceleration coefficient Ka and the velocity co-
efficient Kv, which influence the motion of the CPs. The two random 
numbers, randj,1 and randj,2, are uniformly distributed within the inter-
val (0,1). The mass of the jth CP mj, is set equal to qj. The time step, Δt, is 
set to 1. The velocity coefficient can either remain constant or change in 
the upcoming time steps. 

Ka = α ∗

(

1+
iter

itermax

)

,Kv = β ∗

(

1−
iter

itermax

)

(8) 

Eq. (9) includes the current iteration number (iter), and the 
maximum number of iterations (itermax), set for the algorithm run. This 
equation establishes a linear relationship between the velocity coeffi-
cient, Kv and the acceleration coefficient, Ka, as the number of iterations 
increases. Specifically, Kv decreases linearly to zero, while Ka increases 
to 2α, which maintains a balance between exploration and convergence 
speed. It’s worth noting that the parameters α and β in Eq. (8) are 
adjustable, and their values determine the acceleration and velocity 
coefficients (Ka and Kv). The recommended value for both α and β pa-
rameters is 0.5, as per the reference paper of the CSS algorithm. By 
substituting the values of Ka and Kv from Eqs. (6) to (8), Eq. (9) can be 
rewritten (Asadieh and Afshar, 2019). 

Xj,new = ∝ ∗ randj1

(

1+
iter

itermax

)

.
∑

i,i∕=j

(

qi

a3
riji1 +

qi

r2
ij

i2

)

pij(Xi −Xi)

+ β ∗ randj2

(

1−
iter

itermax

)

.Vj,old +Xj,old (9)  

Vj,new = Xj,new −Xj,old (10) 
To improve the algorithm’s performance, it is advisable to incorpo-

rate a memory mechanism called the Charged Memory (CM) to store the 
best results. If any CP moves outside the search space, it can be corrected 
using a harmony search-based handling approach. This involves 
generating or selecting a new value from the CM on a probabilistic basis. 

We initialized the algorithm with the number of CPs 100 and 192 
decision variables, executing 5000 iterations. The charged memory had 
a capacity of 5, with a sphere radius of 1 ∗ 10−9. Algorithmic co-
efficients, set at 0.5 for acceleration and velocity, balanced exploration 
and exploitation. Boundary constraints ranged from 0 to 2.46. These 
parameters were fine-tuned through a rigorous procedure to optimize 
the algorithm’s performance for our cast study. 

The selection of an algorithm is a crucial decision. CSS’s advantages 
lie in its ability to mimic the charged particles’ behaviour in a dynamic 
system, allowing for efficient solution space exploration. The CSS al-
gorithm’s unique features, such as its adaptability and capacity for 
global optimization, make it well-suited for reservoir operation studies. 

The primary goal of this research is not only to discover the impor-
tance of different algorithms in optimizing the operation of the reser-
voirs; this has been proven in various research, while the goal was to 
experiment with optimizing the operation of this type of rainfall-based 
reservoirs using one of the algorithms whose effectiveness in opti-
mizing reservoirs has been explored before and studying the effect of 

sediments, on the operation of reservoirs. Other algorithms can be used, 
such as genetic algorithms and the PSO algorithm,. etc, to optimize this 
type of reservoir, and the same results may appear, but to varying de-
grees. This may be studied in other research to observe the effect of the 
difference in using different algorithms to optimize this type of 
reservoir. 

The CSS algorithm has demonstrated noteworthy performance 
through rigorous testing with benchmark problems involving highly 
non-linear constrained and/or unconstrained real-valued mathematical 
models, exemplified by challenges like Ackley’s function and the 
Fletcher–Powell function in previous research. Its efficacy in optimizing 
reservoir operation has been further substantiated through validation 
processes, encompassing convergence criteria and sensitivity analysis to 
ensure reliability (Asadieh and Afshar, 2019). Moreover, in this study, 
the algorithm has been adeptly fine-tuned to enhance result accuracy. 
The collective evidence underscores the CSS algorithm as a robust and 
applications in water resource management. 

2.9. Problem formulations and constraint 

The optimization of the operating problem in a reservoir is achieved 
by utilizing the CSS algorithm, which involves defining the objective 
function and identifying decision variables, system limits, and their 
classifications. The objective function is evaluated while staying within 
the limits of the constraints for the selected decision variables, and the 
updated set of decision variable values is determined based on the 
feedback assessment. The previous steps are iterated until the desired 
performance objective is achieved or the stopping criterion is reached. 
Finally, the decision-making memory process stores the selection of 
optimal solutions for the optimal decision variables (Gong et al., 2020). 

In this research, the objective function of it is to minimize the 
monthly water deficit, which is represented by reducing the difference 
between the water released and the water demand for the reservoir in 
each operating period, whether it is for domestic, irrigation, or indus-
trial purposes in (MCM/year), which can be expressed by the following 
Eq. (11). 

Min Z =
∑NT

t=1
(
Dt − Rt

Dmax

)2 (11)  

Where Dt is water demand during operating period t, NT is the total 
operating period, Rt is water released during operating period t. 

The water balance continuity equation can be expressed by Eq. (12), 
where the storage for the next period depends on the previous storage of 
the reservoir, Inflow, water released, water losses, and overflow from 
the reservoir in period t. 
St+1 = St + It −Rt − Lt −Ot (12)  

Where St+1 and St are the final and initial reservoir storage for time t, It is 
the inflow in the reservoir, Rt is water released from the reservoir, Lt is 
water losses (Evaporation and seepage), and Ot is overflow from the 
reservoir. 

Where the evaporation losses in the Mujib reservoir were calculated 
using Eqs. (13) and (14). 

Et = ERt ∗
At

1000
(13)  

Aτ = a+ b ∗ St + c ∗ St
2 + d ∗ St

3 (14)  

Where evaporation loss Eτ estimated using the average evaporation rate 
(ERτ) during the time step t and surface area (Aτ) in km2 for the reservoir 
as shown in Eq. (14), where surface area (Aτ) calculated by fitting 
equation to existing data to find relationship between surface area and 
storage of the reservoir, the constants a, b, c, and d are found by fitting 
Eq. (14). 

In addition to the storage and release Constraints of the reservoir, 
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where the storage level is controlled at any period by controlled the 
storage within the maximum storage limit and the minimum storage 
limit as shown in Eq. (15). 
Storage Capacity = 3.774 × 106 m3 ≤ St ≤ 31.232 × 106 m3 (15) 

The water released within the maximum release and minimum 
release of the reservoir for every month as shown in Eq. (16): 

0≤ Rt ≤ Rmax (16). 
where Rt Is Water released in every month and not exceed the water 

demand in period t. 
MATLAB version R2018b by Math Work was used to optimize 

operation in the reservoir, where the objective function had adjusted 
them to fit Mujib reservoir case. Considering the monthly releases as the 
decision variable that the algorithm is supposed to optimize, in addition 
to specifying the constraint on storage and release in the programming 
code. And using the monthly inflow and water losses represented by the 
monthly evaporation and seepage values as input data for analysis. The 
model is tested, and parameters are set for the algorithms, and then the 
release is applied to the actual inflow and water losses in Mujib reservoir 
using operation as shown in Eq. (17). 
Storaget+1 = Storaget + Inflowt −Lossest −Optimum Release (17) 

The storage is adjusted every month so that if the storage in any 
month is more than 31.232 MCM, then the storage for the next month 
will be kept at 31.232 MCM, but if the final storage is less than 3.774 
MCM, it will not be allowed to release the next month. The reservoir 
release was simulated with the inflow from January 2004 to December 
2019. Fig. 3 shows the steps for using the CSS algorithm to optimize 
reservoirs. 

2.9.1. The performance indicators 
The use of sequential historical data was typically required for per-

formance testing of hydrological models (like rainfall, inflow, reservoir 
level). After receiving the simulation’s results, the system’s success or 
failure was assessed from many aspects. The performance indicators are 
used to determine if a simulation model of a reservoir system is suc-
cessful or not, as well as to compare the performance of various algo-
rithms. The reliability, resiliency, and vulnerability indicators are three 
common performance indicators in water resources management, which 
are used in most research. 

Reliability index. 
Reliability is a critical performance metric for optimization models, 

which refers to the number of instances that the release decision can 
fulfill demand during the simulation period. The reservoir simulation is 
considered better as the system’s reliability index increases. Wurbs 
(1996) provides the concept of volumetric (Rv) as Eq. (18) (Hossain 
et al., 2018). 

Rv =
γ

V
∗ 100% (18)  

Where γ is the volume of released water and V is the volume of demand 
water, so the ratio between these two gives the idea of a water deficit. 

The shortage index (SI) is another method for describing a model’s 
reliability (SI). According to Wurbs (1996), the ratio of the total volume 
of the shortage during the year (for monthly simulation) to the total 
volume of the demand water can be used to indicate the shortage for 
each year of a simulation (Hossain et al., 2018) as shown in Eq. (19). 

SI =

(

100

t

)

∑

N

T=1

(

Water deficit

demand water

)2

(19) 

T¼ total considered time (in year). 
Resiliency. 
The concept of resiliency refers to the ability of a system to recover 

from failure in meeting the demand. It is essentially the likelihood of the 
reservoir system recovering from a shortfall or an unacceptable value 

over time. A high Resiliency indicates that the reservoir has the capacity 
to recover and meet the demand efficiently even under unfavourable 
conditions, and it can be expressed using Eq. (20). 

Loucks and Beek (2005) used the ratio of the total number of un-
satisfactory occurrences to the number of satisfied releases that follow 
an unsatisfied value and total number of water shortage to calculate the 
resilience (Loucks and van Beek, 2017). 

Resiliency=
The number of times a suitable value appears after a shortage

Total number of shortage periods

(20)  

vulnerability. 
The reservoir system’s worst-case scenario is measured by vulnera-

bility, which is defined as a measure of the system’s failure. The 
vulnerability index is used to assess the failure of a reservoir system 
model, and a lower vulnerability index value indicates a stronger sys-
tem. The measure of vulnerability can be expressed mathematically, as 
shown in Eq. (21): 

Vulnerability=
The total of positive values of (Demand−Release)

Number of times an unsatisfactory event occurred

(21) 
The proposed scenario was assessed based on error indices, such as 

the mean absolute error (MAE), the root mean square error (RMSE), and 
the correlation coefficient (R2) for further investigation. The linear 
relationship between the water released and the water demand is 
examined using the R2, R2 is estimated by dividing the variance between 

Fig. 3. The flowchart for using CSS in optimize water reservoir.  
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the water demand and the water released by the sum of their respective 
standard deviations. This indicator represents the difference between 
the water released and the water demand and demonstrates the accuracy 
of the linear fit, The R2is calculated as shown Eq. (23). RMSE used to 
measure the difference between the observed values of the required 
variable (water demand) and the values (water released) from the 
model. The RMSE combines the various variances into a single mea-
surement of the gap between the water demand and the released water, 
RMSE is calculated as shown Eq. (22) (Azamathulla, 2012). The MAE 
was considered to evaluate how the model’s operation rules of the model 
(water released) biased by the system’s demands while considering the 
shortage and the release excess, The MAE index is calculated as shown 
Eq. (24) (Yaseen et al., 2019) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

T

t=1

(Dt − Rt)
2

T

√

√

√

√ (22)  

R2 =

⎡

⎢

⎢

⎣

∑

n

i=1

(Dt − Dt)(Rt − Rt)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

i=1

(Dt − Dt)
2(Rt − Rt)

2

√

⎤

⎥

⎥

⎦

2

(23)  

MAE =
∑T

t=1

|Dt−Rt|

T
(24)  

where Dt is the water demand, Rt is the water release, T is the total 
number of periods of operation, 

2.9.2. Scenarios 
The CSS algorithm was used to optimize the operation in the reser-

voir under different scenarios and compare the results with the current 
operation without using the algorithm. Initially, the operation of the 
reservoir was optimized in the current operational status of the reser-
voir, considering the problem of sediment in the reservoir, which con-
stitutes 20% of the volume of the reservoir. These sediments affect the 
actual capacity of the reservoir and its efficiency in storage water, in 
addition to developing a scenario with removing sediment from the 
reservoir. 

2.9.2.1. The impact of water demand management on reservoir operation. 
The water demand from the reservoir is divided into domestic, agri-
cultural, or industrial. As for the use of the reservoir water for agricul-
tural purposes, it feeds the various agricultural lands around it from it 
water in seasons dedicated to agriculture, approximately 5 MCM. 

Therefore, the water deficit was studied in the event that part of the 
demand water was not supplied from the reservoir for agricultural 
purposes, in the event that another source was found that feeds these 
agricultural crops, or the treated water was resorted to be used instead of 
the reservoir water for agricultural under the instructions and periodic 
checks by the competent authorities (Al-Mubaidin et al., 2022), or 
modern agricultural techniques were used that save a large part of the 
water used for agriculture or the use of crops that do not depend on 
water in abundance and can be replaced by crops that depend on small 
amounts of water or use water harvesting techniques and rationing 
citizens on them to reduce pressure on the reservoir water. 

Therefore, it was imposed to reduce the demand for water by a 
percentage of the water allocated for agricultural purposes, and in the 
months that are the agricultural seasons in the cultivated lands from the 
water of the reservoir. It was also assumed that the demand for water 
would increase in the future by the amount of water that was reduced 
from the demand water and in the same months that the required water 
was reduced to notice the difference between the two cases. Therefore, 
the water demand from the reservoir has been modified to observe the 
extent of this impact on the water deficit and to help decision-makers to 
study the options available to them in the operation and management of 

the reservoir. 

2.9.2.2. Effect of reservoir capacity on reservoir operation. To solve the 
problem of the water deficit, a suggestion to increase the storage ca-
pacity of the reservoir by different percentages of 10%, 20%, and 30% 
were studied by raising the dam within its possible heights to note the 
effect of increasing the capacity of the reservoir on reducing the water 
deficit. Which increases the storage capacity of the reservoir. It is one of 
the solutions suggested by the Jordan Water Authority to get rid of the 
water deficit in the reservoir and make the most of the water resulting 
from rainfall. It was applied to one of the neighbouring dams. In the area 
where Fig. 4 shows the relationship of the height of the dam with the 
storage capacity of the dam, where the highest storage level of the dam is 
194 m, which makes the storage capacity at 31.233 MCM, and the dis-
tance at the highest storage level is at for the dam and end of the 
Spillway is approximately 4 m, which means the possibility of 
increasing the height of the dam to increase the capacity future storage 
reservoir. 

The operation of the reservoir has been optimized without regard to 
the sediment problem that the reservoir faces in the current situation, to 
note the effect of increasing the volume of the reservoir on the problem 
of water deficit in general. It was suggested to increase the storage ca-
pacity of the reservoir by different percentages. 

2.9.2.3. Effect of reservoir capacity with decreasing demand on reservoir 
operation. It was suggested to optimize the reservoir using CSS algo-
rithms in the case of removing sediment and managing the demand 
water by trying to reduce it as previously mentioned and increase the 
storage capacity of the reservoir to observe the water deficit values when 
these cases are combined with each other. 

The results were compared in terms of reaching the objective func-
tion using the CSS algorithm, which is to reduce the annual water deficit 
in the reservoir for all scenarios. In addition to simulating the release 
resulting from the CSS algorithm and the water demand to note the 
difference between the release and the demand for water in each sce-
nario and simulating the change in the storage values of the reservoir 
from the CSS algorithm compared to the actual water flow of the 
reservoir for each scenario in addition to the annual water deficit values 
from the CSS algorithm for each scenario. Risk analysis (volumetric 
reliability, shortage index (SI), resilience, vulnerability) and error 
evaluation indexes (R2, RMSE, and MAE) were used to compare results 
between scenarios. These results aim to present the different scenarios to 
the decision makers to search for their results to try to solve the water 
shortage problems before they occur in the future and inform them of 
the impact of sediment in the reservoir and try to solve it in this reservoir 
and avoid its formation in future reservoirs. 

3. Result and discussion 

3.1. Sedimentation calculation 

3.1.1. Model calibration 
The study’s primary goal is to determine monthly sedimentation 

values and the cumulative sedimentation impact on the Mujib dam. This 
investigation also seeks to evaluate the effect of sedimentation on the 
dam’s maximum volume by incorporating it into the dam simulation. 
Unfortunately, the available data for sedimentation affecting the Mujib 
dam is limited to four discrete measurements obtained using the Eco- 
Sounder device at intervals spanning from 2003 to 2015 (specifically, 
during the periods 2003–2005, 2006–2008, 2009, and 2010–2015), as 
detailed in Table 2. 

Given this scarcity of data, a calibration process is undertaken, 
wherein surface runoff and peak runoff are considered. The physical 
factors described in Eq. (1) were getting (soil erodibility factor, coarse 
fragment factor, the support practice factor, and the slope length factor). 

M.A.A. Almubaidin et al.                                                                                                                                                                                                                     



Agricultural Water Management 293 (2024) 108698

8

The cover and management factor (C) is retained for calibration with the 
cumulative sedimentation volume measured in the reservoir over the 
four specified periods. The calculated sediment is divided by 1.3, 
assuming an average weight of 1.3 tons/m3 for the sediment unit. 

Upon completion of the calibration process, the optimal C value is 
determined to be 0.00779, resulting in the lowest error compared to the 
measured values. The correlation coefficient (R2) is found to be 0.982, 
and the model efficiency Emodel is calculated as 0.9147. Subsequently, 
simulated sediments for the observed sediment period are computed, 
and the relationship between measured and simulated sediments is 
visually represented in Fig. 6. 

Fig. 5 provides a clear depiction of the strong relationship between 
the measured and simulated sediments, affirming the efficacy of the 
calibration process and the chosen C value in accurately representing 
sedimentation dynamics in the Mujib dam. These findings contribute to 
a comprehensive understanding of the sedimentation patterns and their 
implications for the dam’s volume, thereby enhancing the reliability of 
the dam simulation model. 

Due to the limited readings of cumulative sediment readings of the 
Mujib dam, the cumulative sediment yield measured according to the 
volume of inflow in each year was redistributed as a percentage of the 
total inflow during the sediment measurements period as shown in  
Table 3. 

But what concerns us is the quantities of monthly sediments that we 
use in simulating the reservoir, the simulated sediment obtained from 
applying the MUSLE model from the beginning of 2004 to the end of 
2019, where the accumulated sediments at the end of 2019 was 
4552,122 m3, which represents a decrease of 14.6%. Using the linear 
regression method for the accumulated sediment results shown in the 
following table results in the regression line in Fig. 6 and the resulting 
slope. 

Using these readings, we can predict the size of the accumulated 
sediments for the years 2030 2040 2050. The accumulated sediments in 
the reservoir will be 7492,692 m3, 10,180,811 m3, 12,868,931 m3, 
respectively. This result represents reduction in reservoir storage ca-
pacity 23.99%, 32.60%, and 41.20%, for the years 2030, 2040, and 2050 
respectively. 

Fig. 7 shows the impact of the storage capacity of the reservoir by the 
accumulation of sediment in the reservoir over time, as the storage ca-
pacity was 31.233 MCM at the beginning of the operation of the reser-
voir in 2003 and with the accumulation of sediment, the storage 
capacity reached 26.68 MCM at the end of 2019, which led to a decrease 
in storage capacity by 14.6% of its volume, which increases problems 
reservoir and effect on the reservoir for performing its work properly. 

The aim of all this is to simulate the monthly sediment values to be 

Fig. 4. The relationship between the height of the dam and the storage capacity of the reservoir.  

Table 2 
Accumulated observed data by Eco-sounder device.  

Year Observed data by Eco-Sounder device (m3) 
2003-2005 917,823 
2006-2008 523,087 
2009 510,166 
2010-2015 1608,008  

Fig. 5. Comparison of the Simulated Data for the Calibrated Period with the Observed Data.  
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included in the reservoir simulation later. 

3.2. Reservoir simulation results 

As previously stated, this particular reservoir relies entirely on 
rainfall over the watershed areas, resulting in daily, monthly, and 
annual fluctuations in its inflow. Hence, Fig. 8 depicts the monthly 

inflow of water into the reservoir from its inception in 2004 until 2019. 
The distribution of inflow quantity into the reservoir is not uniform. The 
findings reveal that the reservoir does not receive significant and 
dependable inflow in most months of the year, and the storage of water 
in the reservoir is contingent on intense storms that result in high inflow, 
which may occur only in one or two months of the year. 

On occasion, the monthly or total inflow into the reservoir surpasses 

Fig. 6. Regression Line for the Cumulative of Simulated Sediment for the Years 2003- 2019.  

Table 3 
Distribution of sediment yields based on annual inflow.  

Year Inflow water 
(m3) 

Percent of Inflow during the measured 
sediment (%) 

Observed Sediment Yield 
(m3) 

Simulated sediment yield 
(m3) 

Observed data by Eco-Sounder device 
(m3) 

2003 5728,340 16% 148,607 57,819 917,823 
2004 26,563,815 75% 689,128 315,836 
2005 3,087,143 9% 80,088 28,589 523,087 
2006 73,151,767 86% 448,781 1140,875 
2007 7538,919 9% 46,251 83,499 
2008 4573,032 5% 28,055 44,212 
2009 14,713,135 100% 510,166 161,096 510,166 
2010 33,251,945 23% 376,953 441,623 1608,008 
2011 3641,262 3% 41,278 36,405 
2012 8508,885 6% 96,459 84,669 
2013 36,586,038 26% 414,749 448,799 
2014 28,549,370 20% 323,644 351,730 
2015 31,308,729 22% 354,924 376,033  

Fig. 7. The effect of sedimentation on the decrease in the actual maximum volume of the reservoir.  
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its maximum storage capacity, resulting in flooding above the dam. 
These significant inflows occur only once or twice a year and are chal-
lenging to anticipate due to the unpredictable nature of climate changes 
in the region. 

Table 1 reveals that the average monthly inflow into the reservoir 
during the last three months of the year (December, November, and 
October) is significantly lower than the average monthly inflow during 
the first four months of the year (April, March, February, and January). 
Moreover, rainfall during these months is not always guaranteed, and 
from May to September, the inflow into the reservoir comes to a halt due 
to the absence of rainfall in the region after the winter season. 

The operational performance of the reservoir was simulated using 
historical data, including water demand, inflow, and water losses (such 
as seepage and evaporation). The extent of evaporation loss (Ev,τ) is 
directly proportional to the surface area of the reservoir (Av,τ). The value 
of Ev,τ is calculated using the relationship between the surface area of the 
reservoir and the monthly average evaporation rates, which is expressed 
by Eq. (13). Additionally, the surface area of the reservoir during a given 
month Av,τ depends on the storage of water in the reservoir during that 
period, as shown in Eq. (25). 
Av,τ = 0.10116+ 0.10136 ∗ Sv,τ + 3.43 ∗ 10−3 ∗ Sv,τ

2 + 5.226 ∗ 10−5 ∗ Sv,τ
3

)25)  

Where Av,τ represents the surface area for the dam during the month τ in 
km2, Sv,τ represents the storage volume of the reservoir during the month 
τ in MCM. 

3.3. Optimizing reservoir operation with CSS algorithm 

3.3.1. Current operation with sediment effect 
The water demand and the actual release of the current operation of 

the reservoir were simulated, as shown in Fig. 9.a, considering the ex-
istence of a problem of sediment formation accumulated in the dam 
during the operational period of the reservoir (192 months) after 
simulating the volume of monthly sediment accumulated in the dam, 
which works to reduce the actual volume of the reservoir. 

The problem of water deficit increases with the increase in sediment 
accumulation and the lack of solutions to remove it, which may 
constitute a real obstacle to benefiting from the reservoir as required, it 
represents constant monthly water demand values throughout the 
operating years and variable released water that depends on the inflow 
to the reservoir and the water volume in the reservoir, considering the 
variable evaporation losses that depend on the water volume in the 

reservoir and the water loss values from the seepage, the average 
seepage value in a month formed during the operational periods of the 
reservoir is approximately 0.065 MCM. 

The reservoir exhibits two distinct operating phases, with the 
demarcation point at the onset of 2013. The pre-2013 phase faced 
considerable water deficits attributed to insufficient inflow values dur-
ing the reservoir’s initial operational stages, rendering it unable to meet 
demand. Subsequently, the reservoir encountered multiple drought pe-
riods, leading to an irregular release of water and an inadequate supply. 
Looking ahead, there is a pressing need to develop operational plans that 
account for the reservoir’s historical performance, inflow variations, 
and current storage. Algorithms can play a crucial role in optimizing 
future reservoir operations, minimizing potential water deficits, and 
ensuring sustainable water supply. 

The CSS algorithm was used to optimize the operation of the Mujib 
reservoir by using monthly reservoir inflow data over 16 years, from 
2004 to 2019 (192 monthly periods), and considering release water as 
decision variables. Table 4 shows the general characteristics of the Mujib 
reservoir. The parameters of the CSS algorithm mentioned in Table 5, 
which were adjusted and tested, were used to obtain the best results in 
optimizing the operation of the reservoir using the CSS algorithm. 

Table 6 shows the results of 10 runs of the algorithm for the objective 
function and their statistical values, considering the amounts of accu-
mulated sediment and the values of water losses from evaporation and 
seepage. The best result for the objective function is 12.163. The results 
showed that the standard deviation of the objective function values is 
close to zero, indicating that all 10 runs converge to almost one single 
solution. 

The convergence curve is a critical indicator illustrating the opti-
mization algorithm’s efficacy in reaching the optimal solution over 
successive iterations. It serves as a measure of the algorithm’s speed in 
achieving the objective function, primarily cantered around minimizing 
the square deficit. In Fig. 11.a, the convergence curve of the CSS algo-
rithm is depicted, showcasing its performance in optimizing the Mujib 
reservoir’s operation amid sediment-related challenges. Notably, the 
algorithm reached the minimum fitness point within 1500 iterations, 
underscoring its efficiency in addressing the reservoir’s complexities. 

Fig. 9.b shows the best solution obtained by the CSS algorithm in 
terms of the monthly released water during the operation period of the 
reservoir (192 months) versus the monthly demand water, considering 
the problem of sediment and water losses in terms of evaporation and 
seepage. Fig. 9.b illustrates a notable reduction in drought periods 
achieved through the utilization of CSS algorithms compared to the 
operational mode without their application. The CSS algorithms 

Fig. 8. The observed inflow of Mujib reservoir (MCM).  
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Fig. 9. Water demand and released water for Mujib reservoir (a) current operation with sediment effect (b) using the CSS algorithm with sediment effect (c) using the 
CSS algorithm without sediment effect. 

Table 4 
General characteristics of the Mujib reservoir.  

Reservoir parameters Value (MCM) 
Storage capacity for the reservoir  27.46 
Initial storage for the reservoir  5.73 
The average annual reservoir inflow  22.24 
Annual water demand  20.16 
Minimum allowable storage volume  3.77 
Maximum allowable storage volume  31.23 
Maximum water release (Max. Demand)  2.46 
Minimum water release  0.00  

Table 5 
The parameters of the CSS algorithm.  

Parameter Value 
Number of CPs 100 
Number of Decision Variables 192 
Number of iterations 5000 
Capacity of Charged Memory (CM) 5 
Radius of charged spheres 1 * 109 

Acceleration Coefficient 0.5 
Velocity Coefficient 0.5  
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contribute by supplying released water strategically to minimize water 
deficit values and mitigate prolonged drought periods within the 
reservoir. This approach ensures a consistent supply of water, even if it 
doesn’t fully meet the total demand, by reducing released water by a 
small percentage before anticipated drought periods. The objective is to 
secure water supply after these periods, thereby minimizing drought 
occurrences in situations of insufficient water inflow. Release curves 
closely aligned with demand facilitate achieving a minimal water 
deficit, emphasizing the effectiveness of the CSS algorithms in reservoir 
management. 

Fig. 10.a visually depicts the storage volume values at each time step, 
constrained within the maximum and minimum allowable storage 
limits, considering the historical inflow of the reservoir. The stability of 
the maximum allowable storage limit is evident, showcasing the reser-
voir’s consistent upper capacity. However, noteworthy changes are 
observed in the minimum allowable storage limit due to sediment 
accumulation in the dam over time. This necessitates adjustments to 
accurately simulate the reservoir’s state, reflecting the reduction in 
actual storage volume caused by sediment buildup. The increase in 
sediment volume exacerbates the water deficit issue, emphasizing the 
importance of sediment removal to maintain reservoir functionality. 

Fig. 10.a illustrates the dynamic changes in reservoir storage volume 
over time, influenced by the varying inflow patterns. Periods of 
declining storage are noticeable, indicating instances when the reservoir 
is utilized to supply water demand while accommodating the incoming 
water from rainfall during specific months. Additionally, the figure 
highlights periods where the storage volume approaches zero, signifying 
continuous water release without sufficient inflow to replenish the 
deficit. This scenario poses a challenge for the reservoir in meeting water 
demand. The allowable storage limit is defined by Eq. (26), guiding the 
reservoir’s operational constraints. 
S mint+1 = S mint + Sedt (26)  

Where Smin represents the minimum allowable water storage which in-
creases with the accumulation of sediment in the dam and sedt repre-
sents the sedimentation values formed over the time. 

The minimum allowable water storage at the end of the dam’s 
operational period in 2019 reached 8.32 MCM instead of 3.774 MCM at 
the beginning of the dam’s operational period in 2004. 

3.3.2. Optimizing the operation of the reservoir, considering the removal of 
sediment from the reservoir 

The operation in the reservoir has been optimized assuming that 
these sediments are removed from the reservoir to restore the actual 
storage volume of the reservoir to its normal state and compare the 
water deficit in both cases with the presence of sediment or not. Fig. 11.b 
shows the convergence curve of the CSS algorithm when it is used to 
optimize the operation in the Mujib reservoir in the case of removal of 
sediment, where the minimum fitness was reached within 1500 itera-
tions, it’s like when using algorithm in the case of sediments. The best 
result of the objective function between the 10 runs for the algorithm 
was 10.991 as shown in Table 6, which indicates the extent of the effect 
of sediment removal by reducing the water deficit. 

Fig. 9.c shows the best solution obtained by the CSS algorithm in 
terms of the monthly released water during the operation period of the 
reservoir (192 months) versus the monthly demand water, considering 
the removal of the sediment and water losses in terms of evaporation 
and seepage. 

The pattern of Fig. 10.a that includes the sedimentation amount is 
like the pattern in Fig. 10.b that ignores the calculation of sedimentation 
amount, while there is a slight difference in the numbers that will be 
clarified later. Fig. 10.b shows the storage volume values at each time 
step are confined between the maximum and minimum allowable stor-
age with the historical inflow of the reservoir considering removal the 
sediment. The line that represents the volume of storge in the reservoir is 
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shown between the minimum allowable storage limit and the maximum 
allowable storage limit, with both limits remaining constant to ignore 
the problem of sediment formation. 

Indexes serve as valuable tools for comparing the outcomes of 
different scenarios. The optimal system is characterized by lower RMSE 
and MAE values and higher R2 values. Table 7 presents the results of 
error indexes for various scenarios. In the context of sediment removal 
using the CSS algorithm, superior values were achieved, with R2, RMSE, 
and MAE at 0.58, 0.59, and 0.44, respectively. In comparison, when 
addressing sediment-related issues with the algorithm, the values were 
0.55, 0.64, and 0.49 for R2, RMSE, and MAE. Both scenarios out-
performed the standard operational system, without algorithmic inter-
vention and considering sediment impact, where R2, RMSE, and MAE 
were notably lower at 0.10, 1.00, and 0.54, respectively. 

These indexes—volumetric reliability (Rv), shortage index (SI), and 
resilience and vulnerability index—are instrumental in precisely 
comparing scenarios related to water supply for downstream demands. 
Optimal system performance is characterized by minimal SI and 
vulnerability index values and maximal Rv and resilience values. Table 8 
illustrates the results of these indexes when employing the CSS algo-
rithm for the Mujib reservoir. 

The Rv values demonstrated notable improvement when utilizing the 
CSS algorithm without considering sediment in the reservoir, reaching 
74.11. In comparison, the Rv values were 71.11 when employing the 
algorithm with sediment calculation. Both outperformed the Rv in the 
normal operational mode without the algorithm for sediment calcula-
tion, which stood at 67.97. 

The utilization of the CSS algorithm for both optimizing operation 

and sediment removal resulted in the lowest possible values for SI and 
Vulnerability, recorded at 11.28 and 0.51, respectively. In comparison, 
when employing the CSS algorithm for optimizing reservoir operation 
while considering sediment calculations, the values were 13.24 for SI 
and 0.56 for Vulnerability. These values outperformed those in the 
normal operational mode with sediment, which stood at 19.70 for SI and 
0.84 for Vulnerability. 

The values of the resilience were as low as possible in the normal 
operation mode without using the CSS algorithm and calculating the 
sediment, where the value was 0.29 better than the values when using 
the algorithm in both cases when calculating the sediment and when not 
calculating the sediment 0.09 and 0.10 respectively. The resilience index 
assesses the system’s ability to recover after failing to meet water de-
mand fully. It specifically considers the months when water demand was 
entirely satisfied. However, it doesn’t elucidate changes in the total 
water deficit values with algorithmic interventions, nor does it articulate 
the percentage of monthly demand met from the reservoir. 

The continuous droughts, resulting in the reservoir being depleted, 
were alleviated through the utilization of the CSS algorithm. However, it 
comes at the cost of not fully meeting water demand in certain months. 
The primary aim of the CSS algorithm is to minimize the water deficit, 
even if it means not fully releasing water in several periods, with a slight 
variance from the demanded water. This strategy aims to compensate for 
shortages during drought periods that impact the reservoir’s water 
levels. Hence, the CSS algorithm might extend the duration in which the 
released water doesn’t precisely align with the demand, albeit with a 
minor difference. Consequently, the resilience values in the regular 
operation surpass those without the CSS algorithm. Nonetheless, the 

Fig. 10. Water inflow and Storage volume for Mujib reservoir using the CSS algorithm (a) with sediment effect (b) without sediment effect.  

M.A.A. Almubaidin et al.                                                                                                                                                                                                                     



Agricultural Water Management 293 (2024) 108698

14

water distribution is optimized to minimize the water deficit, as 
demonstrated in Table 9. 

Table 9 outlines the annual water deficit values concerning the use of 
the algorithm with or without sediment calculations, juxtaposed with 
the baseline scenario involving sediment calculations. This table serves 
as a crucial metric for evaluating the algorithm’s efficacy in optimizing 
reservoir operation. The water deficit values without sediment calcu-
lations using the CSS algorithm reached an optimal low at 83.79 MCM, 
outperforming scenarios involving sediment calculations (93.53 MCM) 

and the standard operating situation with sediment calculations (103.30 
MCM). This signifies that the algorithm contributed to an 18.89% 
reduction in water deficit with sediment removal and a 9.46% reduction 
with sediment calculations. 

3.3.3. The impact of water demand management on reservoir operation 
The impact of water demand management on reservoir operation is 

elucidated through the outcomes of 10 runs of the CSS algorithm, as 
presented in Table 6. Focused on optimizing reservoir operation under 

Fig. 11. Convergence curve of the optimum solution of Mujib reservoir using the CSS algorithm (a) with sediment effect (b) without sediment effect (c) considering 
increasing in storage capasity of the reservoir (d) considering increasing in storage capasity of the reservoir and decreasing the demand. 

Table 7 
Indexes result of the release curves for Mujib reservoir using CSS algorithm compared to the current operation.  

Performances Current 
Operation 
with 
Sediment 
Effect 

with 
Sediment 

without 
Sediment 

Decreasing 
Demand 

Increasing 
Demand 

Increase 
Storage 
10% 

Increase 
Storage 
20% 

Increase 
Storage 
30% 

Increase 
storage 10% 
with 
decreasing 
demand 

Increase 
storage 20% 
with 
decreasing 
demand 

Increase 
storage 30% 
with 
decreasing 
demand 

R2  0.10  0.55  0.58  0.73  0.36  0.61  0.62  0.63  0.74  0.75  0.75 
RMSE(MCM)  1.00  0.64  0.59  0.47  0.72  0.55  0.52  0.50  0.43  0.41  0.39 
MAE (MCM)  0.54  0.49  0.44  0.31  0.57  0.40  0.37  0.35  0.28  0.26  0.25  

Table 8 
Risk analysis result of the release curves for Mujib reservoir using CSS algorithm compared to the current operation.  

Performances Current 
Operation 
with 
Sediment 
Effect 

with 
Sediment 

without 
Sediment 

Decreasing 
Demand 

Increasing 
Demand 

Increase 
Storage 
10% 

Increase 
Storage 
20% 

Increase 
Storage 
30% 

Increase 
storage 10% 
with 
decreasing 
demand 

Increase 
storage 20% 
with 
decreasing 
demand 

Increase 
storage 30% 
with 
decreasing 
demand 

Volumetric 
Reliability 
(Rv)  

67.97  71.11  74.11  79.37  69.93  76.61  78.48  79.45  81.45  82.66  83.58 

Shortage 
index (SI)  

19.70  13.24  11.28  6.86  21.78  9.68  8.87  8.34  5.74  5.08  4.71 

Resilience  0.29  0.09  0.10  0.12  0.10  0.05  0.11  0.15  0.15  0.12  0.16 
Vulnerability  0.84  0.56  0.51  0.36  0.65  0.44  0.44  0.42  0.36  0.33  0.31  
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potential variations in future water demand, the results reveal note-
worthy patterns. The most favourable result for the objective function, 
considering a decrease in demand water, is 7.034. Conversely, in sce-
narios anticipating an increase in demand water, the best outcome for 
the objective function is 16.433. Table 7 shows the error-index values, 
where we notice the big difference between the values of these co-
efficients in the two cases, where the values of R2, RMSE, and MAE in the 
case of demand water decreasing were 0.73, 0.47, and 0.31, respec-
tively, while their values were 0.36, 0.72, and 0.56 respectively in case 
increasing demand. 

Noting the difference between an increase in the Rv and a decrease in 
the SI and vulnerability in case of a decrease in the demand water and an 
increase in the demand water. Table 9 shows the values of the total 
water deficit of the reservoir when using the CSS algorithm to optimize 
the operation of Mujib reservoir in case of decreasing or increasing the 
demand water from the reservoir. The values of the total water deficit of 
the reservoir in the case of an increase in the demand water were 108.11 
MCM, this increases the water deficit by 4.55%, while in the case of a 
decrease in the demand water was 59.51 MCM and this reduces the 
water deficit by 42.39%. 

3.3.4. Effect of reservoir capacity on reservoir operation 
Transitioning to the effect of reservoir capacity on operation, Table 6 

details results from 10 runs of the CSS algorithm under varying storage 
capacities. The best results in the case of increasing the storage capacity 
by 10%, 20%, and 30% are 9.459, 8.550, and 8.047, respectively. 
Fig. 11.c, visually represents the convergence curves, indicating a 
reduction in the objective function with increased storage capacity. This 
aligns with expectations, showcasing the algorithm’s effectiveness in 
mitigating water deficits. Further analysis in Table 7 explores error- 
index values in the context of optimizing the reservoir by the CSS al-
gorithm in the case of increasing the capacity by 10% 20% 30%. The 
results of the best R2, RMSE, and MAE values were when increasing the 
reservoir capacity by 30%, where their values were 0.63, 0.50, and 0.35 
respectively, while their values when increasing the capacity of the 
reservoir were 20% were 0.62, 0.52 and 0.37 respectively and their 
values when increasing the capacity of the reservoir 10% are 0.61, 0.55 
and 0.40 respectively. 

Table 8 presents the results of the risk analysis when optimizing the 
reservoir with the CSS algorithm, considering an increase in the reser-
voir’s storage capacity by 10%, 20%, and 30%, while disregarding 
sediment-related issues. The most favourable values for Rv, SI, and 
Vulnerability were observed in the case of a 30% increase in storage 

capacity, with values of 79.45, 8.34, and 0.42, respectively. For a 20% 
increase in storage capacity, the values were 78.48, 8.87, and 0.44, and 
for a 10% increase, they were 76.61, 9.68, and 0.44, respectively. 
Moreover, the observed trends in risk analysis, as presented in Table 8, 
substantiate the advantages of augmenting reservoir storage capacity. 
The higher Rv values indicate enhanced reliability, while lower SI and 
Vulnerability values signify reduced susceptibility to adverse events. 
Notably, the 30% increase in storage capacity outperforms the other 
scenarios, underscoring the algorithm’s ability to not only optimize 
water supply but also fortify the reservoir system against potential risks. 

Table 9 shows the annual water deficit values when optimizing the 
reservoir using CSS algorithm when the capacity of the reservoir is 
increased by a percentage 10%, 20% and 30%. The total water deficit 
was the least possible when the reservoir capacity was increased by 
30%, the deficit value was 66.53 MCM, the total water deficit in the case 
of increasing the capacity of the reservoir by 10% and 20% are 75,71 
MCM and 69,90 MCM respectively. 

The comprehensive evaluation provided in this study underscores 
the multifaceted benefits of reservoir capacity optimization. The synergy 
between the CSS algorithm’s effectiveness in minimizing water deficits 
and its positive impact on risk metrics signifies a holistic approach to 
reservoir management. These findings hold significant implications for 
water resource planners and policymakers, suggesting that strategic 
investments in reservoir capacity expansion, particularly by 30%, can 
yield substantial improvements in both performance and resilience. 
Future research could delve into finer-grained analyses, considering 
dynamic factors such as climate variability and evolving water demand 
patterns, to further refine and validate these promising results. 

3.3.5. Effect of reservoir capacity with decreasing demand on reservoir 
operation 

Fig. 11.d shows the convergence curve of the CSS algorithm in the 
case of ignoring the sediment problem and the demand water manage-
ment by trying to reduce it and increase the storage capacity of the 
reservoir within different percentages. The pattern of the curve was like 
that of the previous curves of the rate of convergence. Table 6 shows the 
results of the 10 runs for the CSS algorithm in this case. The better value 
in the case of reducing the demand water and increasing the storage 
capacity of the reservoir 10% 20% 30% are 4.875, 5.226, and 5.933 
respectively. Table 7 shows the values of the error index when using the 
CSs algorithm in the case of reducing the demand water from the 
reservoir and increasing the storage capacity of the reservoir without 
regard to the sediment in the reservoir. 

Table 9 
Annual water deficit values (MCM) of the Mujib reservoir using CSS algorithm compared to the current operation.  

Year Current 
Operation 
with 
Sediment 
Effect 

with 
Sediment 

without 
Sediment 

Decreasing 
Demand 

Increasing 
Demand 

Increase 
Storage 
10% 

Increase 
Storage 
20% 

Increase 
Storage 
30% 

Increase 
storage 10% 
with 
decreasing 
demand 

Increase 
storage 20% 
with 
decreasing 
demand 

Increase 
storage 30% 
with 
decreasing 
demand 

2004  12.14  12.27  12.05  10.15  14.00  12.03  12.08  12.08  10.15  10.12  10.13 
2005  0.91  3.14  2.93  0.40  5.36  2.92  2.89  2.88  0.40  0.43  0.41 
2006  15.49  6.67  6.07  4.71  7.51  5.43  4.65  4.17  3.96  3.25  2.74 
2007  12.01  9.99  9.20  7.47  10.91  8.15  7.08  6.27  6.35  5.12  4.39 
2008  16.16  10.25  9.60  7.21  11.97  8.60  7.77  6.85  6.37  5.55  4.79 
2009  7.48  8.41  8.10  5.89  10.32  8.09  8.13  7.78  5.84  5.91  5.38 
2010  0.89  8.67  7.80  6.20  9.36  7.09  7.92  7.86  5.45  5.86  5.89 
2011  16.40  11.09  10.04  7.98  12.17  9.13  8.48  8.58  7.04  6.42  6.38 
2012  12.68  12.01  11.15  8.74  13.53  10.11  9.46  9.42  7.76  7.02  7.03 
2013  0.89  0.058  0.11  0.07  0.12  0.10  0.09  0.07  0.05  0.05  0.03 
2014  0.00  0.08  0.07  0.09  0.10  0.06  0.08  0.11  0.05  0.07  0.01 
2015  0.00  2.97  1.78  0.10  3.41  1.01  0.28  0.09  0.05  0.05  0.06 
2016  1.60  3.74  2.33  0.17  4.43  1.32  0.37  0.12  0.06  0.05  0.02 
2017  6.98  4.05  2.40  0.16  4.76  1.43  0.42  0.12  0.03  0.013  0.04 
2018  0.89  0.03  0.08  0.08  0.11  0.11  0.12  0.04  0.04  0.09  0.04 
2019  0.00  0.15  0.07  0.10  0.08  0.12  0.09  0.09  0.08  0.03  0.03 
∑ 103.30  93.53  83.79  59.52  108.11  75.71  69.90  66.53  53.67  50.06  47.38  
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The values of R2, RMSE, and MAE achieved their maximum levels 
when disregarding the sediment issue and optimizing the reservoir for a 
30% decrease in demand water and an increase in storage capacity. 
Specifically, in this scenario, their values were 0.75, 0.39, and 0.25, 
respectively. Similarly, when overlooking the sediment problem and 
optimizing for a 20% reduction in demand water and increased storage 
capacity, these values were 0.75, 0.41, and 0.26. For the case of dis-
regarding the sediment issue and optimizing for a 10% decrease in de-
mand water and increased storage capacity, the values were 0.74, 0.43, 
and 0.28, respectively. 

The outcomes of the risk analysis during the optimization of the 
reservoir utilizing the CSS algorithm are presented in Table 8. This 
analysis pertains to scenarios involving a reduction in water demand 
from the reservoir and an increase in the reservoir’s storage capacity by 
10%, 20%, and 30%, with no consideration for sedimentation. Notably, 
the most favourable values for Rv, SI, and Vulnerability are observed 
when increasing the storage capacity of the reservoir by 30%. Specif-
ically, these values are 83.58, 4.71, and 0.31, respectively. Corre-
sponding values for a 20% increase in storage capacity are 82.66, 5.08, 
and 0.33, while a 10% increase yields values of 81.45, 5.74, and 0.36 for 
Rv, SI, and Vulnerability, respectively. This data illustrates the influence 
of varying storage capacity scenarios on risk-related metrics, empha-
sizing the potential benefits of a substantial increase in reservoir storage 
capacity. 

Table 9 shows the values of the total water deficit of the reservoir 
when using the CSS algorithm to optimize the operation of Mujib the in 
the case of reducing the demand water from the reservoir and increasing 
the storage capacity of the reservoir without regard to the sediment in 
the reservoir, the values of the total water deficit of the reservoir in the 
case of an increase storage capacity by 30%, 20%, 10% are 47.38 MCM, 
50.05 MCM, and 53.67MCM respectively. 

In conclusion, the study’s findings underscore the effectiveness of the 
CSS algorithm in optimizing the Mujib reservoir’s operation, particu-
larly when addressing water demand management and storage capacity 
enhancement. The observed trends in convergence curves, error indices, 
and risk-related metrics consistently point towards the significance of 
substantial increases in reservoir storage capacity, showcasing a positive 
correlation with improved system performance. The detailed risk anal-
ysis in Table 8 provides valuable insights into the algorithm’s ability to 
minimize vulnerability and enhance system resilience under various 
scenarios. Furthermore, the reduction in total water deficit demon-
strated in Table 9 reaffirms the algorithm’s potential for practical impact 
in alleviating water scarcity concerns. These results not only contribute 
to the understanding of reservoir optimization strategies but also have 
broader implications for sustainable water resource management, 
emphasizing the need for integrated approaches that consider both 
demand-side and supply-side interventions. Future research could 
explore additional factors such as environmental impacts and economic 
considerations to provide a more holistic understanding of the algo-
rithm’s applicability in real-world scenarios. 

4. Conclusions 

In conclusion, this research investigates the complexities of opti-
mizing the operation of the Mujib Reservoir, recognizing the challenges 
posed by non-linear problems, multiple decision variables, and difficult- 
to-simulate constraints. The study employs Meta-Heuristic Algorithms 
(MHA), particularly the Charged System Search (CSS) algorithm, to 
address water deficit issues, considering scenarios such as sediment ef-
fects, water demand management, and increasing reservoir volume. The 
findings highlight the significant impact of sediment on reservoir ca-
pacity and the effectiveness of various strategies in mitigating water 
deficit. However, the study acknowledges limitations, including the 
abstraction introduced by MHA, uncertainties in sediment data extrap-
olation, and the need for more accurate information for precise simu-
lations. The research considers for future exploration and improvement, 

emphasizing the importance of sensitivity analyses for algorithmic 
robustness, obtaining more accurate sediment data, and exploring 
alternative optimization algorithms. In addition, it includes for detailed 
socio-economic and environmental impact assessments, dynamic opti-
mization models, and consideration of climate change projections. 
Furthermore, the research underscores the need for adapting strategies 
to different water inflow scenarios, addressing evaporation and seepage 
issues, and implementing effective water demand management. 
Comparative analysis, utilizing Risk analysis (volumetric reliability, 
shortage index (SI), resilience, vulnerability) and error indexes (corre-
lation coefficient R2, the root mean square error (RMSE), and the mean 
absolute error (MAE)), evaluates results against the current operation. 
Sediment removal decreases water deficit by 19.42%, and considering 
sediment in the CSS algorithm reduces it by 9.7%. Water demand 
management scenarios show a 42.40% reduction in water deficit with 
reduced agricultural demand and sediment removal. Conversely, an 
increase in water demand leads to a 4.9% deficit increase. Increasing 
reservoir storage capacity by 10%, 20%, and 30%, coupled with sedi-
ment removal, results in deficit decreases of 26.50%, 32.14%, and 
35.44%, respectively. Combining increased storage and reduced de-
mand achieves deficit reductions of 47.90%, 51.41%, and 53.59%, of-
fering viable solutions for decision-makers addressing water deficit in 
the reservoir. Despite the research’s contributions, challenges in 
obtaining relevant economic data are acknowledged, with limitations in 
economic analysis rigor due to data scarcity and confidentiality con-
straints. In fact, there is a room for future research to address these 
challenges, exploring alternative data sources and relaxing confidenti-
ality constraints to enable more robust insights into the economic dy-
namics of reservoir management. 
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