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Abstract: In 1987, Head [1] proposed a splicing method as a mathematical model for DNA recombination. In this model, 

two DNA molecules are cut at specific recognition sites, and the prefix of one molecule is combined with the suffix of the 

other, creating a new string. Splicing operations in the system are represented as splicing rules, formalizing the process as a 

string operation. By iteratively applying a set of splicing rules to a set of initial strings or axioms, a language can be generated, 

which is known as a splicing language. According to the Chomsky hierarchy, these languages are classified as regular 

languages, the lowest level of language. To enhance the generative power of splicing languages, restrictions are introduced. 

This research reviews three splicing system restrictions: weighted splicing [2], group splicing [3], and probabilistic splicing 

[4]. 
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Introduction 

Every living organism possesses a unique DNA structure. 

The double-helical form of DNA was first introduced by 

Watson and Crick in 1953 [5]. DNA molecules are made up 

of nucleotides, which consist of three basic components: 

sugar, phosphate, and base [6]. The sequence of bases in 

DNA, namely Adenine, Guanine, Cytosine, and Thymine 

(abbreviated as A, G, C, and T), differs from one structure to 

another. These bases are linked together by hydrogen bonds 

in accordance with base-complementary rules, where A pairs 

with T and G pairs with C, forming the codes a, g, c, and t, 

respectively [5]. 

 

Head introduced splicing systems in 1987 [1] as a way to 

model the recombinant behavior of double-stranded DNA 

(dsDNA) and the enzymes responsible for cutting and 

pasting dsDNA. Restriction enzymes, which are naturally 

present in bacteria, can cleave DNA fragments at specific 

sequences known as restriction sites, while ligases can 

reconnect DNA fragments with complementary ends [6]. 

This model consists of a finite alphabet V, a finite set of 

initial strings over alphabet A, and a finite set of rules R that 

operate on the strings through iterative cutting and pasting, 

resulting in the generation of new strings [5]. 

 

A splicing language is a language that is generated by a 

splicing system. It has been proven that all splicing 

languages with finite sets of axioms and rules are regular. 

Therefore, to increase the generative power of splicing 

systems, researchers have investigated various restrictions 

on the use of rules, such as weighted [2], groups [3], 

probability [4], and more recently, fuzzy restrictions [7]. 

Additionally, restrictions have been introduced in variants of 

splicing systems, such as simple and semi-simple splicing 

systems [8-10]. All these restrictions serve a common 

purpose, which is to enhance the generative power of 

languages produced by splicing systems. This is particularly 

important in the field of DNA computing, where splicing 

systems with the highest generative power, which is 

recursively enumerable (RE), can be viewed as theoretical 

models for universally programmable DNA-based 
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computers. 

 

This paper presents a review of the restrictions applied to 

splicing systems, including weighted, groups, and 

probability. The paper is structured as follows: Section 2 

provides important definitions and notations from formal 

language theory and splicing systems. In Section 3, the 

concept of weighted splicing systems and their outcomes are 

discussed. Section 4 explores splicing systems over 

permutation groups and the languages produced by 

permutation groups of length two. Section 5 reviews 

probabilistic splicing systems and their results. Finally, in 

Section 6, the research is concluded with a discussion on the 

overall findings. 

 

This section provides an overview of the fundamental 

concepts and notations from formal language and systems 

theories that will be utilized later in the paper. For further 

information on these topics, interested readers can refer to 

sources such as [11], [12], [13], [14]. 

 

The following general notations are used throughout the 

paper. The membership of an element to a set is denoted by 

 , whereas the negative of set membership is denoted by  . 

The strictness of the inclusion is denoted by   and     

stands for (proper) inclusion. The empty set is represented by 

the symbol  . | X | denotes the cardinality of a set X. 

 

The family of recursively enumerable, context-sensitive, 

context-free, linear, regular, and finite languages are denoted 

by RE, CS, CF, LIN, REG and FIN, respectively. For these 

language families, the next strict inclusions, named Chomsky 

hierarchy (see [12]), hold: 

 

 

 

Further, some basic definitions and results of iterative 

splicing systems were recalled. Let V be an alphabet, # and 

$ two special symbols. A splicing rule over V is a string of 

the form 

 

1 2 3 4# # # where ,1 4. ir u u u u u V i=     

 

For such a rule r R  and strings x, y, z   V*, ( ), rx y z�  

if and only if x = x1u1u2x2, y = y1u3u4y2, and z = x1u1u4y2, for 

some x1, x2, y1, y2 V ∗. 

 

The string z is said to be obtained by splicing x and y, as 

indicated by the rule r; the strings u1u2 and u3u4 are called 

the sites of the splicing. The first term called x and y is the 

second term of the splicing operation. 
 

A H scheme (a splicing scheme) is a pair σ = (V, R), 

where V is an alphabet and R   V ∗#V ∗$V ∗#V ∗ is the set of 

the splicing rule. For a given H scheme σ = (V, R) and a 

language L ⊆ V ∗, 

 

,  for some , , ,( ) { | ( ) rL z V x y z x y L r R =   �  

 

are defined and iterative splicing languages are defined as 

 

0

    ( ) ( )i

i

L L 



=  

 
0    , ( )L L =  

 
1 )  (( ) ( ( )), 0.ii iL L iL   + =   

 

An extended H system is a construct γ = (V, T, A, R) where V 

is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is the set 

of axioms, and R ⊆ V ∗#V ∗$V ∗#V ∗ is the set of splicing rules. 

The system is said to be non-extended when T = V. An alphabet 

x ∈ V is said to be non-terminal when x ∈/ V. The language 

generated by γ is defined by 

 

( ) ( )iL A T  =   

 

The symbol EH (F1, F2) denotes the family languages 

generated by extending H system γ = (V, T, A, R) with A ∈ F1 

and R ∈ F2 where 

 

 1 2, , , , , ,F F  FIN REG CF LIN CS RE  

 

The following theorem shows the relations of the family of 

languages generated by splicing systems to the families of 

Chomsky languages. 

 

Theorem 2.1. 

 

[15]: The relations in Table 2.1 hold, where at the 

intersection of the row marked with F1 with the column 

marked with F2 there appear either the family EH (F1, F2) or 

two families F3, F4 such that F3 ⊂ EH (F1, F2) ⊆ F4:  

 

1 2
F F\  FIN REG LIN CF CS RE 

FIN REG RE RE RE RE RE 

REG REG RE RE RE RE RE 

LIN 
LIN, 
CF 

RE RE RE RE RE 

CF CF RE RE RE RE RE 

CS RE RE RE RE RE RE 

RE RE RE RE RE RE RE 

TABLE 1. The family of languages generated by splicing 

systems. 

3. Weighted Splicing System 

This section covers the introduction of weighted splicing 

systems by Turaev et al. [2]. These systems are characterized 
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by a weighting space and operations that are closed in that 

space. The concept of threshold languages generated by 

weighted splicing systems is also presented, and the results 

indicate that these systems can generate languages with 

greater generative power than regular languages. The 

definition of weighted splicing systems is provided as 

follows: 

 

 

 

Further, weighted splicing operation and languages 

generated were defined: 

 

 
In this paper, the sets of integers, positive rational 

numbers, the set of integers with Cartesian products, and the 

set of 2 × 2 matrices with integer entries are all taken into 

consideration as weighting spaces. 

 

 

From the definition, the next lemma follows immediately. 

 

 
The generative power of weighted splicing systems was 

demonstrated through an example in which various 

weighting spaces were used to generate strings with the 

same set of axioms and splicing rules. This example showed 

that the selection of weighting spaces has a significant 

impact on the generative power of the system. 

 

Example 3.1.  Consider a weighted splicing system γ = ({a, 

b, c, w, x, y}, {a, b, w}, {(wax, τ1), (xby, τ2), (ycw, τ3)}, {r1 = 

a#x$w#ax, r2 = b#y$x#by, r3 = c#w$y#cw, r4 = a#x$x#b, r5 = 

b#y$y#c}, ω , M, ⊙). 

 

For all k, m, n ≥ 1, 

 
1

1 ,( ),k kwa x wax r wa x+�  
1

2 ,( ),m mxb y xby r xb y+�   
1

3( ),n nyc w ycw r yc w+�  
Further, 

 

4 ,( , ,for ,) 1k m k mwa x xb y r wa b y k m �  
and 

5 .( , ,for , , 1)k m n k m nwa b y yc w r wa b c w k m n �  
 

Then, the language generated by the weighted splicing 

system γ is 

 

Lω (γ) = {wakbmcnw| (wakbmcnw, ω(wakbmcnw)) ∈ σ ∗(A), k, 

m, n ≥ 1} 

 

where A = {(wax, τ1, (xby, τ2), (ycw, τ3)}. 

Next, different threshold languages with different 

weighting spaces and operations are defined. 

 

First, let M =Q+, the operation ⊙ be the usual 

multiplication, and τ1 = 3−1, τ2 = 5−1, τ3 =15. Then, 

 

},3( 5) { | ( ) ( ), , , 1k m n k m n n k n mL wa b c w wa b c w A k m n  − −=   

 

τ = 1 was chosen as a cut-point, and define the following 

threshold languages: 

 

), 1 1 ,  ( { | }k m nL wa b c w n  = =   −CS CF  

), 1 , 1 ,( { | }k m nL wa b c w n k m   =    −CF REG  

), 1 , 1 .( { | }k m nL wa b c w k m n   =    −CF REG  

 

Second, let M = Z × Z, the operation ⊙ is defined as the 

component wise addition of pairs from Z × Z, and τ1 = (1, 0), 
τ2 = (−1, 1), τ3 = (0, −1). Then, 

 

Lω (γ) = {wakbmcnw| (wakbmcnw, (k − m, m − n)) ∈ σ ∗(A), k, m, 

n ≥ 1}. 

Consequently, 

, 0,0 1 ,   ( ( )) { | }k m nL wa b c w n  = =   −CS CF  

, 0,0 1 ,( ( )) { | }k m nL wa b c w k m n   =     −CS CF  

, 0,0 1 .( ( )) { | }k m nL wa b c w n m k   =     −CS CF  

 

From Lemma 3.1 and Example 3.1, the following results 

were obtained. 

Theorem 3.1. 

For F1 ∈ {LIN, CF}, 

1), ,( ) .(EN EN F − FIN FIN FIN  

Theorem 3.2. 

, .( )EN REG FIN FIN RE  
 

Research has demonstrated that the inclusion of weights 

in splicing systems, even with a simple extension, leads to 

an increase in their generative power beyond that of regular 

languages. However, the generative power of restricted 

splicing systems is yet to produce recursively enumerable 

languages, and therefore further research in this area 

remains an open field. 

 

In 2012, Hamzah et al. presented splicing systems over 

permutation groups of length two [3]. These systems use the 

elements of permutation groups as valences to calculate the 

generative power of extended valence splicing systems over 

permutation groups. The following definition describes an 

extended valence H system over a permutation group. 

 

 

For (x, v1), (y, v2), (w, v3) ∈ V ∗Sn and r ∈ R, where x, y,, w, ∈ V ∗, v1, 

v2, v3, ∈ Sn, the splicing operation is [(x, v1), (y, v2)] ⊢r (w, v3) if and 

only if (x, y) ⊢r w and v3 = v1 · v2. Then L(γ) = {x ∈ T ∗ | (x, e) ∈  

σ ∗(A)}. 
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The computation of the group operation of new strings in 

extended valence H systems over permutation groups is 

done by associating an element of the permutation group to 

each axiom A and each splicing operation. If the 

computation of the associated elements of the group results 

in the identity element, then the complete strings produced 

are valid. 

 

An example of splicing system over permutation group of 

length two involving one initial string is shown in the 

following. 

 

Continuing this splicing process, the resulting language is 

only accepted if the value of valences is equal to the identity. 

Therefore, the language of this extended valence splicing 

system is L(γ) = {ca2nd,  n≥ 1}. From the Chomsky grammar, 

the grammars that generate this language are 

context-sensitive and context-free grammar but not regular. 

 

The example presented demonstrates that splicing systems 

over permutation groups of length two with a single initial 

string can generate languages beyond regular languages, 

indicating an increase in generative power. However, such 

systems are still unable to generate recursively enumerable 

languages, indicating that while some permutation groups 

can increase the generative power of splicing systems up to 

context-sensitive, it remains an open question whether any 

splicing system can generate recursively enumerable 

languages. 

5. Probabilistic Splicing Systems 

In 2013, Mathuri et. al. [4] introduced probabilistic as a 

restriction of splicing systems. In this paper, probabilities are 

associated with the axioms, and the probability of the 

generated string from two strings is calculated by 

multiplication of their probabilities. The threshold 

probabilistic splicing languages were defined and showed 

that probabilistic systems with finite component can increase 

the generative power of the splicing languages generated. 

The definition of probabilistic splicing systems as follows: 

 

From the definition before, the next lemmas follow 

immediately. 

 

 

define the threshold language generated by γ, as Lp(γ,, > 0), 

then it is not difficult to see that L(γ) = Lp(γ,, > 0).   □ 
 

An example illustrates that the use of thresholds with 

probabilistic systems increase generative power of splicing 

systems with finite components up to context-sensitive 

languages. 

 

 

Example 5.1. Consider the probabilistic splicing system, 

 

2 2 2 2({ } { } ), , , , , , , , , , , , , ,a b c w x y z a b c w z A R p =  
 

where A2 = {(wax, 3/19), (xby, 5/19), (ycz, 11/19)} and R2 = 

{r1 = wa#x$w#a, r2 = xb#y$x#b, r3 = yc#z$y#c, r4 = a#x$x#b, 

r5 = b#y$y#c}. 

 

Using the first axiom and rule r1, obtain strings 

 

, 3 /19 , 1,( ( ) )k kwa x k   

 

the second axiom and rule r2, 

 

, 5 /19 , 1,( ( ) )m mxb y m   

 

the third axiom and rule r3, 
 

, 11/19 , 1.( ( ) )n nyc z n   

 

The nonterminal x and y from these strings are eliminated 

by rules r4 and r5, i.e., 

 

[(wakx, (3, 19)k)), (xbmy, (5/19)m] ⊢ r4 

(wakbmy, (3/19)k(5/19)m(11/19)n). 

 

Then the language generated by the probabilistic splicing 

system γ2 

 

2 1 2 3( ) {( ) | }, , , 1k m n k k k

pL wa b c z k m n   =   

 

where τ1 = 3/19, τ2 = 5/19 and τ3 = 11/19. Further, 

consider the following threshold languages: 

 
'

2 2( ) (0 )pL L  = REG  

 

where '

2 is the "crisp" variant of the splicing system γ2. 
 

2 |, 1) , , }( { k m n

pL i wa b c z k m n i  =   FIN  

 

where τ = 165/6859, and i ≥ 1 is a fixed positive integer. 

 

Now, let Ω = {(165/6859)n |n ≥ 1}, then 

 

2( ) { }, 1|n n n

pL wa b c z n  =   −CS CFΩ  

 

and 

 

2 ,( ) {, , 1   ,   ,   .| }k m n

pL wa b c z k m n k m m n k n  =       −CS CFΩ

 

Two simple but interesting facts of probabilistic splicing 

systems state as Proposition 5.1 and Proposition 5.2 below: 

 

 

From Theorem 2.1, Lemma 5.1 and Example 5.1, the 

following two theorems are obtained: 
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Hence, it shows that an extension of splicing systems with 

probabilities increases the generative power of splicing 

systems with finite components, in particular cases, 

probabilistic splicing systems can generate non-context-free 

languages. Since this restricted splicing systems are unable 

to generate recursively enumerable languages, this area of 

research remains open. 

 

6. Conclusion 

In this research, some restrictions that have been imposed 

on splicing systems has been explored. The restrictions 

include weighted, groups, and probability. The definitions, 

theorems, and example associated with each restriction has 

been presented. While restricted splicing systems have been 

found to increase the generative power of the languages 

generated beyond regular languages, they still fall short of 

generating the highest languages, which are the recursively 

enumerable languages. Therefore, further research is needed 

to address this limitation and explore ways to increase the 

generative power of splicing systems towards this end. 
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