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Abstract: Modern industries, particularly oil and gas, necessitate robust maintenance 

management and optimization for increased profits, plant availability, and maintenance cost 

reduction. The maintenance strategy is therefore crucial, especially under global economic 

pressures on equipment reliability. This study examines the present maintenance management 

practices for refinery valves, critical equipment whose failure can have severe consequences. 

Many existing models for selecting critical equipment in maintenance management face 

limitations due to inadequate decision analysis and exclusion of key criteria. This research 

proposes a strategy model, combining artificial intelligence and multi-criteria decision-making 

techniques like Fuzzy Logic and Analytical Hierarchy Process, to fill this gap and manage 

refinery valves' maintenance. Proven by case studies and interviews, the model improves 

safety, reliability, operational availability and enables operators to monitor their decision 

consequences. The model can convince asset managers to invest in maintenance initiatives. 

 

Keywords: Reliability Centred Maintenance (RCM), Strategic, Failure Mode & Effect 

Criticality Analysis (FMECA); maintenance strategy; fuzzy system; multi-criteria decision-

making, Analytic Hierarchy Process (AHP), refinery valves 

___________________________________________________________________________ 

 
 
 

1. Introduction 

 

Fossil-based energy, crude oil-derived products like fuel oils, gasoline, and jet fuel, plays a key 

role in global energy supply, industry, and daily life. Crude oil is essential for the oil sector, 

from exploration to petrochemical production. Ensuring reliability and availability is crucial 

for cost-effective, sustainable manufacturing. Manufacturers must enhance plant performance, 

reliability, and regulatory compliance to manage costs. Therefore, optimizing maintenance to 

maintain reliability and performance is increasingly vital for refinery operators' survival (Dwi 

Prasetyo et al., 2020). Conventional maintenance methods primarily focus on severity and 

probability, lacking a comprehensive perspective. Criticality assessment must consider 

multiple factors, ranging from safety and environmental impact to financial aspects. Current 

maintenance decision-making often relies on qualitative assessments, which may introduce 

bias (Pride, 2010). 

  

One of the important assessments in RCM is Failure Mode and Effect Criticality Analysis 

(FMECA) where each equipment item is evaluated in detail, considering various failure 
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scenarios and corresponding maintenance strategies. This requires knowledgeable personnel. 

FMECA results in a ranking within a criticality hierarchy, guiding maintenance priorities 

(Ciliberti, 1998). However, some reports suggest that failures can occur in components initially 

deemed non-critical (Liu et al., 2013). Knowledge-based or expert systems, as discussed by 

Fasanghari et al. (2010), aim to provide expert-level decision support by accumulating 

specialized knowledge. Recent studies aim to improve critical assessment systems for more 

effective maintenance strategies. Researchers agree that the conventional method within the 

Reliability Centered Maintenance framework has debates, weaknesses, and lacks precision 

(Braglia et al., 2003a) due to lack a comprehensive perspective, leading to suboptimal strategies 

that can impact safety, environmental compliance, and operational costs. The challenge is to 

develop a strategic model that considers multiple risk factors and integrates fuzzy logic and 

Analytic Hierarchy Process (AHP) to improve the criticality assessment and maintenance 

strategy selection for refinery valves, ultimately optimizing their reliability and performance. 

 

2. Literature Review 

 

Petroleum refineries are essential for converting crude oil into fuels and chemicals. They have 

three main sections: separation, conversion, and finishing, which use temperature, pressure, 

and catalysts for different processes. These processes fall into separations, conversions, and 

blending, each with unique operations (Adendorf et al., 2012). Refineries strive for improved 

performance in risk management, reliability, and maintenance to remain competitive. The 

ultimate objectives of maintenance in refineries include increasing profit, reducing safety and 

environmental risks, enhancing equipment reliability, and improving production performance, 

efficiency, and product quality (SolomonAssociates, 2017). Valves are vital components in 

refinery operations, responsible for controlling parameters like flow, level, pressure, and 

temperature. They come in two main categories: linear and rotary valves, each with unique 

features suitable for specific applications. Valves serve essential functions, acting as control 

elements, safeguards for process safety, and contributors to mechanical integrity in refineries. 

Failures in valves can have severe consequences, including environmental incidents and safety 

hazards (Carneiro et al., 2014).  

 

Assessing maintenance for thousands of plant valves is a significant task, but it's crucial due to 

potential safety and production impacts. Valve failures can lead to containing hazardous 

substances, safety risks, revenue loss, and more. Factors like process conditions, operational 

needs, and degradation contribute to failures. To prevent them, refineries use strategies like 

predictive, preventive, condition-based, or reactive maintenance, choosing based on cost and 

spare part availability for tasks like replacement, overhaul, modification, repair, or coatings 

maintenance. (Carneiro et al., 2014). Valve failures can have far-reaching consequences, 

making it imperative for refineries to adopt appropriate maintenance strategies based on their 

specific needs and the criticality of the valves in their processes. These strategies help prevent 

unexpected shutdowns, reduce repair costs, improve process performance, and ultimately 

increase profitability. 

 

2.2 Overview of Maintenance Management  

Maintenance management involves actions to maintain or restore equipment (Dhillon, 2002). 

Adebimpe et al. (2015) broaden this to include repair, preservation, and failure prevention, 

reducing losses and environmental impact which ultimately reduce production losses and 

environmental hazards.  Maintenance management is a vital aspect of modern industrial 

operations, driven by various goals and objectives (Muchiri et al., 2011; Pintelon et al., 1992). 
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Maintenance management objectives include extending equipment lifespan through repair and 

replacement to avoid costly failures, minimizing service disruptions to ensure uninterrupted 

production or services, enhancing equipment and system reliability to reduce breakdowns, 

improving equipment capabilities for increased efficiency, and addressing safety, health, and 

environmental factors to enhance product quality and revenue. (Dwi Prasetyo et al., 2020). 

Maintenance management has become instrumental in maintaining intricate machinery and 

aligning with industry-specific targets, driven by the need for productivity, availability, quality, 

safety, and environmental considerations (Arunraj et al., 2007). Choosing the right 

maintenance management approach hinges on an organization's operational system, resources, 

and employee expertise. Maintenance management encompasses various facets, including 

setting objectives, defining strategies, and implementing means such as planning and control 

(Márquez, 2007).  

 

2.2.1 Strategic Maintenance Management  

Strategic Maintenance Management aligns activities with organizational goals, optimizing 

maintenance, reducing downtime, and costs  (Pintelon et al., 1992). It fosters proactive 

maintenance, prioritizing based on criticality, and informed decisions on strategies, frequency, 

techniques (Murthy et al., 2002).. It integrates diverse perspectives - environmental, safety, 

cost-effectiveness, productivity, learning, and quality (Eti et al., 2006; Mather, 2005). Strategic 

management enhances resource optimization and overall performance. Industries adapt 

strategies to equipment, risk, and focus (Al-Shayea, 2012). Kermani (2016) introduced an AI-

based decision model, harmonizing safety, financial, operational, and technical aspects, 

addressing critical equipment and strategies' selection limitations, offering a comprehensive 

approach. 

 

2.3 Current RCM Implementation 

Reliability-Centered Maintenance  is a systematic asset management approach that balances 

proactive maintenance with potential reductions in an item's useful life to minimize life cycle 

costs (Afefy, 2010; Moubray, 1997). Originating from the aviation industry, RCM prioritizes 

safe, cost-effective, and long-lasting maintenance practices (Kullawong et al., 2015; Moubray, 

1997). It allows for systematic functionality and cost-effectiveness of assets, ensuring they 

remain reliable over time (Campbell et al., 2015; Rastegari et al., 2016). There are many  

Industry-specific standards guide RCM (Rausand, 1998; Rausand et al., 2008). Critical success 

factors of RCM include improving maintenance programs and selecting critical equipment 

wisely (Zeinalnezhad et al., 2020).  

 

In practice, Failure Mode Effects and Criticality Analysis is a qualitative reliability technique 

that systematically assesses potential failure modes, their probability of occurrence, and their 

effects. FMECA forms part of RCM and helps identify and mitigate potential failures. 

Maintenance task selection in RCM follows a logic path to determine the most appropriate 

strategy based on the consequences of failure modes, ensuring applicability and cost-

effectiveness (Moubray, 1997). The goal is to maintain assets while minimizing life cycle costs 

and achieving safety, reliability, and environmental goals. Overall, RCM is a structured 

approach to asset management that has proven effective in various industries by enhancing 

reliability, safety, and cost-efficiency while minimizing maintenance expenses. It involves 

critical success factors, industry-specific guidelines, and methodologies like FMECA and 

maintenance task selection to ensure the continued functionality of critical assets. 
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2.3.1 Review on Current FMECA Method 

RCM has limitations, including being time-consuming and resource-intensive for complex 

systems. It involves multiple experts and can be subjective in risk evaluation. Traditional RCM 

may not effectively prioritize equipment criticality, as it can produce the same Risk Priority 

Number for different scenarios. Therefore, researchers have explored alternative approaches to 

improve maintenance decision-making. Several studies proposed fuzzy logic-based methods 

to enhance RCM and FMECA. Bowles et al. (1995) introduced fuzzy logic to prioritize failures 

in FMECA but considered only standard factors which are Occurrence (O), Severity (S) and 

Detectability (D). Pillay et al. (2003) also used fuzzy rules but lacked consideration of 

additional risk factors. Braglia et al. (2003a) applied fuzzy RPN but focused on probability, 

severity, and detectability while Braglia et al. (2003b) introduced a multi-attribute approach 

using fuzzy TOPSIS. While innovative, these papers are considered improved in terms of 

methods but failed to consider non-conventional risk factors. 

 

Bevilacqua et al. (2012) integrated traditional risk factors with non-conventional ones for 

equipment criticality assessment in an oil refinery. Their method included safety and 

environmental impact, corrosion sensitivity, and more. However, it still relied on RPN 

calculations. Qi et al. (2012) used fuzzy logic for criticality-based maintenance but considered 

only two risk factors: health and safety impact and shutdown impact. Wu et al. (2013) expanded 

the sub-factors under likelihood and severity for corrosion assessment. Gupta et al. (2017),  

Renjith et al. (2018), Gallab et al. (2019) and George et al. (2019) used fuzzy rule-based 

methods for risk analysis but limited they only focus to are Occurrence (O), Severity (S) and 

Detectability (D). Jaderi et al. (2019) used fuzzy rule-based inference but considered only 

frequency of failure and consequences. Petrović et al. (2020) considered more sub-factors 

under Severity but required precise data while Jasiulewicz-Kaczmarek et al. (2021) included 

ten non-conventional risk factors using Fuzzy Analytic Hierarchy Process (AHP) but faced 

complexity and subjectivity challenges. Shahri et al. (2021) proposed Pythagorean fuzzy 

method, which improved upon traditional FMECA but required complex algorithms to 

implement into real industry application. In summary, while various studies have proposed 

fuzzy logic and other methods to enhance RCM and FMECA, most still rely on conventional 

risk factors or introduce complexity and subjectivity. Future research should aim for more 

comprehensive and practical approaches to equipment criticality assessment in maintenance 

management. 

 

2.3.2 Review on Current Maintenance Task Selection Method 

The second major stage in RCM assessment involves selecting the appropriate maintenance 

strategy for components, equipment, or systems. Decision analysis techniques in operational 

research, particularly Multi-Criteria Decision Making (MCDM), play a vital role in this 

process. Alias et al. (2008) identified two main trends in MCDM: Artificial Intelligent (AI) 

approaches (AIMCDM) and Classical operational research techniques (CMCDM). AI 

approaches encompass techniques like Fuzzy Logic (FL), Genetic Algorithm (GA), Neural 

Network (NN), and Expert System (ES). On the other hand, Classical methods include Analytic 

Hierarchy Process (AHP), Elimination and Choice Expressing Reality (ELECTRE), Preference 

Ranking Organization Method for Enrichment Evaluation (PROMETHEE), Technique for 

Order-Preference by Similarity Ideal Solution (TOPSIS), and Analytic Network Process (ANP) 

(Arjomandi et al., 2021). Within maintenance selection papers using MCDM, popular methods 

are Analytic Hierarchy Process (AHP), Technique for Order-Preference by Similarity Ideal 

Solution (TOPSIS), and Analytic Network Process (ANP), primarily applied in the field of 

management to select, rank, and evaluate maintenance alternatives.  
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Within maintenance selection papers using Multi-Criteria Decision Making (MCDM) popular 

methods are AHP, TOPSIS, and ANP, primarily applied in the field of management to select, 

rank, and evaluate maintenance alternatives. AHP was applied in various contexts. Many 

researchers used AHP as their based method for the Multi-Criteria Decision Making (MCDM)  

maintenance strategy selection such as Triantaphyllou et al. (1997), Labib (2004) , Bertolini et 

al. (2006), Lazakis et al. (2012), Goossens et al. (2015), Resobowo et al. (2014), Azadeh et al. 

(2016), Vishnu et al. (2016)  and Panchal et al. (2018). Other methods, such as Fuzzy Analytic 

Network Process (FANP) and Fuzzy TOPSIS, have also been used in diverse contexts for 

maintenance strategy selection and long-term objectives, as highlighted in the paper's summary 

and comments such as Ighravwe et al. (2017), Hemmati et al. (2018), Hemmati et al. (2019), 

Aghaee et al. (2020), Kausar et al. (2020), Mathew et al. (2020) and Arjomandi et al. (2021) 

proposed their Multi-Criteria Decision Making (MCDM)  methodology by using more 

complex techniques by combining methodologies such as  decision-making trial and evaluation 

laboratory (DEMATEL), Analytic Network Process (ANP), and VlseKriterijuska Optimizacija 

I Komoromisno Resenje (VIKOR) for maintenance strategy selection, considering few risk 

perspectives. Table 1 summarized the findings and the critical comments of their research. 

 

Various Multi-Criteria Decision Making (MCDM) techniques play a significant role in 

selecting optimal maintenance strategies across different industries, considering diverse criteria 

and perspectives. These methods enhance decision-making processes and contribute to 

improved maintenance practices. However, most researchers still considered limited 

consideration of risk factors and perspectives in maintenance decision-making. Many papers 

rely on conventional risk factors like occurrence, severity, and detectability (O, S, D) without 

exploring more comprehensive criteria.  Furthermore, the lack of attention to strategic 

dimensions in maintenance management is noted. While research often addresses financial and 

technical aspects, the strategic perspective, including qualitative data analysis for continuous 

improvement, is often overlooked. This study aims to integrate strategic perspectives into the 

maintenance decision-making process. 

 

The fuzzy-based method offers advantages such as handling qualitative and imprecise 

information, flexible combination of risk factors, customization based on process nature, and 

incorporation of expert knowledge (Liu et al., 2013). This research intends to leverage these 

advantages for assessing and prioritizing risks associated with refinery valves. Regarding 

maintenance task selection methods, there is a need for a model specifically tailored to refinery 

critical valves. While Analytic Hierarchy Process (AHP) is commonly used, complex methods 

like fuzzy set theory, mathematical programming, and AI approaches may be challenging to 

implement in industry. Addressing this gap requires simplifying and adapting these complex 

methods for practical use in maintenance decision-making. 

 

3. Methodology 

 

This research aims to develop an improved RCM decision-making framework for refinery 

valves. It begins with a literature review on the refinery industry and focuses on valves as the 

subject. The goal is to identify risk factors for valve maintenance decisions. The study draws 

from industrial standards, reports, manufacturer catalogs, academic research, and maintenance 

management frameworks. It then details the development of a strategic RCM model in two 

phases, first is to improved criticality assessment using fuzzy logic and secondly to improve 

maintenance strategy selection using AHP. The advantages and disadvantages of this approach 
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are discussed. Case studies and expert interviews inform the model, with validation using real 

refinery data. Figure 1 shows the simplified version of RCM critical work process. 

 

 
Figure 1: Current practice of RCM critical work process 

 

3.1 Development of Strategic RCM Decision Making Model 

RCM aids in identifying suitable maintenance tasks for known failure modes and is consistently 

applied throughout the equipment's lifespan, with ongoing adjustments based on operational 

experience. There are two phases in RCM decision making propose improvement, phase one 

creates a fuzzy model for better critical assessment, identifying key equipment functions, 

failure modes, causes, and assessing failure consequences. Phase two uses Multi-Criteria 

Decision Making (MCDM) which is Analytic Hierarchy Process (AHP) for maintenance task 

selection. These changes replace time-based maintenance with a proactive approach, boosting 

economic benefits and reducing equipment failure risks. 

 

3.1.1 Fuzzy Criticality Assessment  

Fuzzy logic aids complex decision-making, offering nuanced degrees of truth, unlike Boolean 

logic's binary approach. It involves fuzzification, rule evaluation, and defuzzification for gray 

area outcomes (Liu et al., 2013). Useful when experts vary in perspective, fuzzy logic reduces 

uncertainty in maintenance decisions, accommodating human errors (Zadeh et al., 1992). 

Applied in RCM, it enhances criticality assessment and supports holistic maintenance 

improvement, optimizing practices, and reducing failure risks. In this research model, fuzzy 

logic is applied individually to various dimensions, each representing the viewpoint of one or 

two managers. These factors were determined through a survey involving experts from a 

refinery organization: Figure 1 illustrates the top factors grouped into Kermani (2016) structure 

strategic perspectives. 
 

Step 1: Equipment information data collection  

  Start  

Step 2: Failure Mode and Effect Criticality Analysis 
Proposed Model: hase 1: Fuzzy Criticality 

assessment  

Step 3: Task Selection – For each failure mode risk, task selection being 

discussed and determined to mitigate the risk.  

PM  CBM CM / RTF 

Proposed Model: Phase 2: AHP 

maintenance strategy  

FF (Pd.M) 



International Journal of Business and Technology Management  
e-ISSN: 2682-7646 | Vol. 5, No. S4, 146-161, 2023 

http://myjms.mohe.gov.my/index.php/ijbtm 

SPECIAL ISSUE: 12th International Conference of Engineering Business Management 2023 (ICEBM2023) 
 

152 
Copyright © 2023 ASIAN SCHOLARS NETWORK - All rights reserved 

 
Figure 2: Phase 1 Model with Selected Risk factor re-grouped into four main strategic perspectives 

adopted from Kermani (2016) 

 

The first step in defining a decision problem in fuzzy logic is known as fuzzification where it 

is necessary to define inputs that need to be considered as the basis of decision-making. The 

methodology used to create Tables 1 to 4 is a Fuzzy Criticality Assessment approach that 

evaluates various criteria from different perspectives (Safety and Environmental, Technical, 

Operational, and Financial) to determine the criticality level of a system or component. The 

provided information outlines a structured methodology for fuzzy criticality assessment from 

various perspectives: Safety and Environmental, Technical, Operational, and Financial. These 

perspectives help evaluate the criticality of systems or components based on specific criteria 

and linguistic terms. The matrix is then input into the MATLAB Fuzzy Toolbox utilizing the 

Mamdani Fuzzy method. Subsequently, the subsequent step involves the formulation of fuzzy 

rules for each input perspective. 

 
Table 1: Safety and Environmental Perspective Fuzzy Criticality Assessment Tools 

Fuzzy 

Parameters 

(2,3,4) (4,5,6) (6,7,8) 

Linguistic Term Low Medium High 

Criteria (Impact 
on Safety) 

Slightly 
Hazardous 

Hazardous Deadly 
Hazardous 

Criteria (Impact 
on Environment) 

Minor 
Pollution 

Significant 
Pollution 

Major 
Pollution 

 

SafetyImpact 

Level 

 

Environment 

Impact 

Deadly 

Hazardous (H) 

Hazardous 

(M) 

Slightly 

Hazardous (L) 

Major Pollution (H) Very High  

Critical 

Very High  

Critical 

High Critical 

Significant 

Pollution (M) 

Very High  

Critical 

High Critical Medium  

Critical 

Minor Pollution 

(L) 

High Critical Medium  

Critical 

Low  Critical 

 

 

Table 2: Technical Perspective Fuzzy Criticality Assessment Tools 
Fuzzy Parameters (0,4,6) (4,6,10) 

Linguistic Term Low High 

Criteria (Failure Type) Evident Hidden 

 
Fuzzy Parameters (2,3,4) (4,5,6) (6,7,8) 

Linguistic Term Low Medium High 

Criteria (Failure 

Pattern) 

Infant 

Failure 

Random 

Failure 

Wear Out 

Failure 
 

Failure Type 

 

Failure 
Pattern 

 

Hidden (H) 

 

Evident (L) 

Wear Out Failure (H) Very High  Critical Medium Critical 

Random Failure (M) High Critical Low Critical 

Infant Failure (L) Medium Critical Low  Critical 
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Table 3: Operational Perspective Fuzzy Criticality Assessment Tools 

 Fuzzy Parameters 
(2,3,4

) 
(4,5,6) (6,7,8) 

Linguistic Term Low Medium High 

Criteria (Servere 

Process Condition) 

Normal 

Service 

At least one 
severe 

service 

condition  

More than 
one severe 

service 

condition 

Criteria (Failure Rate) 

Relativel
y few 

failures 

Occasional 

failures 

Repeated 

failures 

 

Servere  

Process  
       Condition 

Failure  

Rate 

 

More than one 
severe service 

condition (H) 

 

At least one 
severe 

service 

condition 
(M) 

 

Normal Service 
(L) 

Repeated failures 

(H)  

Very High  

Critical 

High 

Critical 

Medium 

Critical 

Occasional failures 
(M) 

High Critical High 
Critical 

Medium 
Critical 

Relatively few  

failures (L) 

Medium Critical Medium 

Critical 

Low  Critical 

 

 

Table 4: Financial Perspective Fuzzy Criticality Assessment Tools 
 Fuzzy 

Parameters 
(2,3,4) (4,5,6) (6,7,8) 

Linguistic Term Low Medium High 

Criteria 

(Production Loss) 

Acceptable 

Production 
downtime 

Major 

Production 
downtime  

Prolonged 

Production 
downtime 

Criteria 

(Maintenance 

Cost) 

Low Cost 
Medium 

Cost 
High Cost 

 

Production Loss 

 
 

Maintenance  
Cost 

 

Prolonged 
Production 

downtime (H) 

 

Major 
Production 

downtime (M) 

 

Acceptable  
Production 

downtime (L) 

High Cost (H) Very High  

Critical 

High Critical Medium 

Critical 

Medium Cost 
(M) 

High Critical High Critical Medium 
Critical 

Low Cost (L) Medium 

Critical 

Medium Critical Low  Critical 

 

 

Each perspective is summarized as follows, with detailed information available in Tables 1 to 

4. Its focuses on each perspective, using fuzzy parameters to evaluate them. Categories include 

Low, Medium, and High, assessing consequences levels to determine criticality levels, from 

Very High Critical to Low Critical. 

 

   

   
Figure 3: The fuzzy logic toolbox inputs, Fuzzy crips and Fuzzy surface for overall criticality level, 

representing each main factor against every other risk factor. 

 

The overall fuzzy logic approach is employed to impartially consider all factors in determining 

the equipment's criticality. While some inputs rely on subjective judgments, introducing 

uncertainty within each factor and between the four dimensions, the concept of fuzzy logic is 

applied to address these uncertainties and interdependencies. The first phase of fuzzy logic 

involves merging the results from the de-fuzzification of the four criticality factors, and this 

outcome serves as an input to the model. Initially, there are four inputs, each representing the 

fuzzy logic outputs of a factor with four membership functions defin  ed, resulting in a total of 

250 rules. However, the increasing number of rules, coupled with subjective decision-making, 

can compromise result accuracy, and introduce uncertainty. To mitigate these concerns, a 
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decision was made to reduce the number of rules. For instance, if three of the inputs are Very 

High Critical (VHC), then the output will be VHC, regardless of the fourth input. 
 

Table 5: Defined Rule for Criticality Output 

Category 1 – Very High Critical (VHC) Category 2 - High Critical (HC) 

• Rule 1: If all and/or at least 3 out of 4 MFs are VHC, 

then the output membership functions would be 

VHC. 

• Rule 2: If 2 MFs are VHC and the other 2 MFs are 

HC, then the output membership functions would be 

VHC. 

• Rule 3: If 1 MFs are VHC and the other 3 MFs are 

HC, then the output membership functions would be 

VHC. 

•  Rule 4: If 2 out of 4 MFs are VHC then the 

output membership functions would be HC. 

• Rule 5: If all and/or at least 3 out of 4 MFs are 

HC then the output membership functions 

would be HC. 

• Rule 6:  If 1 out of 4 MFs is VHC and at least 

the other 1 MFs are HC then output MF is 

High Critical (H.C). 

Category 3 Medium Critical (MC) Category 4 Low Critical (LC) 

• Rule 7: If 1 MFs are VHC and no HC in the other 

MFS, then the output MF is MC. 

• Rule 8: If 2 out of 4 MFs are HC and the other 2 is 

MC or LC, then the output MF is MC. 

• Rule 9: If all and/or at least 3 out of 4 MFs are MC, 

then the output membership functions would be MC 

• Rule 10: If 1 MFs are HC and 2 of Other MFs is MC, 

then the output membership functions would be MC. 

• Rule 11: If all condition not fulfilled Rule 

1 to Rule 10, then the output is LC or 

Non-Critical. 

 

Table 5 provides detailed rules for this reduction. The following categories have been proposed 

to guide the creation of rules: Very High Critical (VHC), High Critical (HC), Medium Critical 

(MC), and Low Critical (LC). These rules establish a methodology for decision-makers to 

generate rules efficiently. As presented in Figure 3, the range of values that has been considered 

for overall criticality membership functions in MATLAB Fuzzy Toolbox and 3D surface model 

shows no inconsistencies means the rules is equally and fairly generated between all four 

factors dimension.  

 

3.1.2 AHP Based Maintenance Task Selection 

Selecting maintenance strategies varies by industry due to differing priorities. Safety is crucial 

in nuclear plants, while oil platforms consider oil prices. Decision models balance criteria like 

cost, downtime, safety, and reliability. However, most models lack a strategic focus. This 

research uses AHP for its simplicity and alignment with decision-makers' views. It prioritizes 

strategies via pairwise criteria comparisons. AHP, by Saaty et al. (1980)s, aids multi-criteria 

decisions. It ranks criteria, streamlining complex choices. Steps include defining criteria, 

comparing them, assigning weights, and calculating scores. Experts' consensus involves 

averaging scores. AHP structures strategy selection hierarchically with levels: objective, 

criteria, sub-criteria, and strategies. Pairwise comparisons and numerical scales gauge criteria 

importance. It ranks alternatives for evaluation, merging qualitative and quantitative 

aspects(Saaty et al., 1980). 

 

Figure 4 depicted the phase 2 model, considered eight (8) risk factors from strategic 

perspectives in phase one as selection criteria. The proposed AHP model features a four-level 

hierarchy, with the objective at the top. Criteria, sub-criteria, and alternatives are positioned at 

lower levels. Criteria and sub-criteria are derived from the Phase 1 model, focusing on valve 

maintenance risk factors and sub-risk factors. Main criteria include Safety Perspective (C1), 

Technical Perspective (C2), Operational Perspective (C3), and Financial Perspective (C4). 

Sub-criteria encompass Safety Impact (SC1), Environmental Impact (SC2), Hidden/Evident 
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(SC3), Failure Pattern (SC4), Severe Extreme Process (SC5), Failure Rate (SC6), Production 

Loss (SC7), and Maintenance Cost (SC8). 

 

 
Figure 4: Phase 2 model- AHP Hierarchy maintenance strategy selection 

 
Table 6: The AHP results of the priority weights of criteria, sub-criteria and four maintenance strategies      

Global priority of maintenance strategies 

Criteria Weights of 

Criteria 

Weights of Sub-

criteria 

Relativ

e 

weight 

Global 

weight 

Preventive 

(PM) 

Condition 

Based 

(CBM) 

Failure 

Finding 

(FF-

PdM) 

Run to 

Failure 

(RTF) 

C1 Safety 
Perspective 

0.5597 SC1 Safety Impact 0.5803 0.3248 0.0778 0.0404 0.1923 0.0144 

SC2 Environment 

Impact 

0.4197 0.2349 0.0607 0.0261 0.1379 0.0102 

C2 Technical 
Perspective 

0.0634 SC3Hidden/ Evident 0.8458 0.0536 0.0097 0.0055 0.0362 0.0022 

SC4 Failure Pattern 0.1545 0.0098 0.0028 0.0055 0.0009 0.0005 

C3 Operational 

Perspective 

0.1096 SC5 Severe 0.437 0.0479 0.029 0.0112 0.0056 0.0021 

SC6 Failure Rate 0.5628 0.0617 0.0363 0.0149 0.0078 0.0027 

C4 Financial 

Perspective 

0.2673 SC7 Prod. Loss 0.8486 0.2268 0.1346 0.0577 0.0253 0.0092 

SC8 Maintenance 

Cost 

0.1513 0.0404 0.0178 0.0011 0.0058 0.0060 

   
Ranking Value 0.3543 0.1707 0.4164 0.0586    
Overall Ranking 2 3 1 4 

 

The AHP model provides a structured approach for selecting maintenance strategies based on 

expert opinions, ensuring a comprehensive evaluation of criteria and alternatives. The decision-

making process for selecting maintenance strategies involves constructing a pairwise 

comparison matrix using Saaty's scale. Experts' assessments result indicates consistency ratios 

of less than 0.1 for each expert, demonstrating acceptable pairwise comparisons. Safety 

Perspective (C1) receives the highest weight, aligning with industry and company safety and 

environmental policies. Financial Factors (C4) rank second, followed by Likelihood Factors 

(C3) and Failure Type factors (C2). Table 6 displays the relative weights and global priority 

weights for criteria and sub-criteria, calculated by multiplying relative weights for the criteria 

and sub-criteria. The AHP model's results, reveal the preferred maintenance strategy for each 

sub-criterion. Failure-Finding -Predictive Maintenance (FF-PdM) emerges as the most 

preferable strategy, followed by Preventive Maintenance (PM), Condition-Based Monitoring 

(CBM), and Run-to-Failure (RTF).  
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Failure Finding (FF-Pd.M.) maintenance strategy is the first rank alternative for Safety Factors 

(C1). Preventive Maintenance (PM) was found to be the most suitable for valve with high 

Financial Factors (C4) and high Likelihood of Failure (C3). While for Failure Factors (C2), the 

recommended maintenance strategy is different for sub-factors. As expected, hidden failure 

required Failure Finding (FF-Pd.M.) due to the nature of the failure required periodically 

testing. The failure pattern associate to wear out failure recommend using Condition 

Monitoring (CBM) as maintenance strategy. It was not a surprise that Failure-Finding -

Predictive Maintenance (FF-Pd.M) is the most suitable for high critical valve. As they are very 

critical to the production, any type of valve unexpected failure cannot be tolerated and Failure-

Finding -Predictive Maintenance (FF-PDM) is the only strategy that can predict the failures 

and prevent them. Also, the cost of planned repair or correction before failure for valve will 

not be costly, as the repair can be planned properly during any opportunity window such as 

turnaround or shutdown. 

 

 
Figure 5: Proposed Final SDM-RCM Model 

 

Based on the result from the Phase 1 and Phase 2 model development, a final model called 

Strategic Decision-Making Reliability Centred Maintenance (SDM-RCM) was developed to 

guide maintenance strategy selection for different risk factors associated with valves in the 

refinery. The model takes into consideration various the eight criticality factors which divides 

into four perspectives - safety, technical, financial, and likelihood of failure. The final SDM-

RCM model, as depicted in Figure 5, integrates the results from Phase 1 and Phase 2. It guides 

maintenance strategy selection for valves in the refinery, considering eight criticality factors 

across four perspectives: safety, technical, financial, and likelihood of failure. The model 

emphasizes that Failure-Finding -Predictive Maintenance (FF-PDM) is the most suitable 

strategy for highly critical valves due to its ability to predict and prevent failures. The graphical 

flowchart aids in evaluating valves based on the weight of risk factors, ensuring a systematic 
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approach to strategy selection. Overall, the final model provides a systematic approach for 

selecting maintenance strategies for different risk factors associated with valves in the refinery, 

considering their criticality levels and specific requirements.  

 

4. Discussion and Conclusion  
 

In summary, our study introduces the Strategic Decision-Making Reliability-Centered 

Maintenance (SDM-RCM) model, which offers an innovative approach to managing 

maintenance in the petroleum refining sector. This model combines fuzzy logic-based 

criticality assessment with the Analytic Hierarchy Process (AHP) for maintenance strategy 

selection.  By considering safety, technical, financial, and likelihood of failure perspectives, 

the SDM-RCM model provides a holistic view of maintenance challenges. It emphasizes the 

importance of Failure-Finding -Predictive Maintenance (FF-PDM) for highly critical valves. 

This research contributes a practical framework for optimizing maintenance practices, 

enhancing safety, and improving profitability in refinery operations. Future research may 

explore the integration of advanced technologies like Artificial Intelligence (AI) and Machine 

Learning (ML) and extend the model's applicability to other industries. In essence, the SDM-

RCM model offers a strategic and innovative solution to address maintenance issues in 

petroleum refining, benefiting decision-makers and ensuring the reliability of critical valves. 
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