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Abstract
Avoiding financial losses requires preventing catastrophic oil‐filled power transformer
breakdowns. Continuous online transformer monitoring is needed. The authors use paper
insulation to evaluate transformer health for continuous online transformer monitoring.
The study suggests a new artificial intelligence method for estimating paper insulation
residual life in oil‐immersed power transformers. The four artificial intelligence models
use backpropagation‐based neural networks to predict paper insulation lifespan. Four
primary transformer insulating paper failure indices—degree of polymerisation, 2‐
furfuraldehyde, carbon monoxide, and carbon dioxide—form the basis of these
models. Each model, including the backpropagation‐based neural networks, estimates
paper insulation life using one failure index, along with moisture and temperature data.
Optimisation techniques enhance hidden layer neurons and epoch count for improved
performance. Results are validated against literature‐based life models, establishing a
precise input–output correlation. This method accurately predicts the remaining useable
life of power transformer paper insulation, enabling utilities to take proactive measures
for safe and efficient transformer operation.

KEYWORD S
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1 | INTRODUCTION

In the modern life of industrial dependence, electrical power is
very essential. To avoid serious power outages, the utilities
need to look after the major components of the power system

continuously. The liquid filled electrical power transformers
(LFEPT) are an uncertain constituent of the power system. It
is a significant asset to which everyone relies. Its failure will
cause unwanted interruption in the power supply leading to
serious financial consequences [1, 2]. So, it is pertinent to spot
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the severe faults of an LFEPT at earlier stages for its rectifi-
cation to enjoy an uninterrupted supply and get rid of costly
outages.

Generally, the insulation of transformers has two compo-
nents, that is, the mineral oil (MO) and the cellulosic solid
Kraft paper (CSKP). The insulating MO directly reflects its
dielectric strength using the concentration of dissolved gases
evolved into it. The LFEPT windings use CSKP as its solid
insulation, serving as a major backbone of the power trans-
former. The CSKP undergoes harsh circumstances and thereby
decomposed to lose its mechanical and dielectric strength [3].
The early breakdown of the CSKP insulation affects the useful
service life of the power transformers. Though the accelerated
thermal ageing of the solid insulation is the major cause of its
early degradation but the moisture also plays an important role
in its fault severity [4, 5] The rapid degradation of CSKP
insulation produces its ageing by‐products in the transformer
MO. 2‐Furfuraldehyde (2‐FAL) and carbon oxides (CO2 and
CO) are the major constituents of the by‐products. These by‐
products can directly provide the extent of CSKP degradation
with high degree of preciseness as these by‐products are a
direct function of degree of polymerisation (DP) [6–12]. The
DP is found to be the most prominent structural parameter of
CSKP and thereby used as its direct ageing indicator. However,
the DP is obtained through destructive methods interrupting
the transformer's operation. The value of DP direct infers
about the physical state of CSKP. The value of DP for a new
CSKP is around 1200 with 100% tensile strength, however, this
value gets lower with the progressive ageing of the CSKP as
the matter of time. The value of DP when reached about 250–
200 are supposed to be end of its useful life. Thus, it is
important to analyse the CSKP insulation through its deteri-
oration status and diagnostic testing and fixed its useful re-
sidual life.

In the earlier contribution of various investigators towards
fixing the health of the CSKP insulation, many experimental
arrangements have been suggested in recent times. In ref. [9],
Emsley et al. have shown the role of furfurals in the reduction
of DP of the CSKP taking moisture as a means of degrading
factor. In ref. [11], the authors claimed a kinetic process based
on an activation energy model to analyse the state of cellulosic
decay under the influence of accelerated temperature and
moisture. They referred to DP as a failure index to figure out
the remaining useful insulation life. Mandlik and Ramu [13]
developed a multi‐stress model to trace the remnant life of
CSKP based on an enhanced Arrhenius relation. This empir-
ical model is also compared to his ageing experimental model
by simulating the actual condition of the transformer's insu-
lation system in real‐time, which yields the status of the paper
by carefully observing the value of DP along with the evolution
of 2‐FAL and carbon oxide gases in MO. A few studies have
been reported in the literature indicating uncertainties in the
used data for predicting the insulation's physical state. In ref.
[14], the issues related to data unavailability to fix the health
index (HI) for the conventional power transformer has been
addressed. Also, the influence of the unavailable data on HI is
assessed, and some recommendations are suggested for

interpreting the HI with certainty. The study in ref. [15] in-
troduces a novel technique for assessing the apparent age of
power transformers by means of a probabilistic HI. Unlike the
conventional weighted‐score‐sum approach, the proposed
method exploited a Bayesian belief network to fuse various
transformer condition monitoring data for calculating the
probabilistic HI. Zeinoddini et al. in ref. [16] present a pro-
cedure for combining transformer insulation specifications and
dissolved gas analysis (DGA) data to create a single numerical
HI value. This index serves as a comparative measure of the
overall status of the transformer. Various intelligent techniques
such as neural networks (NN), the fuzzy inference system
(FIS), the adaptive neuro‐fuzzy inference system (ANFIS), the
support vector machine (SVM) and machine learning (ML)
models are reported in refs. [17–24] which are showing some
useful contributions towards the condition assessment of the
transformer's CSKP insulation.

In the field of transformer insulation health assessment,
several notable research gaps have emerged from the discus-
sion and the literature review. One significant gap is the need
for a more comprehensive approach that effectively integrates
multiple data sources and modelling techniques to provide a
holistic assessment of transformer insulation health. While
many studies have explored various data sources and modelling
methods, the development of a unified framework that lever-
ages the strengths of these diverse approaches remains an area
for further investigation.

Furthermore, the concept of probabilistic health indices is
briefly introduced, but the literature review lacks a thorough
exploration of this approach. Future research could delve into
the development and practical application of probabilistic
health indices, shedding light on their potential to assess
transformer insulation health in a more nuanced and accurate
manner. The review mentions various intelligent techniques,
including NNs, FIS, and SVMs, but it offers limited insight
into the specific strengths and limitations of these modelling
techniques within the context of transformer insulation
assessment. Additionally, there is an underexplored research
gap related to the long‐term performance of these assessment
methods in real‐world scenarios. Accounting for factors such
as ageing, maintenance, and changing operational conditions,
this research would provide insights into the robustness and
reliability of the methods over extended periods, ensuring that
they remain effective and accurate in practical applications.

The major contribution of the present work focuses on the
efficacious optimisation, validation, and development of
intelligent NN models that evaluate the remaining useable life
(RUL) of CSKP insulation in oil‐immersed power trans-
formers. The proposed framework to identify the RUL is
shown in Figure 1. Based on the different indices of failure,
that is, DP, 2‐FAL, CO and carbon dioxide (CO2), four NN
models have been designed and optimally configured for
improved and precise prediction accuracy. The optimisation
procedure likely involved tuning hyperparameters alongside
adjusting the architecture of NN and sanitising the input at-
tributes to have the best possible outcomes. To validate the
effectiveness of the proposed models, experimental data points
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are used in this study. The obtained results were compared to
existing prototypes or other established methods for esti-
mating transformer insulation life. The comparison likely
showed that the proposed NN models provided comparable or
even better predictions than the existing techniques. An addi-
tional noteworthy implication of this study is the potential
utilisation of the NN models as a robust alternative to con-
ventional DGA tools in the context of power transformer asset
management. DGA stands as the predominant method for
detecting potential faults within transformers, primarily by
examining the composition of dissolved gases in the insulating
transformer fluid. By offering a dependable and consistent
alternative to DGA, the proposed NN models have the ca-
pacity to address challenges in transformer asset management,
thereby contributing to the prolonged operational life of power
transformers. This innovative approach can play a pivotal role
in enhancing the reliability and longevity of power trans-
formers, benefiting both industrial and utility sectors. The
reliability and consistency of these NN models mark them as a
promising alternative for the surveillance and management of
transformer assets, demonstrating their significant potential for
the industry.

2 | TRANSFORMER RESIDUAL LIFE
ESTIMATION

Recent studies on the integrated insulation system of LFEPT
reveal that the moisture content of insulation acts as a catalytic
agent of its degradation. However, it is also verified experi-
mentally that moisture in addition to temperature turns out to
be a serious concern to integrated utility companies all around
the world. It weakens the transformer insulation system badly
which ultimately affects its overall health with severe faults,
resulting in an early breakdown prior to its actual service life.
To address towards residual life assessment (RLA) of power
transformers, authors contributed various life models to anal-
yse the feasible life. These models are aided with a single stress
factor, especially the thermal stresses. Mandlik M. et al. [13]
formulated a joint stress model by enhancing the classical
Arrhenius correlation with the moisture content of the insu-
lation system along with temperature to calculate the failure
time of the insulation. The joint stress mathematical model will
take like:

t ¼ λm� ae
B
T ð1Þ

F I GURE 1 Development of ANN‐based intelligent framework to evaluate the residual/useful life (RL) of CSKP insulation in oil‐immersed power
transformers.
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a, B, and λ are the parameters of the existing model. The
moisture (m) of the insulation is signified as the percent by the
weight of CSKP, the temperature (T ) preserved throughout
ageing experimentation is shown in kelvin and the time to
failure (t) is in hours. Utilising the proper statistical techniques,
the parameters of Equation (1) have been estimated. Firstly,
Equation (1) has been linearised by taking logarithms on both
sides and hence it follows as:

log t ¼ log λ � a log mþ
B
T

ð2Þ

Assuming logt = Z, logm = Y and 1
T = X, the Equation (2)

becomes:

Z ¼ aY þ BX þ C ð3Þ

where C = log λ.
The parameters of Equation (3) in the multiple regression

model (MRM) are approximated with a focus on accelerated
ageing experiments involving various paper samples immersed
in transformer oil. Each paper sample, denoted as ‘n’ for the
number of samples, is subjected to three different temperature
and moisture levels, ranging from 90 to 130 °C and moisture
levels of 1%–3%. These samples are aged for specific durations
during which various ageing indices related to insulation fail-
ure, such as DP, 2‐FAL, CO2, and carbon monoxide (CO), are
recorded. The MRM is then employed to analyse and estimate
the parameters of Equation (3). This process is a key step in
understanding the relationship between ageing indices and the
conditions under which these samples are exposed to thermal
and moisture stresses, providing valuable insights into the
degradation of transformer insulation.

Xn

i¼1

Zi ¼ � a
Xn

i¼1

Yi þ B
Xn

i¼1

Xi þ nC ð4aÞ

Xn

i¼1
ZiXi ¼ � a

Xn

i¼1
YiXi þ B

Xn

i¼1
Xi

2 þ C
Xn

i¼1
Xi ð4bÞ

Xn

i¼1
YiZi ¼ � a

Xn

i¼1
Yi

2 þ B
Xn

i¼1
YiXi þ C

Xn

i¼1
Yi ð4cÞ

3 | METHODOLOGY TO DESIGN AI
MODELS BASED ON DIFFERENT
FAILURE INDICATORS

The loss of useful service life of LFEPT due to unattended
faults is detrimental to its long‐time performance. As a result,
the CSKP insulation deteriorates much faster and is unable to
complete its useful design period. Consequently, the CSKP
loses its tensile strength and produces its byproducts into the
transformer oil. The DP is said to be the key parameter to

determine the extent of the CSKP ageing directly. Also, its
byproducts (2‐FAL, CO2, and CO) are used to assess the
insulation health. The concentration of these byproducts in the
oil directly estimates the condition of the insulating paper. In
view of this, the key parameters for determining the useful/
residual life of the paper insulation and eventually the power
transformers are identified as DP, 2‐FAL, CO and CO2. The
value of DP and the concentrations of 2‐FAL, CO2 and CO
are taken as the indices of failure to fix the state of the CSKP
insulation. These parameters comprehensively provide the
amount of degradation that the paper insulation has gone
through. The primary objective of the research work presented
here is to focus on these four key failure parameters (in-
dicators) along with other factors to assess the insulation
lifespan. By analysing these failure indicators, it becomes
possible to correctly determine the useful and residual life of a
transformer based on the physical state of its solid insulating
paper. The proposed work offers the development of four
thermo‐moisture accelerated ageing models using the artificial
neural network (ANN) technique. It is worth mentioning that
the data utilised for developing the proposed models are ob-
tained under the laboratory conditions, as outlined and refer-
enced in ref. [13].

3.1 | Development of the proposed NN
models to fix the CSKP insulation life

ANNs are an effective network that is employed in a wide
range of applications, such as forecasting, prediction, system
control, curve fitting, tracking, and so forth. It analyses the
information parallelly. ANN has a multi‐layered structure
where each layer is categorised as either an input, output, or
hidden layer. This network structure is made up of layers of
connected nodes that allow information to propagate from the
inputs to the output. These nodes are basic cognitive structures
known as neurons. Every node receives the information par-
allelly from various inputs and generates an output based on
the value that its activation function takes when the argument
being used is the weighted average of their inputs. Usually, the
network structure along with a set of parameters characterises
the ANN. The parameters are the weights applied in each
neuron for the aforementioned weighted sums, whereas the
structure is the number of interconnected neuron layers, the
number of neurons per layer, the connection topology between
the neurons, and the type of activation (transfer) function per
neuron. In fact, ANNs often have network structures that are
predetermined by the designer. The weights are then auto-
matically trained using optimisation algorithms, such as the
commonly used back‐propagation (BP) algorithm and the
Levenberg–Marquardt (LM) optimisation [25, 26]. The BP al-
gorithm's functionality is described by the following set of
equations.

Oj ¼ f ðnetjÞ ¼ f ðxÞ,Thereby netj ¼
Xi

j

wjiOi þ θj ð5Þ
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Ep ¼
1
2
ðtpj � OpjÞ

2
ð6aÞ

δpj ¼ ðtpj � OpjÞ ð6bÞ

Δpwji ¼ � ε
�
∂Ep

∂wji

�

ð7aÞ

Δpθj ¼ � ε
�
∂Ep

∂θj

�

ð7bÞ

Here, j is the layer number and i is the neuron number in
that layer. Oj represents the neuron output, netj is the aggre-
gated weighted sum, the bias θj, wji is the weight of inter-
connection, ε is the rate of Opj learning, δpj is showing the
value of error in the jth layer, tpj is the target output and is the
actual output. Ep refers to be the error for the adopted training
pattern p, while the parameter Δp represents the weight and
bias updates for a specific pattern p during the back-
propagation algorithm. Root mean square (RMS) of the errors
in the output layer for the pth sample pattern are calculated
using Equation (3). The performance of the NN is evaluated
by calculating the mean square error (MSE) of errors between
its target outputs and the predicted (actual) outputs for each
sample in the dataset. This evaluation reflects that how the NN
is learning and approximating the target values. In the context
of NN training, the MSE represents the difference between the
target output tpj and the actual output Opj for a specific sample.
This error measures how far off the NNs prediction is from
the correct target value.

The BP algorithm is the most prevalent training algorithm
used in the multi‐layer NN models. It is employed in two
stages. In the first stage, following the application of input
vector neurons are fired as per activation functions. The sum
of the output of neurons of the layer is scaled by this activation
function and forwarded to the next layer. At the output layer,
an output vector is generated which is compared with the
desired output and an error signal is produced. In the last stage,
an error signal is back propagated in the direction opposite to
synaptic connections. Then the weights are rescaled to reduce
the error between the obtained and desired output. The
aforementioned equations represent the same.

This study used four multi‐layer feedforward NN models
with linear activation functions for the output layer and tangent
sigmoid activation functions for the hidden layers. The selec-
tion of the proposed model is based on multiple factors, which
include the ability to handle complexity in the issues raised,
suitability and compatibility with the given problems and the
potential to provide a precise prediction. Here, the proposed
NN models have the multilayer feedforward architecture that
have shown promising performance in cases related to trans-
former ageing and insulation degradation. This architecture
finds its ability to handle complex non‐linear correlations
within the applied dataset. Since the insulation degradation and
its remaining life are often influenced through various inter-
acting components, a multilayer feedforward NN proved to be

a suitable choice to model such intricacies. The proposed
model takes multiple inputs, including the failure index,
moisture, and temperature, to predict the ageing time. Such
NNs can efficiently control multivariate inputs and learn
complex patterns from them. The parameters of the ANNs
were trained using the LM optimisation approach. Each model
treats one among DP, 2‐FAL, CO2 and CO as the primary
index of failure along with two more inputs, that is, moisture
and temperature to express the residual/useful life of CSKP in
the power transformers. The dataset for each model has been
taken from a series of accelerated thermal ageing experiments
that were conducted on electrical‐grade cellulosic Kraft papers
[13]. During these thermal experiments, the paper insulation
(CSKP) was regularly monitored, and data on the values of DP,
dissolved gases, and 2‐FAL were recorded as a function of
ageing time at constant temperature and varying moisture
levels. The authors prepared a dataset for the NN models by
performing appropriate curve‐fitting on the collected data
points.

In total, 60 datasets were prepared for training and testing
the NN models. For training, 70% of the total dataset was
used, while 15% was allocated for the validation, while the
remaining 15% for testing the developed models to gage their
accuracy. The models were then tested using nine standard data
points (samples) presented in Tables 6–9. These data points
were selected from the experiments to facilitate a comparison
between the outcomes of the developed models and the
experimental results, providing a more reliable condition
monitoring technique for oil‐immersed power transformers.

The developed models have been trained using the pre-
pared experimental dataset and establishing the correlation
between failure indices taken one at a time, moisture and
temperature to estimate the useful life of transformer insu-
lation. The correlation established resembles the modified
Arrhenius equation as given in Equation (1). Each training set
consists of three input vectors, that is, a failure index, a
moisture level and a constant temperature, and a single output
vector which gives the time to failure of CSKP insulation for
the four NN models. One of the significant advantages of NN‐
based RLA of paper insulation is its ability to learn directly
from the training samples and the knowledge updation
whenever required. Figures 2 and 3 shows the schematic and
the internal architecture of the proposed system for mea-
surement of the useful insulation life. In Figure 2, I1, and I3
represent input vectors and O is the output vector. In Figure 3,
I2 and I3 represent temperature and moisture level whereas I1 is
the variable input vector and can take the values of DP or the
concentrations of 2‐FAL or carbon oxides or CO.

3.2 | Optimal NN configuration system

The optimal configuration of the NN models can be achieved
following two steps. First by varying the number of hidden
layers and second by changing the number of neurons in the
hidden layer. The work carried out here to outline the useful
life of CSKP insulation using NN models have been trained by
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changing the number of neurons in the hidden layer. This
approach finds simply to reach an optimal configuration of the
NN architectures. During the training process, the summation
of the output of each neuron of the hidden layer generates the
output vector. This output vector is subtracted from desired
output vector and the error signal is obtained. The ‘trainlm’ is a
network training function in the MATLAB environment that
continuously updates the weight and the bias value as per the
LM optimisation technique. Training is carried out in accor-
dance with the parameters set by trainlm, including the
maximum number of epochs, the performance target, valida-
tion failure, performance gradient, and the maximum training
duration (s). The LM technique, designed to expedite second‐
order training, sidesteps the need for Hessian matrix compu-
tation, akin to quasi‐Newton methods. When the performance
function adopts a sum‐of‐squares structure, estimating the
Hessian matrix involves specific techniques. This strategic
approach streamlines optimisation, enhancing efficiency in

second‐order training without the computational overhead of
directly calculating the Hessian matrix.

H ¼ JT J ð8Þ

and the gradient's computed as follows:

g ¼ JTE ð9Þ

here E is a vector of network errors and J is the Jacobian matrix
containing the first derivatives of the network errors with
respect to the weights and biases. The computation of the
Jacobian matrix is substantially simpler than that of the Hes-
sian matrix and may be done using a conventional back-
propagation method. The LM uses this computation to the
Hessian matrix in order to obtain the following Newton‐like
update:

xkþ1 ¼ xk �
�
JT J þ μI

�� 1
JTE ð10Þ

where μ is the scalar and when it is zero, it simply represents
Newton's method. As the μ approaches to a larger value, it
would become a gradient step following a small step‐size.
Using LM to train NNs looks to be the quickest way to build
feedforward NNs of a reasonable size as compared to other
NN algorithms such as Bayesian regularisation (BR) or scaled
conjugate (SCG).

The optimal insulation life estimation models with
different failure indices have been obtained by studying the
effect of change in the number of hidden layer neurons on
MSE. The MSE of each model for different hidden layer
configurations has been recorded and optimal configuration
has been identified. The variation of the mean square in errors
with the number of hidden layer neurons in the life estimation
NN models have been plotted in Figures 4–7.

Table 1 is listed with the least MSE for every NN model
based on one failure index (i.e. one among DP, 2‐FAL, CO2 or
CO) against a particular number of neurons in the hidden layer.
With 35 hidden layer neurons, DP failure index model shows

F I GURE 2 Architecture of ANN model formulation.

F I GURE 3 Internal architecture of the system estimating the
insulation life.

F I GURE 4 Variation in MSE for NN model treating DP as a failure
index.

482 - NEZAMI ET AL.

 17518679, 2024, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12407 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [09/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



least MSE error. For 2‐FAL and CO2 as failure indices, the best
model architecture has 50 hidden layer neurons and hidden
layer with 25 neurons shows best prediction accuracy in case of
CO‐based NN model.

Equations (11)–(14) represent the basic fit equations for
the performance plots of Figures 4–7, respectively. The best fit
for all the models has been achieved at the third‐order

polynomial. Also, Tables 2–5 list the values of different sta-
tistical parameters of the characteristic curves of the perfor-
mance plots.

F I GURE 5 Variation in MSE for NN model treating 2‐FAL as a
failure index.

F I GURE 6 Variation in MSE for NN model treating CO as a failure
index.

F I GURE 7 Variation in MSE for NN model treating CO2 as a failure
index.

TABLE 1 Least MSE at a particular number of neuron for NN
models based on four failure indices.

Failure index
Number of hidden
layer neurons

Mean square
error (MSE)

DP 35 2.06 � 10� 6

2‐FAL 50 1.30 � 10� 4

CO 25 4.07 � 10� 6

CO2 50 1.62 � 10� 5

TABLE 2 Statistical parameters for the performance model treating
DP as the failure index.

X Y

Min 10 2.06 � 10� 6

Max 50 3.27 � 10� 5

Mean 30 7.787 � 10� 6

Median 30 3.37 � 10� 6

Mode 10 2.06 � 10� 6

Std 13.69 9.932 � 10� 6

Range 40 3.064 � 10� 5

TABLE 3 Statistical parameters for the performance model treating
2‐FAL as the failure index.

X Y

Min 10 0.00013

Max 50 0.000218

Mean 30 0.000169

Median 30 0.000152

Mode 10 0.00013

Std 13.69 3.721 � 10� 5

Range 40 8.8 � 10� 5

TABLE 4 Statistical parameters for the performance model treating
CO as the failure index.

X Y

Min 10 4.07 � 10� 6

Max 50 6.71 � 10� 5

Mean 30 2.65 � 10� 5

Median 30 2.87 � 10� 5

Mode 10 4.07 � 10� 6

Std 13.69 1.888 � 10� 5

Range 40 6.303 � 10� 5

NEZAMI ET AL. - 483

 17518679, 2024, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12407 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [09/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



y ¼ �
�
1:99� 10� 9

�
x3 þ

�
2:17� 10� 7

�
x2

�
�
7:56� 10� 6

�
xþ8:68� 10� 5

ð11Þ

y ¼ ð1:1� 10� 9Þx3 �
�
9:7� 10� 8

�
x2

þ
�
2:2� 10� 7

�
xþ0:00022

ð12Þ

y ¼ �
�
7:8� 10� 9Þx3 þ

�
7:7� 10� 7

�
x2

�
�
2:3� 10� 5

�
xþ0:00022

ð13Þ

y ¼ �
�
1:5� 10� 9Þx3 þ

�
1:3� 10� 7

�
x2

�
�
3:4� 10� 6

�
xþ6:3� 10� 5

ð14Þ

4 | RESULT AND DISCUSSION

The proposed CSKP insulation health assessment models have
been optimally configured by fine‐tuning the number of hid-
den layer neurons. The optimal configurations thus achieved
have been validated and tested for various moisture and tem-
perature levels for real‐time samples with known DP values
and remaining life. The testing data has been prepared fixing
the temperature and varying moisture levels for the pre‐tested
samples. Then, the moisture level is kept constant and tem-
perature is varied. In order to validate the authenticity of
models they have been tested using developed data set. The

TABLE 5 Statistical parameters for the performance model treating
CO2 as the failure index.

X Y

Min 10 1.62 � 10� 5

Max 50 3.94 � 10� 5

Mean 30 3.132 � 10� 5

Median 30 3.23 � 10� 5

Mode 10 1.62 � 10� 5

Std 13.69 6.7 � 10� 6

Range 40 2.32 � 10� 5

TABLE 6 Comparison of measured life evaluated using NN and mathematical actual model by treating DP as a failure of index.

Temp. (°C) Moisture (%)

Measured insulation life

Error (%)
calculated in [13] Error (%)Actual

Using neural
network t ¼ λm� ae

B
T

90 1 64,000 64,041 74,473 � 16 � 16

90 2 27,500 27,480 27,284 1 0.71

90 3 17,300 17,334 15,164 12 12.5

110 1 16,000 16,142 15,396 4 4.6

110 2 5800 5778 5640 3 2.38

110 3 3000 3025 3135 � 4 � 3.6

130 1 4100 4054 3722 9 8

130 2 1375 1384 1364 1 1.4

130 3 675 675 758 � 12 � 12

TABLE 7 Comparison of measured life evaluated using NN and mathematical actual model by treating 2‐FAL as a failure of index.

Temp. (°C) Moisture (%)

Measured insulation life

Error (%)
calculated in [13] Error (%)Actual

Using neural
network t ¼ λm� ae

B
T

90 1 45,200 45,294 71,224 � 58 � 57

90 2 39,811 39,768 28,569 28 28

90 3 18,000 17,747 16,742 7 5

110 1 16,800 16,318 14,079 16 13

110 2 5754 5755 5647 2 1.87

110 3 3020 002 3310 � 10 � 10

130 1 3981 3983 3269 18 18

130 2 1150 1142 1311 � 14 � 14

130 3 682 703 768 � 13 � 9
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output of the models has been compared with the known
output and lifetime estimated using empirical model.

In the Tables 6–9, the CSKP insulation life is estimated
using the NN and have compared with evaluated insulation life
using the empirical model represented by the Equation (1) for
numerous moisture and temperatures. An intense observation
on these results seem to follow that the differences between
the life evaluated by NN model and those obtained mathe-
matically, both cantered on DP (Table 6) is least. It is also
known truth that any failure index measured through a
destructive test is always preferable to one measured by diag-
nostic test. Hence, the DP finds to be a precise indicator of the
physical tensile strength of the insulating paper and, thereby,
the state of its ageing. Given this, estimated life utilising DP as
a failure index offers a more trustworthy measurement (least
error) as validated by the proposed NN model (Table 6).

A parallel comparison is made for the results listed in
Tables 7–9 which show relatively large but not unreasonable
errors. It is also revealed here that the measured life of insu-
lation for all the NN models is quite closer to what it obtained
experimentally. It might also be seen in Tables 6–9 that the

estimation of the measured life differs, subjected to the index
applied to outline the failure of the insulation.

There should be skilled judgements to agree with or refuse
to the predictable life depending upon any of the indexes. The
DP measures directly the physical tensile strength of the paper
and hence the state of the CSKP ageing. Taking this into ac-
count, the assessed useful/residual life considering DP as an
index of failure offers a more reliable diagnostic test.

The data in Tables 6–9 is represented in Figures 8–11,
displaying how moisture levels affect insulation life at constant
temperatures. The graphs clearly validate that moisture content
has a significant impact on insulation decomposition. Moisture
indeed plays a pivotal role in the ageing of insulation when
coupled with temperature and electrical stresses, as elucidated
by our findings. Our research underscores a clear relationship
between moisture content and insulation life, where an increase
in moisture content corresponds to a decrease in insulation
longevity, even with a minor temperature fluctuation between
110 and 130 °C. Notably, a mere 3% moisture content leads to
a substantial reduction in insulation life across all examined
failure indices. The linear correlation between moisture content

TABLE 8 Comparison of measured life evaluated using NN and mathematical actual model by treating CO as a failure of index.

Temp. (°C) Moisture (%)

Measured insulation life

Error (%)
calculated in [13] Error (%)Actual

Using neural
network t ¼ λm� ae

B
T

90 1 49,164 49,166 57,771 � 18 � 17

90 2 18,989 19,376 21,074 � 11 � 8.76

90 3 13,313 13,345 11,683 12 12

110 1 13,892 13,804 13,111 6 5

110 2 5180 5240 4783 8 8.72

110 3 3064 3062 2651 13 13

130 1 3963 3963 3447 13 13

130 2 1169 1159 1258 � 8 � 8.5

130 3 563 565 697 � 24 � 23

TABLE 9 Comparison of measured life evaluated using NN and mathematical Actual model by treating CO2 as a failure of index.

Temp. (°C) Moisture (%)

Measured insulation life

Error (%)
calculated in [13] Error (%)Actual

Using neural
network t ¼ λm� ae

B
T

90 1 34,161 34,160 58,306 � 71 � 71

90 2 31,876 31,880 22,539 29 29

90 3 15,679 15,831 12,926 18 18

110 1 14,550 13,669 12,614 13 8

110 2 4394 4347 4876 � 11 � 12

110 3 2655 2647 2796 � 5 � 5

130 1 4280 4300 3177 26 26

130 2 1242 1237 1228 1 1

130 3 521 523 704 � 35 � 35
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and insulation life demonstrates a proportional decline in re-
sidual life with rising moisture levels. This phenomenon clearly
establishes moisture's role as a catalyst, intensifying the ageing
process of insulation when it interacts with temperature and
electrical stresses.

The combined influence of these ageing parameters
significantly accelerates the deterioration of insulating paper
(CSKP), resulting in premature failures. To ensure the reli-
ability and longevity of electrical systems, it is imperative to
meticulously manage and control moisture levels within the

CSKP insulation. The preservation of optimal insulation ma-
terials and the implementation of effective measures to safe-
guard against moisture infiltration are critical for the
dependable operation of electrical equipment. In essence, our
research underscores the critical significance of moisture in
insulation degradation and its synergistic effect with

F I GURE 8 Insulation life changes in response to different moisture
level and constant temperature considering DP as the failure index.

F I GURE 9 Insulation life changes in response to different moisture
level and constant temperature considering 2‐FAL as the failure index.

F I GURE 1 0 Insulation life changes in response to different moisture
level and constant temperature considering CO as the failure index.

F I GURE 1 1 Insulation life changes in response to different moisture
level and constant temperature considering CO2 as the failure index.
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temperature and electrical stress, which together expedite the
ageing process and lead to premature failures. This insight
serves as a valuable contribution to the field of electrical en-
gineering and underscores the importance of moisture control
in ensuring the sustained performance of electrical systems.

5 | CONCLUSION

The objective of this work is to draw attention to a potential
approach for calculating the RUL of insulating paper in po-
wer transformers. It has been demonstrated here that the
estimating process depends significantly on the insulation
failure index employed. Estimating the useful/residual life of
CSKP insulation gives a significant aspect for improving the
conditional awareness at the transformer flawless operation
level. The paper introduces four NN models as an innovative
approach to estimate the remaining life of transformer insu-
lation. These models utilise key input parameters, including
the failure index, moisture levels, and temperature, to di-
agnose the impact of moisture on CSKP insulation. Each NN
model is specifically tailored to address one of the following
failure indices: DP, 2‐FAL, and carbon oxides (CO and CO2).
The process involves training and testing these models to
achieve optimal configurations in terms of the number of
neurons in the hidden layer, ultimately enhancing prediction
accuracy. These NN models are validated using pre‐tested
samples, ensuring their real‐world applicability. To evaluate
the effectiveness of the models, the estimated insulation life is
compared with values obtained through inspection and
mathematical calculations based on the modified Arrhenius
equation. This comparative analysis enables a comprehensive
assessment of the models' performance and their potential as
a reliable means of estimating the remaining useful life of
transformer insulation. The error percentage is found to be in
close approximation to the mathematical model with minimal
discrepancies in predicted insulation life. Further it is revealed
that using DP as an index of failure, the life of transformer
can be predicted more accurately.
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NOMENCLATURE
2‐FAL 2‐furfuraldehyde
AI artificial intelligence
ANFIS adaptive neuro‐fuzzy inference system
ANN artificial neural network
BP back propagation
BR Bayesian regularisation
CO carbon monoxide
CO2 carbon dioxide
CSKP cellulosic solid Kraft paper
DGA dissolved gas analysis
DP degree of polymerisation
Ep error for the adopted training pattern p
FIS fuzzy inference system
HI health index
i neuron number in that layer
j layer number
LFEPT liquid filled electrical power transformers
LM Levenberg–Marquardt
ML machine learning
MO mineral oil
MRM multiple regression model
netj aggregated weighted sum
NN neural network
Oj neuron output
Opj actual output
RL residual/useful life
RLA residual life assessment
RMS root mean square
RMSE root mean square error
RUL residual useable life
SCG scaled conjugate
SVM support vector machine
tpj target output
wji weight of interconnection
Δp weight and bias update for a specific pattern p
δpj value of error in jth layer
ε rate of learning
θj bias

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data will be provided on request.

NEZAMI ET AL. - 487

 17518679, 2024, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12407 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [09/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ORCID
Hasmat Malik https://orcid.org/0000-0002-0085-9734
Fausto Pedro García Márquez https://orcid.org/0000-
0002-9245-440X
Mohammad Asef Hossaini https://orcid.org/0009-0002-
4417-3918

REFERENCES
1. Wu, S., et al.: Concentration prediction of polymer insulation aging in-

dicator – alcohols in oil based on genetic algorithm – optimized support
vector machines. Polymers 14(7), 1449 (2022). https://doi.org/10.3390/
polym14071449

2. Ma, X., Hu, H., Shang, Y.Z.: A new method for transformer fault pre-
diction based on multifeatured enhancement and refined long short‐term
memory. IEEE Trans. Instrum. Meas. 70, 1–11 (2021). https://doi.org/
10.1109/tim.2021.3098383

3. Fan, X., et al.: FDS measurement‐based moisture estimation model for
transformer oil‐paper insulation including the aging effect. IEEE Trans.
Instrum. Meas. 70, 1–10 (2021). https://doi.org/10.1109/tim.2021.
3070622

4. Liu, J., et al.: Moisture diagnosis of transformer oil‐immersed insulation
with intelligent technique and frequency‐domain spectroscopy. IEEE
Trans. Ind. Inform. 17(7), 4624–4634 (2021). https://doi.org/10.1109/
tii.2020.3014224

5. Gracia, B., Urquiza, D., Burgos, J.C.: Investigating the influence of
moisture on the 2‐FAL generation rate of transformers: a new model to
estimate the DP of cellulosic insulation. Electr. Power Syst. Res. 140,
87–94 (2016). https://doi.org/10.1016/j.epsr.2016.06.036

6. Nezami, M.M., et al.: An MIP‐based novel capacitive sensor to detect 2‐
FAL concentration in the transformer oil. IEEE Sensors J. 18(19),
7924–7931 (2018). https://doi.org/10.1109/jsen.2018.2864793

7. Nezami, M.M., et al.: A comb‐type capacitive 2‐FAL sensor for trans-
former oil with improved sensitivity. IEEE Trans. Instrum. Meas. 69(7),
4524–4532 (2020). https://doi.org/10.1109/tim.2019.2942519

8. Liu, C., et al.: Combined forecasting method of dissolved gases con-
centration and its application in condition‐based maintenance. IEEE
Trans. Power Deliv. 34(4), 1269–1279 (2019). https://doi.org/10.1109/
tpwrd.2018.2881747

9. Emsley, A.M., et al.: Degradation of cellulosic insulation in power
transformers. Part 3: effects of oxygen and water on ageing in oil. IEE
Sci. Meas. Technol. 147(3), 115–119 (2000). https://doi.org/10.1049/ip‐
smt:20000021

10. Lin, Y., et al.: Effects of moisture on furfural partitioning in oil‐paper
insulation system and aging assessment of power transformers. Electr.
Power Compon. Syst. 47(1), 192–199 (2019). https://doi.org/10.1080/
15325008.2019.1565135

11. Lundgaard, L.E., et al.: Aging of oil impregnated paper in power trans-
formers. IEEE Trans. Power Deliv. 19(1), 230–239 (2004). https://doi.
org/10.1109/tpwrd.2003.820175

12. Kachler, A.J., Hohlein, I.: Aging of cellulose at transformer service
temperatures. Part 1: influence of type of oil and air on the degree of
polymerization of pressboard, dissolved gases, and furanic compounds in
oil. IEEE Electr. Insul. Mag. 21(2), 15–21 (2005). https://doi.org/10.
1109/mei.2005.1412215

13. Mandlik, M., Ramu, T.S.: Moisture aided degradation of oil impreg-
nated paper insulation in power transformers. IEEE Trans. Dielectr.

Electr. Insul. 21(1), 186–193 (2014). https://doi.org/10.1109/tdei.
2013.004186

14. Prasojo, R.A., Suwarno, Abu‐Siada, A.: Dealing with data uncertainty for
transformer insulation system health index. IEEE Access 9, 74703–-
74712 (2021). https://doi.org/10.1109/access.2021.3081699

15. Li, S., et al.: Probabilistic health index‐based apparent age estimation for
power transformers. IEEE Access 8, 9692–9701 (2020). https://doi.org/
10.1109/access.2020.2963963

16. Zeinoddini‐Meymand, H., Kamel, S., Khan, B.: An efficient approach
with application of linear and nonlinear models for evaluation of power
transformer health index. IEEE Access 9, 150172–150186 (2021).
https://doi.org/10.1109/access.2021.3124845

17. Ghunem, R.A., Assaleh, K., El‐hag, A.H.: Artificial neural networks with
stepwise regression for predicting transformer oil furan content. IEEE
Trans. Dielectr. Electr. Insul. 19(2), 414–420 (2012). https://doi.org/10.
1109/tdei.2012.6180233

18. Nezami, M.M., et al.: Classification of cellulosic insulation state based on
smart life prediction approach (SLPA). Processes 9(6), 981 (2021).
https://doi.org/10.3390/pr9060981

19. Abu‐Elanien, A.E.B., Salama, M.M.A., Ibrahim, M.: Calculation of a
health index for oil‐immersed transformers rated under 69 kV using
fuzzy logic. IEEE Trans. Power Deliv. 27(4), 2029–2036 (2012). https://
doi.org/10.1109/tpwrd.2012.2205165

20. Khan, S.A., Equbal, M.D., Islam, T.: ANFIS based identification and
location of paper insulation faults of an oil immersed transformers. In:
Proceedings of the 6th IEEE Power India International Conference
(PIICON), Delhi, 5–7 December (2014)

21. Tripathi, M., Maheshwari, R.P., Verma, H.K.: Neuro‐fuzzy technique for
power transformer protection. Electr. Power Compon. Syst. 36(3),
299–316 (2008). https://doi.org/10.1080/15325000701603967

22. Tripathy, M., Maheshwari, R.P., Verma, H.K.: Application of probabilistic
neural network for differential relaying of power transformer. IEE Proc.
Gener. Transm. Distrib. 1(2), 218–222 (2007). https://doi.org/10.1049/
iet‐gtd:20050273

23. Ozgonenel, O., et al.: A new method for fault detection and identifi-
cation of incipient faults in power transformers. Electr. Power Compon.
Syst. 36(11), 1226–1244 (2008). https://doi.org/10.1080/153250008
02084737

24. Koley, C., Purkait, P., Chakravorti, S.: Wavelet‐aided SVM tool for im-
pulse fault identification in transformers. IEEE Trans. Power Deliv.
21(3), 1283–1290 (2006). https://doi.org/10.1109/tpwrd.2005.860255

25. Huang, S.C., Huang, Y.F.: Learning algorithms for perceptrons using
back‐propagation with selective updates. IEEE Control Syst. Magz.
10(3), 56–61 (1990). https://doi.org/10.1109/37.55125

26. Wang, X.P., Huang, Y.S.: Predicting risks of capital flow using artificial
neural network and Levenberg Marquardt algorithm. In: Proceedings of
the 7th International Conference on Machine Learning and Cybernetics
(ICMLC ’08), vol. 3, pp. 1353–1357 (2008)

How to cite this article: Nezami, M.M., et al.: A novel
artificial neural network approach for residual life
estimation of paper insulation in oil‐immersed power
transformers. IET Electr. Power Appl. 18(4), 477–488
(2024). https://doi.org/10.1049/elp2.12407

488 - NEZAMI ET AL.

 17518679, 2024, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12407 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [09/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-0085-9734
https://orcid.org/0000-0002-0085-9734
https://orcid.org/0000-0002-9245-440X
https://orcid.org/0000-0002-9245-440X
https://orcid.org/0000-0002-9245-440X
https://orcid.org/0009-0002-4417-3918
https://orcid.org/0009-0002-4417-3918
https://orcid.org/0009-0002-4417-3918
https://doi.org/10.3390/polym14071449
https://doi.org/10.3390/polym14071449
https://doi.org/10.1109/tim.2021.3098383
https://doi.org/10.1109/tim.2021.3098383
https://doi.org/10.1109/tim.2021.3070622
https://doi.org/10.1109/tim.2021.3070622
https://doi.org/10.1109/tii.2020.3014224
https://doi.org/10.1109/tii.2020.3014224
https://doi.org/10.1016/j.epsr.2016.06.036
https://doi.org/10.1109/jsen.2018.2864793
https://doi.org/10.1109/tim.2019.2942519
https://doi.org/10.1109/tpwrd.2018.2881747
https://doi.org/10.1109/tpwrd.2018.2881747
https://doi.org/10.1049/ip-smt:20000021
https://doi.org/10.1049/ip-smt:20000021
https://doi.org/10.1080/15325008.2019.1565135
https://doi.org/10.1080/15325008.2019.1565135
https://doi.org/10.1109/tpwrd.2003.820175
https://doi.org/10.1109/tpwrd.2003.820175
https://doi.org/10.1109/mei.2005.1412215
https://doi.org/10.1109/mei.2005.1412215
https://doi.org/10.1109/tdei.2013.004186
https://doi.org/10.1109/tdei.2013.004186
https://doi.org/10.1109/access.2021.3081699
https://doi.org/10.1109/access.2020.2963963
https://doi.org/10.1109/access.2020.2963963
https://doi.org/10.1109/access.2021.3124845
https://doi.org/10.1109/tdei.2012.6180233
https://doi.org/10.1109/tdei.2012.6180233
https://doi.org/10.3390/pr9060981
https://doi.org/10.1109/tpwrd.2012.2205165
https://doi.org/10.1109/tpwrd.2012.2205165
https://doi.org/10.1080/15325000701603967
https://doi.org/10.1049/iet-gtd:20050273
https://doi.org/10.1049/iet-gtd:20050273
https://doi.org/10.1080/15325000802084737
https://doi.org/10.1080/15325000802084737
https://doi.org/10.1109/tpwrd.2005.860255
https://doi.org/10.1109/37.55125
https://doi.org/10.1049/elp2.12407
https://orcid.org/0000-0002-0085-9734
https://orcid.org/0000-0002-9245-440X
https://orcid.org/0009-0002-4417-3918

	A novel artificial neural network approach for residual life estimation of paper insulation in oil‐immersed power transformers
	1 | INTRODUCTION
	2 | TRANSFORMER RESIDUAL LIFE ESTIMATION
	3 | METHODOLOGY TO DESIGN AI MODELS BASED ON DIFFERENT FAILURE INDICATORS
	3.1 | Development of the proposed NN models to fix the CSKP insulation life
	3.2 | Optimal NN configuration system

	4 | RESULT AND DISCUSSION
	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT


