Universiti Teknologi Malaysia Institutional Repository

Simulation of macro-compact model of graphene-based three-branch nano-junction

Kalantari, Alireza and Abd. Rahman, Shaharin Fadzli and Hashim, Abdul Manaf (2023) Simulation of macro-compact model of graphene-based three-branch nano-junction. In: 14th IEEE Regional Symposium on Micro and Nanoelectronics, RSM 2023, 28 August 2023 - 30 August 2023, Langkawi, Kedah, Malaysia.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/RSM59033.2023.10326917

Abstract

Gated-graphene three-branch nano-junction (G-GTBJ) has been investigated as a promising ballistic device for various applications. Device modelling of G-GTBJ is beneficial for investigating its basic operation both in single device and in circuit level. Simulation of device design model using a dedicated simulator such as TCAD simulator is only practical in evaluating the operation of a single device. This paper evaluated a macrocompact model equivalent circuit and the simulation of the G-GTBJ was done using a general electronic circuit simulator. For validation of the simulation, the obtained results were compared with the reported work that used a TCAD simulator. The investigated macro model produces the characteristics that are in good agreement with the TCAD-based simulation work. The dependences of G-GTBJ's characteristics on carrier mobility, empirical parameter of Fsat, temperature, branch length and width were analysed. Branch length and carrier mobility showed significant effects on the simulated characteristics. The macro model was also used to demonstrate the operation of G-GTBJ based rectifier and logic gate circuit. The proposed approach seems to offer much simpler solution for the investigation of other G-GTBJ based device and logic circuit, and is expected to be beneficial for larger circuit-level simulation.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:device simulation, graphene, macrocompact model, three-branch nano-junction
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:108371
Deposited By: Yanti Mohd Shah
Deposited On:27 Oct 2024 06:09
Last Modified:27 Oct 2024 06:09

Repository Staff Only: item control page