

Corresponding Author: Mathuri Selvarajoo, School of Mathematical Sciences, College of Computing, Informatic and Media, Universiti

Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Email: mathuri@tmsk.uitm.edu.my

20

Journal of Engineering and Science Research 7 (2): 20-24, 2023

e-ISSN: 2289-7127

© RMP Publications, 2023

DOI: 10.26666/rmp.jesr.2023.2.4

A Review: Restricted Splicing Systems

Mathuri Selvarajoo
 1,*, Mohd Pawiro Santono1, Fong Wan Heng2 , Nor Haniza Sarmin2, Vincent Daniel

David1

1School of Mathematical Sciences, College of Computing, Informatic and Media, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia

2Department of Mathematical Sciences, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
*Corresponding Author: mathuri@tmsk.uitm.edu.my

Copyright©2023 by authors, all rights reserved. Authors agree that this article remains permanently open access under the
terms of the Creative Commons Attribution License 4.0 International License

Received: 14 February 2023; Revised: 15 March 2023; Accepted: 30 March 2023; Published: 30 April 2023

Abstract: In 1987, Head [1] proposed a splicing method as a mathematical model for DNA recombination. In this model,

two DNA molecules are cut at specific recognition sites, and the prefix of one molecule is combined with the suffix of the

other, creating a new string. Splicing operations in the system are represented as splicing rules, formalizing the process as a

string operation. By iteratively applying a set of splicing rules to a set of initial strings or axioms, a language can be generated,

which is known as a splicing language. According to the Chomsky hierarchy, these languages are classified as regular

languages, the lowest level of language. To enhance the generative power of splicing languages, restrictions are introduced.

This research reviews three splicing system restrictions: weighted splicing [2], group splicing [3], and probabilistic splicing

[4].

Keywords: Splicing Systems, Formal Language Theory, Splicing Languages

Introduction

Every living organism possesses a unique DNA structure.

The double-helical form of DNA was first introduced by

Watson and Crick in 1953 [5]. DNA molecules are made up

of nucleotides, which consist of three basic components:

sugar, phosphate, and base [6]. The sequence of bases in

DNA, namely Adenine, Guanine, Cytosine, and Thymine

(abbreviated as A, G, C, and T), differs from one structure to

another. These bases are linked together by hydrogen bonds

in accordance with base-complementary rules, where A pairs

with T and G pairs with C, forming the codes a, g, c, and t,

respectively [5].

Head introduced splicing systems in 1987 [1] as a way to

model the recombinant behavior of double-stranded DNA

(dsDNA) and the enzymes responsible for cutting and

pasting dsDNA. Restriction enzymes, which are naturally

present in bacteria, can cleave DNA fragments at specific

sequences known as restriction sites, while ligases can

reconnect DNA fragments with complementary ends [6].

This model consists of a finite alphabet V, a finite set of

initial strings over alphabet A, and a finite set of rules R that

operate on the strings through iterative cutting and pasting,

resulting in the generation of new strings [5].

A splicing language is a language that is generated by a

splicing system. It has been proven that all splicing

languages with finite sets of axioms and rules are regular.

Therefore, to increase the generative power of splicing

systems, researchers have investigated various restrictions

on the use of rules, such as weighted [2], groups [3],

probability [4], and more recently, fuzzy restrictions [7].

Additionally, restrictions have been introduced in variants of

splicing systems, such as simple and semi-simple splicing

systems [8-10]. All these restrictions serve a common

purpose, which is to enhance the generative power of

languages produced by splicing systems. This is particularly

important in the field of DNA computing, where splicing

systems with the highest generative power, which is

recursively enumerable (RE), can be viewed as theoretical

models for universally programmable DNA-based

Mathuri et al., / Journal of Engineering and Science Research, 7(2) 2023, Pages: 20-24

21

computers.

This paper presents a review of the restrictions applied to

splicing systems, including weighted, groups, and

probability. The paper is structured as follows: Section 2

provides important definitions and notations from formal

language theory and splicing systems. In Section 3, the

concept of weighted splicing systems and their outcomes are

discussed. Section 4 explores splicing systems over

permutation groups and the languages produced by

permutation groups of length two. Section 5 reviews

probabilistic splicing systems and their results. Finally, in

Section 6, the research is concluded with a discussion on the

overall findings.

This section provides an overview of the fundamental

concepts and notations from formal language and systems

theories that will be utilized later in the paper. For further

information on these topics, interested readers can refer to

sources such as [11], [12], [13], [14].

The following general notations are used throughout the

paper. The membership of an element to a set is denoted by

 , whereas the negative of set membership is denoted by  .

The strictness of the inclusion is denoted by  and 

stands for (proper) inclusion. The empty set is represented by

the symbol  . | X | denotes the cardinality of a set X.

The family of recursively enumerable, context-sensitive,

context-free, linear, regular, and finite languages are denoted

by RE, CS, CF, LIN, REG and FIN, respectively. For these

language families, the next strict inclusions, named Chomsky

hierarchy (see [12]), hold:

Further, some basic definitions and results of iterative

splicing systems were recalled. Let V be an alphabet, # and

$ two special symbols. A splicing rule over V is a string of

the form

1 2 3 4# # # where ,1 4. ir u u u u u V i=   

For such a rule r R and strings x, y, z  V*, (), rx y z�

if and only if x = x1u1u2x2, y = y1u3u4y2, and z = x1u1u4y2, for

some x1, x2, y1, y2 V ∗.

The string z is said to be obtained by splicing x and y, as

indicated by the rule r; the strings u1u2 and u3u4 are called

the sites of the splicing. The first term called x and y is the

second term of the splicing operation.

A H scheme (a splicing scheme) is a pair σ = (V, R),

where V is an alphabet and R  V ∗#V ∗$V ∗#V ∗ is the set of

the splicing rule. For a given H scheme σ = (V, R) and a

language L ⊆ V ∗,

, for some , , ,() { | () rL z V x y z x y L r R =   �

are defined and iterative splicing languages are defined as

0

 () ()i

i

L L 



=

0 , ()L L =

1) (() (()), 0.ii iL L iL   + = 

An extended H system is a construct γ = (V, T, A, R) where V

is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is the set

of axioms, and R ⊆ V ∗#V ∗$V ∗#V ∗ is the set of splicing rules.

The system is said to be non-extended when T = V. An alphabet

x ∈ V is said to be non-terminal when x ∈/ V. The language

generated by γ is defined by

() ()iL A T  = 

The symbol EH (F1, F2) denotes the family languages

generated by extending H system γ = (V, T, A, R) with A ∈ F1

and R ∈ F2 where

 1 2, , , , , ,F F  FIN REG CF LIN CS RE

The following theorem shows the relations of the family of

languages generated by splicing systems to the families of

Chomsky languages.

Theorem 2.1.

[15]: The relations in Table 2.1 hold, where at the

intersection of the row marked with F1 with the column

marked with F2 there appear either the family EH (F1, F2) or

two families F3, F4 such that F3 ⊂ EH (F1, F2) ⊆ F4:

1 2
F F\ FIN REG LIN CF CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

LIN
LIN,
CF

RE RE RE RE RE

CF CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

TABLE 1. The family of languages generated by splicing

systems.

3. Weighted Splicing System

This section covers the introduction of weighted splicing

systems by Turaev et al. [2]. These systems are characterized

Mathuri et al., / Journal of Engineering and Science Research, 7(2) 2023, Pages: 20-24

22

by a weighting space and operations that are closed in that

space. The concept of threshold languages generated by

weighted splicing systems is also presented, and the results

indicate that these systems can generate languages with

greater generative power than regular languages. The

definition of weighted splicing systems is provided as

follows:

Further, weighted splicing operation and languages

generated were defined:

In this paper, the sets of integers, positive rational

numbers, the set of integers with Cartesian products, and the

set of 2 × 2 matrices with integer entries are all taken into

consideration as weighting spaces.

From the definition, the next lemma follows immediately.

The generative power of weighted splicing systems was

demonstrated through an example in which various

weighting spaces were used to generate strings with the

same set of axioms and splicing rules. This example showed

that the selection of weighting spaces has a significant

impact on the generative power of the system.

Example 3.1. Consider a weighted splicing system γ = ({a,

b, c, w, x, y}, {a, b, w}, {(wax, τ1), (xby, τ2), (ycw, τ3)}, {r1 =

a#x$w#ax, r2 = b#y$x#by, r3 = c#w$y#cw, r4 = a#x$x#b, r5 =

b#y$y#c}, ω , M, ⊙).

For all k, m, n ≥ 1,

1

1 ,(),k kwa x wax r wa x+�
1

2 ,(),m mxb y xby r xb y+�
1

3(),n nyc w ycw r yc w+�
Further,

4 ,(, ,for ,) 1k m k mwa x xb y r wa b y k m �
and

5 .(, ,for , , 1)k m n k m nwa b y yc w r wa b c w k m n �

Then, the language generated by the weighted splicing

system γ is

Lω (γ) = {wakbmcnw| (wakbmcnw, ω(wakbmcnw)) ∈ σ ∗(A), k,

m, n ≥ 1}

where A = {(wax, τ1, (xby, τ2), (ycw, τ3)}.

Next, different threshold languages with different

weighting spaces and operations are defined.

First, let M =Q+, the operation ⊙ be the usual

multiplication, and τ1 = 3−1, τ2 = 5−1, τ3 =15. Then,

},3(5) { | () (), , , 1k m n k m n n k n mL wa b c w wa b c w A k m n  − −=   

τ = 1 was chosen as a cut-point, and define the following

threshold languages:

), 1 1 , ({ | }k m nL wa b c w n  = =   −CS CF

), 1 , 1 ,({ | }k m nL wa b c w n k m   =    −CF REG

), 1 , 1 .({ | }k m nL wa b c w k m n   =    −CF REG

Second, let M = Z × Z, the operation ⊙ is defined as the

component wise addition of pairs from Z × Z, and τ1 = (1, 0),
τ2 = (−1, 1), τ3 = (0, −1). Then,

Lω (γ) = {wakbmcnw| (wakbmcnw, (k − m, m − n)) ∈ σ ∗(A), k, m,

n ≥ 1}.

Consequently,

, 0,0 1 , (()) { | }k m nL wa b c w n  = =   −CS CF

, 0,0 1 ,(()) { | }k m nL wa b c w k m n   =     −CS CF

, 0,0 1 .(()) { | }k m nL wa b c w n m k   =     −CS CF

From Lemma 3.1 and Example 3.1, the following results

were obtained.

Theorem 3.1.

For F1 ∈ {LIN, CF},

1), ,() .(EN EN F − FIN FIN FIN

Theorem 3.2.

, .()EN REG FIN FIN RE

Research has demonstrated that the inclusion of weights

in splicing systems, even with a simple extension, leads to

an increase in their generative power beyond that of regular

languages. However, the generative power of restricted

splicing systems is yet to produce recursively enumerable

languages, and therefore further research in this area

remains an open field.

In 2012, Hamzah et al. presented splicing systems over

permutation groups of length two [3]. These systems use the

elements of permutation groups as valences to calculate the

generative power of extended valence splicing systems over

permutation groups. The following definition describes an

extended valence H system over a permutation group.

For (x, v1), (y, v2), (w, v3) ∈ V ∗Sn and r ∈ R, where x, y,, w, ∈ V ∗, v1,

v2, v3, ∈ Sn, the splicing operation is [(x, v1), (y, v2)] ⊢r (w, v3) if and

only if (x, y) ⊢r w and v3 = v1 · v2. Then L(γ) = {x ∈ T ∗ | (x, e) ∈

σ ∗(A)}.

Mathuri et al., / Journal of Engineering and Science Research, 7(2) 2023, Pages: 20-24

23

The computation of the group operation of new strings in

extended valence H systems over permutation groups is

done by associating an element of the permutation group to

each axiom A and each splicing operation. If the

computation of the associated elements of the group results

in the identity element, then the complete strings produced

are valid.

An example of splicing system over permutation group of

length two involving one initial string is shown in the

following.

Continuing this splicing process, the resulting language is

only accepted if the value of valences is equal to the identity.

Therefore, the language of this extended valence splicing

system is L(γ) = {ca2nd, n≥ 1}. From the Chomsky grammar,

the grammars that generate this language are

context-sensitive and context-free grammar but not regular.

The example presented demonstrates that splicing systems

over permutation groups of length two with a single initial

string can generate languages beyond regular languages,

indicating an increase in generative power. However, such

systems are still unable to generate recursively enumerable

languages, indicating that while some permutation groups

can increase the generative power of splicing systems up to

context-sensitive, it remains an open question whether any

splicing system can generate recursively enumerable

languages.

5. Probabilistic Splicing Systems

In 2013, Mathuri et. al. [4] introduced probabilistic as a

restriction of splicing systems. In this paper, probabilities are

associated with the axioms, and the probability of the

generated string from two strings is calculated by

multiplication of their probabilities. The threshold

probabilistic splicing languages were defined and showed

that probabilistic systems with finite component can increase

the generative power of the splicing languages generated.

The definition of probabilistic splicing systems as follows:

From the definition before, the next lemmas follow

immediately.

define the threshold language generated by γ, as Lp(γ,, > 0),

then it is not difficult to see that L(γ) = Lp(γ,, > 0). □

An example illustrates that the use of thresholds with

probabilistic systems increase generative power of splicing

systems with finite components up to context-sensitive

languages.

Example 5.1. Consider the probabilistic splicing system,

2 2 2 2({ } { }), , , , , , , , , , , , , ,a b c w x y z a b c w z A R p =

where A2 = {(wax, 3/19), (xby, 5/19), (ycz, 11/19)} and R2 =

{r1 = wa#x$w#a, r2 = xb#y$x#b, r3 = yc#z$y#c, r4 = a#x$x#b,

r5 = b#y$y#c}.

Using the first axiom and rule r1, obtain strings

, 3 /19 , 1,(())k kwa x k 

the second axiom and rule r2,

, 5 /19 , 1,(())m mxb y m 

the third axiom and rule r3,

, 11/19 , 1.(())n nyc z n 

The nonterminal x and y from these strings are eliminated

by rules r4 and r5, i.e.,

[(wakx, (3, 19)k)), (xbmy, (5/19)m] ⊢ r4

(wakbmy, (3/19)k(5/19)m(11/19)n).

Then the language generated by the probabilistic splicing

system γ2

2 1 2 3() {() | }, , , 1k m n k k k

pL wa b c z k m n   = 

where τ1 = 3/19, τ2 = 5/19 and τ3 = 11/19. Further,

consider the following threshold languages:

'

2 2() (0)pL L  = REG

where '

2 is the "crisp" variant of the splicing system γ2.

2 |, 1) , , }({ k m n

pL i wa b c z k m n i  =   FIN

where τ = 165/6859, and i ≥ 1 is a fixed positive integer.

Now, let Ω = {(165/6859)n |n ≥ 1}, then

2() { }, 1|n n n

pL wa b c z n  =   −CS CFΩ

and

2 ,() {, , 1 , , .| }k m n

pL wa b c z k m n k m m n k n  =       −CS CFΩ

Two simple but interesting facts of probabilistic splicing

systems state as Proposition 5.1 and Proposition 5.2 below:

From Theorem 2.1, Lemma 5.1 and Example 5.1, the

following two theorems are obtained:

Mathuri et al., / Journal of Engineering and Science Research, 7(2) 2023, Pages: 20-24

24

Hence, it shows that an extension of splicing systems with

probabilities increases the generative power of splicing

systems with finite components, in particular cases,

probabilistic splicing systems can generate non-context-free

languages. Since this restricted splicing systems are unable

to generate recursively enumerable languages, this area of

research remains open.

6. Conclusion

In this research, some restrictions that have been imposed

on splicing systems has been explored. The restrictions

include weighted, groups, and probability. The definitions,

theorems, and example associated with each restriction has

been presented. While restricted splicing systems have been

found to increase the generative power of the languages

generated beyond regular languages, they still fall short of

generating the highest languages, which are the recursively

enumerable languages. Therefore, further research is needed

to address this limitation and explore ways to increase the

generative power of splicing systems towards this end.

Acknowledgements

The authors would like to thank the Ministry of Higher

Education and Universiti Teknologi MARA Malaysia for the

financial funding through research grant GPK-UiTM

(600-RMC/GPK 5/3 (100/2020)).

REFERENCES

[1] T. Head, “Formal language theory and DNA: An analysis

of the generative capacity of specific recombinant

behaviors,” Bull. Math. Biol., vol. 49, no. 6, pp. 737–759,

1987.

[2] S. Turaev, Y. S. Gan, M. Othman, N. H. Sarmin, and W. H.

Fong, “Weighted splicing systems,” in Communications

in Computer and Information Science, 2012, vol. 316

CCIS, pp. 416–424, 2012.

[3] N. Z. A. Hamzah, N. A. Mohd Sebry, W. H. Fong, N. H.

Sarmin, and S. Turaev, “Splicing Systems over

Permutation Groups of Length Two,” Malaysian J.

Fundam. Appl. Sci., vol. 8, no. 2, pp. 83–88, 2014.

[4] S. Turaev, M. Selvarajoo, M. H. Selamat, N. H. Sarmin,

W. H. Fong, “Probabilistic splicing systems,” Adv.

Methods Comput. Collect. Intell., pp. 259–268, 2013.

[5] Y. Yusof, N. H. Sarmin, T. E. Goode, M. Mahmud, and W.

H. Fong, “An Extension of DNA Splicing System,” Proc.

- 2011 6th Int. Conf. Bio-Inspired Comput. Theor. Appl.

BIC-TA 2011, pp. 246–248, 2011.

[6] M. Amos, G. Paun, G. Rozenberg, “Dna-based computing:

a survey,” Theor. Com- Puter Sci., vol. 287, no. 1, pp.

3–38, 2002.

[7] M. P. Santono, M. Selvarajoo, W. H. Fong, N. H. Sarmin,

“Some Properties of Bounded-Addition Fuzzy Splicing

Systems,” Kalahari Journals, vol. 6, no. 3, pp.

2698–2705, 2021.

[8] M. P. Santono, M. Selvarajoo, W. H. Fong, and N. H.

Sarmin, “Bounded-Addition Fuzzy Simple Splicing

Systems,” vol. 13, no. 2, pp. 2079–2089, 2022.

[9] H. Zhang et al., “The Properties of Semi-Simple Splicing

System Over Alternating Group, A3,” iopscience.iop.org,

vol. 1770, p. 12001, 2021.

[10] M. Selvarajoo, W. H. Fong, N. H. Sarmin, and S. Turaev,

“The characteristics of simple splicing languages over

permutation groups,” AIP Conf. Proc., vol. 2266, no.

October, 2020.

[11] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman,

“Introduction to Automata Theory, Languages and

Computability,” 2000.

[12] G. Rozenberg and A. Salomaa, Handbook of Formal

Languages, no. January. 1997.

[13] N. H. Sarmin, Y. Yusof, and W. H. Fong, “Some

characterizations in splicing systems,” AIP Conf. Proc.,

vol. 1309, no. December, pp. 411–418, 2010.

[14] M. Selvarajoo, W. H. Fong, N. H. Sarmin, S. Turaev

“Computational Power of Probabilistic Simple One-Sided

Sticker Languages,” jmcs.com.my, vol. 2, no. 2, 2016.

[15] G. Păun, G. Rozenberg, and A. Salomaa, “DNA

computing: New computing paradigms,” Comput. Math.

with Appl., vol. 37, no. 3, p. 134, 1998.

