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ABSTRACT
The materials sector has grown significantly over the last few decades. One 
from the community worldwide has embraced using natural fibers and 
biopolymers in many products due to significant problems with petroleum 
supplies and concerns about using synthetic plastics as biomaterials. The 
availability of lignocellulosic fiber polymer composites worldwide, in addi-
tion to their low carbon emissions and biodegradability, has caught the 
enthusiasm of scientists and engineers. One of the main crops grown in 
Indonesia is oil palm, which has the potential to provide lignocellulosic fibers 
for composites. The increase in fiber increased the mechanical properties of 
the composite. The compatibility of OPEFB with other materials in the 
composite is essential to ensure specific applications. There is still a little 
detailed examination of the mechanical properties of OPEFB biocomposite 
and factors, including polymer type and fiber size, that can impact mechan-
ical performance. However, according to various articles, OPEFB is a potential 
raw material for reinforcing material in composites without being continu-
ously developed, so research innovations on OPEFB composites are needed.

摘要
在过去的几十年里，材料行业有了显著的增长. 由于石油供应方面的重大 
问题以及对使用合成塑料作为生物材料的担忧，来自世界各地的一位社区 
人士已经接受在许多产品中使用天然纤维和生物聚合物. 木质纤维素纤维 
聚合物复合材料除了具有低碳排放和生物降解性外，在全球范围内的可用 
性也引起了科学家和工程师的热情. 印尼种植的主要作物之一是油棕，它 
有潜力为复合材料提供木质纤维素纤维. 纤维的增加增加了复合材料的机 
械性能. OPEFB与复合材料中其他材料的兼容性对于确保特定应用至关重 
要. 对OPEFB生物复合材料的机械性能以及影响机械性能的因素，包括聚 
合物类型和纤维尺寸，仍有一些详细的研究. 然而，根据各种文章， 
OPEFB是一种潜在的复合材料增强材料原材料，尚未得到持续开发，因此 
需要对OPEFB复合材料进行研究创新.
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Introduction

Indonesia is one of the leading producers of palm oil worldwide. Empty fruit bunches from oil palms 
are one of the solid wastes produced by the palm oil industry. According to estimations, Indonesia can 
generate 7 million tonnes of Oil Palm Empty Fruit Bunch (OPEFB) yearly (Anita et al. 2020). 
Production OPEFB is either 5.29 million tons of dry OPEFB or 17.64 million tons of wet OPEFB 
(Fatriasari et al. 2021). However, until now, a sizable amount of waste from empty fruit bunches from 
oil palms has been produced, endangering the environment in many countries, particularly Indonesia. 
As a result, a study on the efficient use of OPEFB waste is required (Hermawan et al. 2022). The 
OPEFB fiber structure of the solid residue contains 37.26–63% of cellulose, 14.6–37% of hemicellulose, 
and 17–31.7% of lignin (Indriati, Elyani, and Dina 2020). OPEFB fiber composition makes it a 
desirable feedstock for a biorefinery process based on lignocellulosic chemicals (Taylor 2008).

Biological examples of fiber-reinforced composites held together by an amorphous lignin matrix 
and helically coiled cellulose microfibrils include plant fibers like OPEFB fiber. The mechanical 
properties of fibers are affected by cellulose composition, as collagen controls the tensile and ligament 
strengths in animals and the mechanical properties of connective tissue (Goh, Chen, and Liao 2014).

The study of natural fibers instead of synthetic ones as reinforcing components in polymer 
composites has significantly increased recently. The benefits of natural fibers are their low density, 
low cost, non-toxicity, and environmental friendliness. They are also renewable and readily available 
in large quantities. Additionally, they are easy to process and produce minor equipment abrasion. 
Banana, oil palm, kenaf, jute, hemp, coir, bamboo, and wood are cellulose fibers utilized as composite 
reinforcement material (Asyraf, Ishak, et al. 2021; R. A. Ilyas, Zuhri, et al. 2022; R. A. Ilyas et al. 2021). 
OPEFB-based composites can be applied in the fields of automotive, biology, military, adsorbents, 
floor panels, furniture, and household appliances (Asyraf, Ishak, et al. 2021; Nurazzi, Asyraf, Khalina, 
et al. 2021).

In recent years, OPEFB’s hydrophilicity has been reduced by physical, chemical, or chemical and 
physical treatment methods (Essabir et al. 2016; Shinoj, Visvanathan, Panigrahi, and Kochubabu  
2011). Due to their efficacy, chemical treatments are frequently utilized in developed composite 
materials (Norrrahim et al. 2021). The general perspective of OPEFB and its composites has been 
the subject of numerous academic discussions, especially by (Shinoj, Visvanathan, Panigrahi, and 
Kochubabu 2011). Specific OPEFB used as reinforcing elements in polymer composites have received 
much attention in reviews (Mahjoub, Yatim, and Sam 2013). Additionally, the majority of analyses of 
OPEFB fiber biocomposites have applications that emphasize energy absorption (Faizi et al. 2016), 
structural (Mahjoub, Yatim, and Sam 2013), and furniture design (Suhaily et al. 2012).

Since OPEFB fibers are biodegradable materials, they have been used extensively to reinforce 
thermoplastics and thermosets and improve their properties. Fabricating microperforated panels, 
particleboard, medium-density fiberboard, and thermal insulation panels uses OPEFB fibers and 
polymer composites (Ramlee, Naveen, and Jawaid 2021; Sekar et al. 2021).

In this latest review, we have detailed the characteristics of empty bunch fiber, treatment modifica-
tions, and their applications. Moreover, the study examined the most recent OPEFB composite 
concerns. Researchers working on OPEFB composites will benefit from this innovative publication.

OPEFB fibers

Availability

Most oil produced and consumed worldwide comes from the oil palm plant. The introduction of 
OPEFB to Indonesia dates back to 1911, and over the subsequent decades, it has experienced 
remarkable growth, evolving into a pivotal commodity by 1970. According to data obtained from 
the Ministry of Agriculture of the Republic of Indonesia’s Directorate General of Estate Crops, the year 
1970 witnessed exclusive management of oil palm plantations by state-owned and commercial 
enterprises. However, a significant development occurred in 1979 with the initiation of small-scale 
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plant farms, which commenced their operations (Hambali and Rivai 2017). The world’s leading palm 
oil producer, including Indonesia, keeps growing their oil palm crops and production. There are 25 
provinces in Indonesia where there are oil palm plantations. However, only five provinces South 
Sumatera, West Kalimantan, North Sumatera, Riau, and Central Kalimantan are the primary sources 
of palm oil due to their highest production capacity (Indriati, Elyani, and Dina 2020). Apart from 
producing crude palm oil, palm oil mills produce by-products in the form of waste. The waste consists 
of liquid waste from steam and hydro cyclone discharge, solid waste in OPEFB, shells, and sludge, and 
waste gas resulting from OPEFB or shell combustion (Zahan and Kano 2018). In 2017, 38 million tons 
of CPO, equal to 190 million tons of OPEFB, were produced in Indonesia. OPEFB might be available 
for more than 47 million tons annually because OPEFB yielded 20% CPO (Santi, Kalbuadi, and 
Goenadi 2019). Then in 2019, the total production was 14% more than in 2018, and the entire show 
was 34.7 million tons of palm oil (Nurazzi, Asyraf, Khalina, et al. 2021). Thus, it can be predicted that 
there will be an increase in solid waste production, one of which is OPEFB. If the “waste” OPEFB is not 
used and handled correctly, it will be a huge problem in the future.

Fiber composition

Natural fibers are biodegradable, affordable, sustainable, and have good thermal-physical character-
istics. Consequently, many researchers have considered the potential use of thermal isolation for 
natural fiber processing (Ramlee, Naveen, and Jawaid 2021). The method for processing industrial and 
agro-industrial waste into lignocellulosic biomass includes using low concentrations of sulfuric acid 
material for hydrolysis to produce a more effective product because this acid has a more significant 
number of hydronium ions compared to other strong acids such as hydrochloric acid. Then, the pre- 
treatment of the previous lignocellulosic raw materials, namely by boiling first, follows so that 
delignification is more effective and minimizes NaOH (Ahmad, Rita, and Noorjannah 2022). 

Figure 1. Oil palm biomass and derivatives. Reused with permission from elsevier citing (R. A. Ilyas, Zuhri, et al. 2022).
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OPEFB, oil palm trunks, oil palm shells, and oil palm fronds are among the lignocellulosic biomass 
wastes produced by the palm oil industry, as shown in Figure 1.

Researchers have emphasized the significance of converting the large OPEFB biomass produced 
from oil palm plantations each year into a useful agricultural end product. Moreover, many research-
ers have sought to assess oil palm biomass’s potential and adaptability in various industries (Omoniyi  
2019). Table 1 displays various studies of fiber composition of OPEFB.

Morphology and single-cell dimensions

The morphology of OPEFB can be observed using the SEM method, as shown in Figure 2a (Lai et al.  
2021). The SEM images depict the surface structure of OPEFB fiber at various magnification levels. 
The SEM micrograph of an untreated OPEFB fiber shown in Figure 2a was distorted, and the non- 
cellulosic materials that served as a protective covering have covered the cellulose microfibrils’ surface 
(indicated by the blue arrow) (as marked by red circles). The cellulose surface was smooth, transpar-
ent, and has distinctive rod-like microfibrils, as displayed in Figure 2b.

According to research by Padzil et al. (2020), the isolation of nanocellulose from OPEFB using 
hydrolysis and continued ultrasonication resulted in a morphological dimension of nanocellulose 
synthesized at 17.85 nm. Nanocellulose OPEFB fibers produced from the vibration milling times 

Table 1. Various studies of fiber composition of OPEFB.

Extractive (%) Cellulose (%) Hemicellulose (%) Lignin (%) Ash (%) References

- 45.95 22.84 1.23 0.53 (Ahmad, Rita, and Noorjannah 2022)
1.3–4.2 37.26–63 14.6–37 17–31.7 1.2–6.7 (Indriati, Elyani, and Dina 2020)
7.49 ± 3.27 61.12 ± 2.66 10.56 ± 1.58 19.81 ± 0.09 0.83 ± 0.03 (Anita et al. 2020)
- 44.4 30.9 14.2 - (Fahma et al. 2010)
1.34 37.26 14.62 31.64 6.69 (Sudiyani et al. 2013)
- 47.60 28.10 13.10 - (Baharuddin et al. 2012)
- 59.70 22.10 18.10 - (Abdullah, Sulaiman, and Gerhauser 2011)
1.46 ± 0.09 49.63 ± 0.64 21.32 ± 0.50 19.12 ± 0.42 6.23 ± 0.19 (Almeida et al. 2022)
- 65 - 19 2 (Alonge, Ramli, and Lawalson 2017)
- 48 22 25 - (Hill and Khalil 2000)
- 47.9 17.1 24.9 - (Mohanty, Misra, and Drzal 2005)
4.5 49.8 83.5 20.5 2.4 (A. H. P. S. A. K. Khalil, Alwani, and Omar 2006)
- 29.37 14.40 22.66 - (Puspita et al. 2018)
- 22.5–25.3 24.5–27.8 24.5–27.8 - (Nomanbhay, Hussain, and Palanisamy 2013)
- 42.85 11.70 24.01 - (Rahman et al. 2007)
- 43–43.47 22.93–23.67 21.28–22.10 - (Mardawati et al. 2014)

Figure 2. SEM image of (a) raw OPEFB and (b) treated OPEFB cellulose. Reproduced under common creative lisence from (Lai et al.  
2021).
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method have a size range of 53.72–446.80 nm. The morphology of nanocellulosic fibers has an outer 
surface that is uneven, irregular, folded, and uneven.

Structure

Figure 3. shows a schematic of the OPEFB fiber architecture. Plant fibers, such as OPEFB, are 
biological examples of fiber-reinforced composites held together by an amorphous lignin matrix. 
These composites are composed of helically coiled cellulose microfibrils like collagen that control the 
mechanical characteristics of connective tissues (Goh, Chen, and Liao 2014).

Table 2 provides an overview of the structural characteristics of OPEFB fibers. The 
composition table for each component uses data on fiber length, diameter, microfibrillar 
angle, and density from several sources. Compared to OPEFB fibers, the microfibrils have a 
3–4 times smaller diameter, ranging from 10–30 nm, than the OPEFB fibers with 150–500 µm 
diameter (Gibson 2012).

Properties

Thermogravimetric analysis (TGA)
To ascertain the decomposition mass and thermal performance of the volatile OPEFB components, 
the change in mass at a constant temperature using the TG/DTG test was carried out (Rajisha et al.  

Figure 3. Schematic of OPEFB fiber structure.

Table 2. Structural properties of OPEFB as reported by various researchers.

Property Range References

Length, fiber 0.89–0.99 mm (Jawaid and Khalil 2011)
Diameter, fiber 150–500 µm (Sreekala and Thomas 2003)
Microfibrillar angle 46 ° (Kalam et al. 2005; R. Rama, Mohan, and Rao 2007; Sreekala and Thomas 2003)
Density 0.7–1.55 g/cm3 (Kalam et al. 2005; A. H. P. S. Khalil et al. 2007; R. Rama, Mohan, and Rao 2007; 

Sreekala and Thomas 2003)
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2011). Based on Figure 4, the TG/DTG test of the OPEFB reported by Ninduangdee et al. (2015) was 
conducted at a heating rate of 20°C/min. During the temperature of 160–400°C, the decomposition of 
hemicellulose, cellulose, and a small amount of lignin occurred. The OPEFB DTG profile showed a 
peak temperature of 295°C, and in TGA, there was a decrease in peak at 340°C, indicating decom-
position was taking place. Mass loss at temperatures exceeding 400°C resulted in (i) charcoal from 
decomposition decomposing of residual lignin and (ii) more oxidation in the air. The DTG curve stage 
linked with lignin decomposition had a 480°C maximum degradation rate for biomass. The ignition 
temperature (Tign) and combustion temperature (Tb) based on examining the TG and DTG curves 
were 245 and 560°C for OPEFB. At a relatively low temperature of 295 and 340°C, OPEFB has burned 
efficiently. Thermal OPEFB degradation occurs in three stages: air content at 100°C, cellulose and 
hemicellulose degradation at 195 to 360°C, and oxidation at higher temperatures (Bhat et al. 2011).

Physical and Mechanical properties
Various authors have reported different mechanical properties for OPEFB fibers; as listed in Table 3. 
This variation by different factors such as the age of the mother plant and fiber after extraction, the 
condition of the surface of the fiber, namely exfoliated cells, skin damage, the surface treatment used, 
the length of the gauge, and variations in pressure in the test grip (Witayakran et al. 2017).

The tensile strength of OPEFB-based fiber reported by Anuar et al. (2019) was measured following 
the ASTM D3822–01 test method. According to the ISO 527–4:1997 standard, tensile strength was 
evaluated using a Shimadzu 10 kN universal testing equipment in accordance with the ASTM D638 
standard. Furthermore, the flexural strength and modulus at a 2 mm/min crosshead speed followed 
the ASTM D790 standards. ASTM D3410-compliant composite panel compression testing.

Moisture absorption
The test of moisture absorption did not regulate the relative humidity at room temperature. The 
samples were dried for 24 hours at 50°C in an oven. Before the absorption test, the samples were 

Figure 4. Curve thermogravimetric analysis OPEFB. Reproduced under common creative lisence (Ninduangdee et al. 2015).

Table 3. Physical and mechanical properties of OPEFB fiber.

Tensile Strength MPa
Elongation at Break 

%

Young’s 
Modulus 

MPa
Toughness 

MPa
Density (gr/ 

cm3) References

100–400 8–18 1000–9000 - 0.7–1.55 (Dungani et al. 2014)
15.9 30 2900 - 1.5 (Anuar et al. 2019)
100–400 14 1000–9000 - 0.7–0.50 (Adam and Asik 2019)
71 11 1703 - - (M. Y. Zuhri 2009)
248 14 6700 - - (P. R. Rama and Ramakrishna 2021)
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weighed to ascertain their original weight. The moisture absorption was calculated using the equation 
below:

Moisture absorption (%) = Wh� Wo
Wo

x100%

Where: Wh is the final weight, and Wo is the initial weight of samples (Abral et al. 2020).

The results reported by Babaee et al. (2015) revealed that OPEFB untreated composites showed 
lower moisture absorption rates than treated composites. In general, when nanocellulose is under 
chemical treatment, the nanocellulose becomes more hydrophobic, resulting in a decreased or 
diminished attraction to moisture. However, Samat et al. (2020) showed that OPEFB composites 
with fibers longer than 250 µm had a more significant effect on water absorption than other compo-
sites. Similar to other lignocellulosic materials, OPEFB contains lignin, hemicellulose, and cellulose. 
Hemicellulose and cellulose are hydrophilic and linked to polar OH groups, according to Mokhothu 
and John (2015). This experiment did not include OPEFB fibers without chemical treatment. As a 
result, the fibers were expected to be longer and contained more hemicellulose and cellulose at a higher 
fiber load, increasing the interaction between fiber and moisture.

Hydrophilicity
OPEFB fiber contains hydroxyl groups (OH), which makes it hydrophilic (Firmanda et al. 2022). A 
noteworthy feature is the variation in crystalline black and white cross sections in the untreated 
material. Untreated specimens have several characteristics with previously reported features. The steps 
outlined in the literature by Gunawan et al. (2009) described cleansing using fresh or distilled water. 
The hydration impact occurred on various length scales, including the molecule and whole fiber levels 
(Kalia et al. 2011).

Figure 5a shows the molecular effect by illustrating a schematic of the molecule interaction with 
hydrogen bonding. The small size of the water molecule allowed it to permeate into the space between 
the cellulose and lignin groups. After then, hydrogen-bonded linkages formed between the hydrogen 
ends of the molecules and the hydroxyl groups in cellulose and the lignin groups in OPEFB fibers. 
Figure 5b depicts two potential hydrogen types with OPEFB fibers. The capillary action theory 
explains air entering the OPEFB fiber resulted in a hydrating impact throughout the entire fiber.

Additionally, the air carried to the OPEFB depends on the structure’s diameter and gravity 
(Sreekala et al. 2001). Due to the OPEFB fiber’s porous cross-section, capillary action occurred 
at both ends of the fiber, causing the porous structure on the fiber surface to grow and 
develop. As a result, when air entered the porous tubular structure of the OPEFB fiber, to 
achieve a force balance between the air pressure and reactive reactivity on the wall, the 
philosophy behind the front exerted pressure and forced the tubular construction to stretch 
radially. The outcome is a considerable increase in cross-sectional area, weight, and density. 

Figure 5. Hydration, a. Interaction between single cellulose chain repeat unit and hydrogen bonding. Reproduced under common 
creative lisence from (Khazraji and Robert 2013) b. Diagram of capillary action.
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Increases in weight and cross-sectional area increase specimen density from a structural 
perspective (Sreekala and Thomas 2003).

Ftir
The crude OPEFB showed characteristic bands of lignocellulosic based on Figure 6. The broad band at 
3327 cm−1 corresponded to the O-H stretching mechanism of cellulose, hemicellulose, and lignin. In 
comparison, some peaks corresponded to the C-H and C=O stretching modes observed at 2918 and 
1593 cm−1, respectively. Peaks between 1200–1500 cm−1 represent aromatic lignin’s C – C stretch 
(Wong et al. 2020).

Research by Zulkiple, Maskat, and Hassan (2016) reported absorption bandwidth related to the 
hydroxyl stretching vibration (O-H) around 3329.89 cm−1 for samples showing exposure to the 
cellulose structure. Then another prominent broad band was defined for the cellulose characteristics 
at 1051–1025 cm−1, corresponding to the C-O-C pyranose stretching mode (Rayung et al. 2014; 
Zulkifli et al. 2015). The peak at 2900 cm−1 with C-H stretching while the small peak at 896 cm−1 

was cellulose containing β-glycosidic cellulose between glucose units (Cheng et al. 2014; Fahma et al.  
2010; Nasution, Yurnaliza, and Sitompul 2017).

Then, data for absorptions band functional group cellulose, hemicellulose, and lignin in other 
authors’ works are listed in Table 4. Absorption bands for functional groups.

Modification of OPEFB fibers

Isolation nanocellulose from OPEFB

Alkali pre-treatment
Alkali is a pre-treatment agent transport technique. Cellulose, hemicellulose, and lignin are the 
chemical components involved in the interaction between lignocellulose and an alkaline solution 
(Figure 7). Lignin dissolved and degenerated as a result of the reaction. Alkali pre-treatment can 

Figure 6. Spectra FTIR raw OPEFB. Reused with permission from elsevier citing (Wong et al. 2020).
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effectively disrupt ester linkages by crosslinking xylan and lignin by solvation and saponification (Liu 
et al. 2018).

Isolation of cellulose from various alkaline methods for isolation OPEFB based Chieng et al. (2017) 
formed nanocrystals with 4 wt.% NaOH solution at 80°C for 3 h, then bleached at 80°C for 4 h using 
equal parts of acetate buffer of glacial acetic acid, aqueous chlorite, and distilled water. Latip et al. 
(2018) used 15% (w/v) of NaOH solution at 130 min then the treatment was repeated using two other 
alkali solutions, which were KOH and (Al(OH)3).

Acid hydrolysis
Acid hydrolysis is now the most used process for producing nanocellulose. It is necessary to consider 
the kind of acid, its concentration, reaction mechanism, reaction temperature, pace of mixing, and 

Figure 7. Schema isolation cellulose from OPEFB.

Table 4. Absorption bands for functional groups.

Fiber Component Wave number (cm−1) Functional group Compounds

Cellulose 4,000–2,995 OH Acid, methanol
2,890 H-C-H Alkyl, alphatic
1,640 Fiber-OH Adsorbed water

1,270–1,232 C-O-C Aryl-alkyl ether
1,170–1,082 C-O-C Pyranose ring Skeletal

1,108 OH C-OH
Hemicellulose 4,000–2,995 OH Acid, methanol

2,890 H-C-H Alkyl, aliphatic
1,765–1,715 C=O Keton and carbonyl

1,108 OH C-OH
Lignin 4,000–2,995 OH Acid, methanol

2,890 H-C-H Alkyl, aliphatic
1,730–1,700 Aromatic

1,632 C=C Benzene streaching Ring
1,613, 1,450 C=C Aromatic skeletal mode

1,430 O-CH3 Methoxyl-O-CH3
1,270–1,232 C-O-C Aryl-alkyl-ether

1,215 C-O Phenol
1,108 OH C-OH
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length of the reaction when carrying out the method. The most often utilized acids among these are 
hydrochloric and sulfuric (Marakana, Dey, and Saini 2021).

Diverse organic acid and mineral acid-based acid hydrolysis OPEFB are also gaining popularity. Haafiz et 
al. (2013) used 2,5 N HCl at 105 ± 2°C for 30 min to synthesize microcrystalline cellulose. Septevani et al. 
(2020) used sulfuric acid and phosphoric acid at 50°C for 3–5 hours to obtain nanocellulose.

Surface modification

Pretreatment method for cellulose production as shown in Table 5.

Chemical treatment
Natural fibers, which get their hydrophilic qualities from lignocellulosic materials, can interact poorly 
with hydrophobic matrix polymers. Additionally, the hydrophilic nature results in water absorption 
and fiber deterioration due to microbial attack (A. Khan et al. 2020). Chemically altering the fiber’s 
surface can resolve this issue, replacing part of the hydroxyl groups, which can give the cellulose the 
necessary hydrophobicity (Indarti, Marwan, and Wanrosli 2019). Chemical fiber modification can also 
improve the interface bond’s compatibility with the fan base matrix reinforcement. To maximize the 
availability of active OH groups for interlocking with the polymer, fatty acids, undesirable impurities, 
and other contaminants are removed from the fiber surface using chemical processes such as alkali 
treatment (A. Khan et al. 2020).

Chemical modification was carried out by Ajazi et al. (2023) using the benzoyl chloride method. 
Cellulose was reacted with a sodium hydroxide solution mixture and sonicated, then benzoyl chloride 
was added in an alkaline solution with sodium hydroxide solution. The modified cellulose precipitate 
was then filtered and dried in an oven.

Mechanical treatment
One of the possible mechanical modifications is superheated steam (SHS) treatment, as done by Warid 
et al. (2016) by putting OPEFB in a superheated steam oven. The results obtained can denature OPEFB 
by removing hemicellulose and lignin. This treatment also reduced moisture, removed silica bodies 
from the surface, and increased the thermal stability of the fibers. Modifying the fiber texture can make 
it more compatible with the hydrophobic polymer matrix. SHS treatment will be preferred as a non- 
chemical treatment strategy to produce ecologically acceptable products such as composites as it is a 
more environmentally friendly procedure.

High-pressure homogenization is the mechanical process of transforming separate cellulose into 
nanocellulose. It is a successful and efficient method for biomass refinement due to its simplicity, high 
efficiency, and cautious use of organic solvents. Since cellulose frequently jams the valves of the 
homogenizer, it must first be processed using a steam explosion, a microfluidizer processor, or some 
other technique. Ionic liquids (IL) have recently gained popularity due to the exceptional ability of 
cellulose to dissolve at ambient temperature. Additionally, this component uses cryo-crushing with 
liquid nitrogen, where the cellulose pulp is frozen using liquid nitrogen and then crushed. To reduce 
microsized particles to nanosize, high-speed ball milling is a typical mechanical procedure (Marakana, 
Dey, and Saini 2021).

Physical treatment
The composite can be strengthened by making individual filaments, first dividing the fiber 
bundles to prevent agglomeration problems. This modification can be done through physical 
treatment, namely modifying the fiber to maximize compatibility with composite reinforcement 
applications. One way to avoid agglomeration is using ultrasonication, defined as sound with a 
frequency above the audible range (above 25 Hz). Longitudinal waves are created in water 
molecules due to the complete transmission of sound waves through a liquid bath, generating 
smoothing and compression waves. The shock wave is created by the small bubbles created by 
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the sudden collapse of the compression wave. So, micro-jetting and micro-streaming are two 
methods used to clean the fiber surface. When the bubbles and fiber surfaces collide in micro- 
flow, intermolecular tearing occurs. Oscillating bubbles rub the fiber’s surface during micro-flow 
(A. Khan et al. 2020).

Sulaiman et al. (2022) modified the physical treatment using bleached OPEFB fiber and added 
distilled water to the suspension before ultrasonication. Then, the beaker containing the suspension 
was placed in an ice bath to minimize overheating of the fiber because fiber samples can burn due to 
high-intensity waves. Samples were collected by centrifugation and freeze-dried.

Microwave treatment
Microwave treatment is a promising biomass treatment method because it can effectively break down 
the lignocellulosic structure, which causes the cellulose structure to open so that cellulose access 
becomes easier during enzymatic hydrolysis. Microwave heating is direct, fast, and uniform. This 
technology is considered green because it consumes less energy than conventional heating, reduces 
emissions, and helps protect the environment because it does not produce wastewater, exhaust gases, 
or other waste products (Gong, Liu, and Huang 2010).

Solihat et al. (2017) modified OPEFB with microwave treatment using OPEFB added with oxalic 
acid in a Teflon tube and then placed in a microwave oven at a predetermined temperature and time. 
Furthermore, the suspension was removed from the fraction solution with filter paper and washed 
until neutral. Then the samples were analyzed.

OPEFB composite

The recent development of the OPEFB composite

Utilizing oil palm wastes has recently become an exciting technique for creating durable polymer 
matrix composites. But one of the most critical aspects of how these materials perform over time is 
how they absorb water (Almeida et al. 2022). In various industrial sectors over the past ten years, the 
usage of natural fibers as reinforcement in polymer matrices has increased. It is essential to prioritize 
utilizing agroindustrial wastes as raw materials to build ecologically friendly, highly productive, and 
commercially successful composites; it is preferable to prioritize using agroindustrial wastes as raw 
materials (Valle et al. 2022).

The three primary categories of polymers, sometimes known as plastics, are thermoplastics, thermo-
sets, and elastomers. Thermoplastics have the property of being easily bent and becoming softer as the 
temperature rises. Cross chains known as elastomers can grow the number of lateral links until they 
transform into thermosets. High crosslinking levels prevent thermosets from softening before break-
down occurs (Carmona 2021).

Three critical criteria the matrix, the reinforcement, and the interfacial adhesion are used to 
categorize composite materials (understood as connectivity). Because the dispersed phase’s propor-
tion, size, form, distribution, and orientation impact the ultimate qualities of a composite, it is crucial 
to have it (Dai and Fan 2013). As a result, the properties of the elements added together include those 
of the composite.

Oil palm empty fruit bunch (OPEFB) reinforced thermoset composite

A well-established technique for enhancing thermoset polymers’ toughness and other fundamental 
mechanical properties is the introduction of nanoparticles (Marouf et al. 2016). If the nanostructured 
particles are evenly disseminated throughout the polymer matrix, their huge specific surface areas can 
create a sizable interfacial area (Zamanian, Ghasemi, and Mortezaei 2021). Due to the ability to alter 
polymer characteristics in the artificial region, resemblance to molecular form, and nanoscale size of 
the filler particles, nanofillers interact more strongly with thermoset polymer matrices (Khostavan et 
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al. 2019; Zabihi and Mostafavi 2012). Therefore, the comparatively low filler concentration makes a 
higher polymer percentage with changed properties possible (Hsissou et al. 2021). In work conducted 
concurrently, OPS nanoparticles were impregnated using a vacuum pressure approach with OPT and 
phenol formaldehyde (PF). Because there is less water absorption and a lower expansion coefficient, 
the resulting composite has a substantially higher anti-swelling efficiency. The flexural, tensile, and 
impact strengths were more significant than the control samples. The flexural and tensile modulus 
increased from 4.35 to 4.95 GPa and 2.67 to 3.51 GPa, respectively. The elongation at break was 
currently nearly steady. OPS nanoparticles were added to the composite; as a result, improving its heat 
stability. The most significant developments in terms of thermal, physical, and mechanical qualities 
were from composites that were made that contained 5% OPS nanoparticles (Dungani et al. 2014)

Oil palm empty fruit bunch (OPEFB) reinforced thermoplastic composite

Utilizing waste from palm oil production has recently gained popularity for creating sustainable polymer 
matrix composites. Valle et al. (2022) noted that OPEFB, which comes in two fiber sizes (605 and 633  
µm) was combined with thermoplastic acrylic resin to create a natural fiber-reinforced polymer matrix 
composite. A filler content of 42 wt.% was maintained for all formulations while the resin and fiber were 
combined at room temperature. Thermomechanical compression molding was applied at four proces-
sing temperatures (80, 100, 120, and 140°C) as a composite production method. After that, all 
compositions underwent 330 h of salt mist spray aging. Overall, the findings have shown that a simple 
process for developing composites based on a water-borne acrylic matrix and OPEFB fibers is feasible.

Teixeira et al. (2009) conducted a study to see how adding nanocellulose affected the properties of 
TPS when glycerol and sorbitol were used as plasticizer. The hydrophilicity of the TPS matrix 
decreased by adding nanocellulose to it. Fahma et al. (2010) reported that including nanocellulose 
up to 3% by weight enhanced the tensile strength and crystallinity of thermoplastic cassava starch 
composite films.

Composite manufacturing methods

Various manufacturing methods exist for successfully developing composites, such as an injection 
mold for OPEFB fiber-reinforced thermoplastics. The selection of a particular manufacturing process 
depends on the type of polymer (thermoplastic or thermoset) used to develop OPEFB composites 
(Mazumdar 2002). The manufacture of thermosetting composites is easy because of lower costs, better 
fiber wettability, and less heat and pressure required during curing. Thermoplastic composites are very 
popular in the aerospace and automotive industries (M. Z. R. K. Khan and Srivastava 2018). Table 6. 
shows different manufacturing methods, processing techniques, and composite characteristics.

Table 6. Manufacturing methods for composite development (M. Z. R. K. Khan and Srivastava 2018).

Methods Operation Characteristics

Compression Molding A compressive load is applied through the top of the mold; The 
fiber-matrix mixture is placed inside heated closed molds.

Thermoset polymer, high production, 
multiple part development

Injection Molding The required amount of matrix and fiber mixture is injected into 
the mold cavity of the extruder.

High production rates, compability with 
both type of resin

Hot Press Stacked thermoplastic dough together between the mold is 
heated and compressed.

Can be operated by personal

Liquid Transfer 
Molding Process

The resin is injected into the fiber carrier closed mold with a 
mold cavity having vacuum pressure.

High fiber volume fraction, heat transfer 
are the major constraints.

Hand Lay-Up Method The fiber-matrix mixture is placed manually into the open mold 
using light pressure by the rollers to remove trapped air.

which is better compatibility with the 
thermoset, low cost, size constraintss
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Circular economy strategy

The concept of a circular bioeconomic emphasizes ”‘reduce, reuse, and recycle’‘ to eliminate unne-
cessary waste, including eliminating the use of raw materials, energy, and overall carbon emissions 
production cycle. This concept includes remanufacturing products for use as raw materials or as part 
of raw materials and a by-product production to generate income. In other words, it could be wasting 
waste. The previous concept of linear economics referred only to the conditions of the ’‘take, make, 
use, dispose of’” model, where raw materials are used to make products, sold for consumption, and 
disposed of at the end of their life cycle without considering eco-friendly alternatives including reuse, 
recycling, and waste valuation. The by-products generated in the palm oil industry are mostly reused 
and recycled. Essential moving toward a more strategic approach is how well these practices are 
implemented in the industry and how well performance is contributing to sustainability (Cheah et al.  
2023).

Properties of OPEFB composite

Compatibility of OPEFB

Both Figures 8 (a) and (b) depict the scanning electron microscopy (SEM) images of the biocomposite 
films’ tensile fracture surfaces at 2 and 4 wt.%, respectively. The fracture surface of biocomposite films 
had low agglomerations and was well dispersed, as demonstrated by the 2 wt.% of OPEFB contents 
(Figure 8 (a)). This morphology indicated that the OPEFB particles were present before dissolution 
and fragmented throughout the process. Since the biocomposite film was homogeneous, it might be 
presumed that the OPEFB fillers have dissolved and reinforced within the OPEFB matrix. However, as 
shown in Figure 8 (b), biocomposite films showed a rough surface when the OPEFB content increased. 
Compared to OPEFB at 2 wt.%, the morphology of RC biocomposite films containing 4 wt.% OPEFB 
was more irregular. The tensile strength of biocomposite films at 2 wt.% OPEFB contents, which was 
higher than 4 wt.% OPEFB contents, validated this finding. When compared to Figure 8 (b), the SEM 
micrograph in Figure 9 (a) exhibited fewer voids and agglomerations (Zailuddin and Husseinsyah  
2016).

The untreated OPEFB fiber in Figure 8 had a relatively smooth surface covered with wax, lignin, 
and hemicellulose that stopped the fiber from rupturing. After processing, the surface fiber signifi-
cantly changed due to removing particular inter-fiber material (Latip et al. 2018).

Mechanical properties

Thermoplast (TPS)-based plastics must have similar mechanical and barrier qualities as traditional 
plastic to compete with it. However, this is particularly challenging due to the hydrophilic rates that               

Figure 8. SEM micrograph of composite fiber with different matrix (a, left) matrix epoxy (b, right) matrix PVC. Reproduced under 
common creative lisence from (a) Arif et al. (2010) and (b) Hassan et al. (2010).
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thermoplastic starch inherited and its high susceptibility to environmental moisture absorption. With 
rising humidity, thermoplastic starch’s mechanical characteristics degrade exponentially (Lai et al.  
2021). Adding inorganic or organic fillers enhances mechanical strength and barrier qualities (Osman 
et al. 2021). The tensile toughness value will increase as the area under the curve increases, indicating 
that the polymer exhibits better tensile strength and elongation at the break due to a more effective 
energy absorption mechanism (Miles, Ball, and Matthew 2016). Bakar et al. (2005) conducted a study 
examining the impact of incorporating OPEFB on the mechanical and thermal characteristics of 
unplasticized poly(vinyl chloride) (PVC) composites. The inclusion of OPEFB fibers in the PVC-U 
matrix resulted in an enhancement of the flexural modulus. This improvement can be attributed to the 
restriction of segmental mobility of the polymer chains in close proximity to the fibers. The introduc-
tion of OPEFB at a concentration of 10 wt.% within PBS/starch/glycerol led to an increase in flexural 
properties, yielding a value of 85 MPa. However, an inverse relationship was observed between the 
impact strength of the composites and the OPEFB fiber content. This decline can be attributed to 
factors such as fiber agglomeration, inadequate dispersion, and moisture absorption. The effect of 
various weight percentages of kenaf and OPEFB hybrid compositions, as well as fiber fractions (wt.%), 
on the mechanical and thermal properties of unsaturated polyester (UPE)/epoxidized palm oil (EPO) 
composites, was investigated by Mustapha et al. (2022). The study focused on three different kenaf/ 
OPEFB hybridization compositions: 100/0, 90/10, 70/30, and 50/50 (wt.%), at three different fiber 
weight fractions (9, 12, and 15%) reinforced in UPE/EPO resin. The alkali treatment effectively 
eliminated a significant portion of the moisture, cellulose, and hemicellulose in both kenaf and 
OPEFB fibers. The mechanical analysis demonstrated that a higher proportion of OPEFB in the 
kenaf/OPEFB hybrid fiber composition enhanced Young’s modulus, tensile strength, elongation at 
break, and impact strength of the resulting composite, particularly at 9 and 12% fiber fractions. 
Table 7. Shows the thermoset and thermoplastic polymer mechanical properties.

Thermal properties of OPEFB composites

Figure 9. shows DSC curves illustrating melting, crystallization, and glass transition. The first 
derivative of the free energy (enthalpy) versus temperature graphs constantly during melting is a 
first-order thermodynamic change. Melting is a characteristic of crystalline materials characterized by 

Figure 9. Curve DSC for thermoplastic and thermoset. Reused with permission from elsevier citing (Ratna 2012).
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a sharp peak in the DSC, which is the heat flow versus temperature plot. Thermosets can not melt, but 
some crystal segments can experience melting, polyurethane being one example. In comparison, 
thermoplastic is easy to melt. A steep peak in the DSC, or heat flow versus temperature, indicates 
softening, a property of crystalline materials. Although thermosets cannot melt, specific crystal 
segments, like polyurethane, can. In contrast, thermoplastic dissolves easily (Ratna 2012).

Application of OPEFB composite

The potential for OPEFB composites as materials for high-performance applications is enormous. The 
qualities of OPEFB can be improved with much work, specifically through fiber alterations, hybridiza-
tion with other natural fibers in a synergistic way, the use of additives and enhancers in composites, 
and the implementation of appropriate manufacturing processes for different purposes. Creating 
OPEFB composites for high-performance applications across various industries is possible. Due to 
its comparable mechanical properties to synthetic fibers, low manufacturing cost, acceptable thermal 
and acoustic characteristics, and environmentally friendly processing, oil palm lignocellulosic fiber is 
an attractive replacement material for polymer composite (Asyraf et al. 2022). Figure 10 shows the 
application OPEFB composite.

Natural fiber-reinforced polymer composites have been widely used in numerous industries 
to produce various items, including biorefinery OPEFB vis-a-vis composites. This progress has 
been recorded during the previous few decades (Norizan et al. 2019; Panigrahi 2010) for 
biodegradable packaging materials (A. Khalil et al. 2017) and structural and construction 
materials. Furthermore, biomass from oil palm is used to make high-performance polymers 
for use in ballistic and bulletproof applications (Nurazzi, Asyraf, Khalina, et al. 2021), thermal 

Figure 10. Application OPEFB composite.
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insulators, concrete building material, water treatment using carbon activation, and automotive 
disk brake pads (Sahari and Maleque 2016). Additionally, oil palm biomass waste has been used 
to create a variety of products with additional value, such as pulp and paper production, 
nanocomposites, thermoset and thermoplastic composites, oriented strand board, blockboard, 
and laminated veneer lumber, as well as particle, polywood, chip, and hardboard (Suhaily et al.  
2012).

Table 8. shows the potential applications of OPEFB fibers reinforced composites for automotive.
OPEFB has shown potential as a reinforcing material in polymer composites, opening up various 

applications in different industries. Some potential applications of OPEFB-reinforced polymer com-
posites include construction and building materials, the automotive industry, packaging materials, 
furniture and consumer goods, and the electrical and electronic industries. OPEFB-reinforced poly-
mer composites can be used in the construction industry for structural components, wall panels, 
roofing sheets, and insulation boards. The enhanced mechanical properties of these composites, such 
as improved strength and stiffness, make them suitable for load-bearing applications. Empty fruit 
bunch (OPEFB) composites have been studied for their potential use in building materials. Various 
studies have shown that EFB fibers can enhance the physical and mechanical properties of composites. 
Table 9 shows the potential application of EFB fibers reinforced composites for building and 
construction materials. Omoniyi (2019) found that pre-treatment of EFB fibers with water at 60°C 
and a NaOH concentration of 8% improved the performance of cement-bonded composites. Rozman 
et al. (2010) highlighted the importance of forming a polyurethane matrix in OPEFB-polyurethane 
composites for good stress transfer and improved flexural and impact properties. Khalil et al. (2010) 
investigated laminated bio-composites reinforced with OPEFB and observed improvements in 
mechanical, physical, and thermal properties. Ramlee et al. (2019) studied hybrid composites using 
OPEFB and sugarcane bagasse fibers and found that the hybridization improved tensile strength, 
water absorption, and thickness swelling. Adlie et al. (2019) explored the use of OPEFB fibers in 
polymeric foam composites and observed enhanced tensile strength and thermal stability. These 
studies have suggested that OPEFB composites have the potential for use in building materials due 
to their enhanced properties.

OPEFB-reinforced polymer composites can find applications in the automotive sector, particularly 
in manufacturing interior components, such as door panels, bulletboards, and seat backs. These 
composites can provide lightweight alternatives to traditional materials while maintaining sufficient 
strength and durability. OPEFB composites have been investigated for automotive applications. 
OPEFB fibers have been used to reinforce epoxy resin for bumper beams in cars, replacing epoxy/ 
glass fiber composites (Witayakran et al. 2017). OPEFB-polyurethane (OPEFB-PU) composites were 
also produced, with the flexural and impact properties influenced by the percentage of OH groups in 
OPEFB and the reinforcing effect of the filler (Rozman et al. 2010). Composites based on ethylene 
vinyl acetate (EVA) copolymers and EFB fibers were prepared, but further details were not provided 
(Sefadi and Luyt 2012). Composites have been prepared from recycled polypropylene (RPP), OPEFB, 
and/or glass fiber using extrusion and injection molding techniques (Islam et al. 2017). OPEFB fibers 
have been treated in sodium hydroxide solution and used in composites with polypropylene, resulting 
in improved mechanical properties with the addition of a coupling agent and flame retardant (Beg et 
al. 2013). Overall, these studies suggested that OPEFB composites have the potential to be used as 
green materials in automotive applications.

Table 9. shows the potential applications of OPEFB fibers reinforced composites for building and 
construction materials.

Conclusions and future outlook

Indonesia, the world’s top palm oil producer, has an abundance of palm oil biomass that can be used as 
a starting point for creating biocomposite materials. One type of solid waste biomass widely used in 
palm oil mills is OPEFB. OPEFB can be manufactured in quantities of 22 to 23 million tons annually. 
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But only 10% of it is used; the rest is wasted (Padzil et al. 2020). OPEFB is an excellent raw material to 
be extracted into cellulose or modified on its surface. The use of cellulose obtained from OPEFB has 
yet to be thoroughly studied, especially in biocomposites. However, nanocellulose has very bright 
prospects.

To the best of our knowledge, Almeida-Naranjo et al. (2022) who investigated the water absorption 
behavior of OPEFB for fillers in acrylic thermoplastic composites presented their findings on the water 
absorption behavior for composites. According to the scientists, the morphology of the composite, the 
presence of functional groups, and the reinforcement’s properties all impacted the adsorption capa-
city. Identifying polysaccharides, functional groups (mostly carboxyl and hydroxyl), porosity, and 
voids in the reinforcement and composites revealed their presence. The morphology/size of the 
reinforcement and the production temperature have the most impact on the composite’s ability to 
absorb water. Notably, water absorption rises as processing temperature and particle size are reduced. 
According to this study, to produce biomaterial composites with high water absorption, paying 
attention to these aspects is required while creating composites.

Highlights

● Cellulose content in the OPEFB fibers increases the mechanical properties of the composite.
● OPEFB can potentially be used for thermoplastic and thermoset composites
● OPEFB can be produced for high-performance applications. Given that it has mechanical 

properties that are comparable to those of synthetic fibers, acceptable thermal properties, and 
processing that is ecologically friendly.
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