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ABSTRACT 

Temperature control is crucial because a glycerin heating process depends 
significantly on the heat requirement. An uncontrolled increase in temperature above 
the operating temperature and excessive prolonged heating can jeopardize the final 
glycerine's oxidative stability. A glycerine heating process requires an efficient and 
simple control system to provide a temperature that is gradually increasing without 
showing significant overshoot and could settle in a reasonable time. Conventional 
Proportional Integral Derivative (PID) controllers have significant disadvantages in 
controlling temperature. They contribute to an increase in extreme temperature and a 
longer settling time to reach the desired temperature. Therefore, the study aims to 
build an improved temperature control system that can produce fast control signals 
without overshooting the process. The study focuses on designing the heating process 
and temperature control system loop using the Derivative Proportional Integral (DPI) 
controller structure. The heating system operation uses the principle that the crude 
glycerine is heated using heat transferred from the electrical heater mounted outside 
the tank. The study covers the development of process input and output relationships 
based on the experimental step input tests. The DPI controller is designed using the 
proposed Nelder-Mead optimization algorithm method based on the Integral Absolute 
Error (ITAE) performance criteria calculated using Simpson's one-third rule. The DPI 
is a proposed controller which consists of the Proportional and Derivative control 
actions that operate on process variables rather than error signals and generate fast 
control signals to drive the process. The analysis was performed by comparing the 
achievement of the control system criteria and its robustness to input changes with 
conventional Ziegler-Nichols PID and the newer PID controllers. The results showed 
that the optimal parameters were successfully achieved using the proposed 
optimization algorithm. The DPI controller performs well in tracking the input 
changes with no overshoot in temperature and achieves the fastest settling time of 
3867.2 seconds. The developed glycerine heating process system has a great potential 
for commercialization of the end-product. 
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ABSTRAK 

Pengendalian suhu sangat penting kerana proses pemanasan gliserin sangat 
bergantung pada keperluan haba. Peningkatan suhu yang tidak terkawal di atas suhu 
operasi dan pemanasan berpanjangan yang berlebihan dapat menggugat kestabilan 
oksidatif gliserin akhir. Proses pemanasan gliserin memerlukan sistem kawalan yang 
cekap dan mudah untuk memberikan suhu yang secara beransur-ansur meningkat 
tanpa menunjukkan perubahan mendadak dan berupaya kekal dalam masa yang 
munasabah. Pengawal Proportional Integral Derivative (PID) konvensional 
mempunyai kelemahan yang signifikan dalam mengawal suhu. Ia menyumbang 
kepada peningkatan suhu keterlaluan dan masa penyelesaian yang lebih lama untuk 
proses mencapai suhu yang dikehendaki. Oleh itu, kajian ini bertujuan untuk 
membina sistem kawalan suhu yang lebih baik yang dapat menghasilkan isyarat 
kawalan yang cepat tanpa menggugat kestabilan suhu proses tersebut. Kajian ini 
memfokuskan pada reka bentuk proses pemanasan dan gelung sistem kawalan suhu 
menggunakan struktur pengawal Derivative Proportional Integral (DPI). Operasi 
sistem pemanasan menggunakan prinsip bahawa gliserin dipanaskan menggunakan 
haba yang dipindahkan dari pemanas elektrik yang dipasang di luar tangki. Kajian ini 
merangkumi pembangunan hubungkait masukan dan keluaran proses berdasarkan 
ujian input langkah secara eksperimental. Pengawal DPI dirancang menggunakan 
kaedah algoritma pengoptimuman Nelder-Mead yang dicadangkan berdasarkan 
kriteria prestasi Integral Absolute Error (ITAE) yang dikira menggunakan peraturan 
sepertiga Simpson. DPI adalah pengawal cadangan yang terdiri daripada tindakan 
kawalan Proportional dan Derivative yang beroperasi pada pemboleh ubah proses 
dan menghasilkan sejumlah isyarat kawalan untuk menggerakkan proses. Analisis 
dilakukan dengan membandingkan pencapaian kriteria sistem kawalan dan ketahanan 
terhadap perubahan input dengan PID Ziegler-Nichols konvensional dan pengawal 
terbaru. Hasil kajian menunjukkan bahawa parameter optimum berjaya dicapai 
dengan menggunakan algoritma pengoptimuman yang dicadangkan. Pengawal DPI 
menunjukkan prestasi yang bagus dalam mengesan perubahan input tanpa 
peningkatan suhu secara mendadak dan mencapai masa penyelesaian terpantas 3867.2 
saat. Sistem proses pemanasan gliserin yang dikembangkan mempunyai potensi yang 
besar untuk pengkomersialan produk akhir. 
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CHAPTER 1  
 

 

INTRODUCTION AND THESIS OVERVIEW 

1.1 Overview 

The background of the research study is explained in Section 1.1 of the 

chapter. In Section 1.2 of the chapter, the description of an issue that needs to be 

addressed is followed. The significant contribution of the research study is set out in 

Section 1.3 of the chapter. Section 1.4 outlines the research study's objectives, and 

Section 1.5 outlines the scope and limitations of the research study. 

1.2 Research Background 

The glycerine purification process removes excessive free fatty acid (FFA) 

content and contaminants in crude oil (Cowan, 1976) (Aiken, 2006) (List, 2010) 

(Wan Isahak, et al., 2016) (Habaki, Hayashi, Sinthupinyo, & Egashira, 2019). The 

process is vital for the production of pure glycerine used as the main ingredient in 

many of the end-products produced by the pharmaceutical and food industries (Ardi, 

Aroua, & Awanis Hashim, 2015) (Jungermann & Sonntag, 2018) (Wan Azelee, et 

al., 2019).  

On the industrial scale, purification is carried out in the distillation column 

system using high-temperature steam, which is transferred to the internal column 

packing for the separation of the crude from its components based on the differences 

in volatilities (Abdul Raman, Hooi W., & Buthiyappan, 2019) (Sotelo, et al., 2019) 

(Tan, Aziz, & Aroua, 2013) (Yong, Ooi, Dzulkefly, Wan Yunus, & Abu Hassan, 

2011). 
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The standard process for glycerin purification involves three main stages, 

namely mixing, heating, and filtering  (Xiao, Xiao, & Varma, 2013). The mixing 

process involves mainly applying activated carbon as an absorbent agent to the 

process so that the undesirable compounds are absorbed and removed via filtration  

(Farid, et al., 2021). In general, the mixing process can be performed either with or 

without the heat generated. The mixing process that is carried out using the heat 

generated is known as the heating process. The heating process is simply that of 

maintaining the operating temperature for a sufficient time to allow the absorption to 

take place to the maximum extent possible. 

Heating is a vital stage of purification, where the purity of glycerine depends 

significantly on the optimum operating temperature  (Rich, 1964) (Rich, Some 

Fundamental Aspects of Bleaching, 1970) (Chakrabarty, 2003)  (Kim & Choe, 2005)  

(Mićić, et al., 2019). The operating temperature should be maintained as low as 

possible but should high enough to obtain the desired process output  (Aiken, 2006). 

For instance, when the heating process is experiencing extreme temperature changes, 

the changes should dissipate quickly to avoid oxidation instability. Therefore, the 

temperature control system plays a crucial role in increasing efficiency and ensuring 

the process output meets the desired specifications. In this case, the most crucial part 

of the entire control system is the correct controller and control structure to ensure 

optimum system performance. 

1.3 Problem Statement 

Maintaining and controlling temperatures for a typical heating process is 

inherently difficult due to various factors such as process thermal response and slow 

dynamic response due to process scale (Marlin, 2000). Finding an appropriate 

temperature control structure for the glycerin heating process usually involves 

comparing the control performance of different control structures. 

The conventional Proportional + Integral + Derivative (PID) controller 

structure is most widely used in the industry (Atherton & Majhi, 1999) (Dorf & 
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Bishop, 2011) (Deshmukh & Kadu, 2016). In this structure, the control output is 

made up of the Proportional, Integral, and Derivative control modes which each 

mode reacts differently to the error signals. However, there are certain drawbacks 

associated with the controller. The disadvantage includes that the controller keeps 

adjusting the power input to the heating elements, contributing a higher maximum 

overshoot and exhibiting a longer response time in the output response. The high 

percentage overshoot in the output response indicates the process experiencing 

excessive temperature changes and considerable time to reach the desired 

temperature  (Atherton & Majhi, 1999). 

Besides, there are several problems in the typical process plant to achieve 

optimal control. The problems include the variations in process parameters, variable 

conditions, interactions between parameters, and uncertainty in the model. In 

general, plant design and construction often emphasize chemistry, cost, and safety 

rather than control. Therefore, the best temperature control approach will generally 

be ineffective if the glycerin heating process is not thoroughly understood and does 

not correctly implement the regulatory controls.  

The relationship between the control output and the process variables plays 

an important role in designing and tuning the controller  (Deshpande & Kadu, 2016). 

The actual heating process dynamics are usually modeled using either first-order or 

higher-order systems, depending mostly on the system design. Therefore, the 

approximation behavioral dynamics of the glycerin heating process are best 

determined by understanding how a control output responds to the process changes. 

In this case, process plant design plays a key role in producing the desired process 

dynamic behavior that is easy to compute and offers robust temperature control.   

The existing distillation column system has some disadvantages, such as high 

energy input requirements for steam generation, which involve high capital and 

maintenance costs. The system is inefficient in terms of power consumption. The 

process usually operates without considering the amount of heat required for the 

process, and without the controller maintaining the steam temperature  (Rodrigues, 

Bordado, & Santos, 2017). Besides, the distillation operation will take at least 3 
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hours to complete the process and sometimes longer for a single process, followed by 

deterioration problems that may affect significant glycerine losses (Sotelo, et al., 

2019). Furthermore, the distillation control system's characteristics are nonlinear, 

complex models, and coupling effects between parameters  (Anbarasan, Suji Prasad, 

Meenakumari, & Balakrishnan, 2013).  

Based on the factors mentioned above, the glycerin heating process requires 

an efficient and easy to deliver process plant, and a simple temperature control 

system to operate. Therefore, there is a continuing need for research into improving 

the percentage overshoot and settling time of the glycerine heating process. There is 

also a need for an improved process model to represent the glycerine heating process 

for various purposes, including the temperature control system's design. 

1.4 Significance of the Research 

A developed small-scale glycerine heating process system using a closed 

jacket-controlled tank controlled using DPI controller contributes to a system easily 

implemented by a non-expert with a fast process duration. The heater installed at the 

outer diameter of the closed jacket-controlled tank determines the uniqueness of the 

system. The arrangement minimizes the heater's malfunction and, as a result, 

contributes to the long service life of the heater, resulting in minimal system 

maintenance costs. The system can also hold the tank's temperature within a specific 

band around the set-point, without oscillation. The developed glycerin heating 

process system has excellent potential for the commercialization of end-product. 

Since many studies on the purification process are more focused on chemical-

based, the present study's findings are considered new in the glycerin instrumentation 

and control system field. Although the input step test is a well-known and established 

method, the developed glycerin heating process model differs from any related 

publications in equipment and instrumentation systems. The developed process 

model offers simplicity but holds the essential process dynamics without finding the 

complex physics involved. Regardless of the type of input, the time constant is the 
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same, but the process gain depends on the relation between the controller output and 

the process variable.  

Another significance is that the glycerin heating process system ran 

efficiently without exhibiting drastic temperature changes in the control loop and 

settled in a reasonable settling time. The DPI controller keeps the system operations 

running within the operating temperature, which the temperature is gradually 

increasing without showing significant overshoot and settle in a reasonable time. 

Furthermore, the system is easily operated by non-experts, whereby the optimal 

parameters for the controller are automatically calculated by just inputting the initial 

guess of the controller parameters. 

Although the Nelder-Mead algorithm optimization technique is well-known 

and well-established, the algorithm's implementation differs from any related 

publications in the aspects of the input-output relationship, constraints, and objective 

function. The technique is considered new to the DPI controller and the glycerin 

heating process system as a whole. 

1.5 Research Objectives 

The main objective is to test the hypothesis that the proposed DPI controller 

structure can maintain the glycerine heating process system within the operating 

temperature by steadily increasing the temperature without demonstrating an 

oscillating response and a sudden temperature rise. Three objectives are set as 

follows to achieve the goal of the study: 

(a) To construct an efficient glycerin heating process plant using industry-

standard equipment and instrumentation.    

(b) To formulate the First Order plus Dead Time (FOPDT) model representing 

the glycerine heating process dynamic. 
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(c) To design a DPI controller that maintain the temperature of the glycerine 

heating process. 

 

1.6 Scope of the Research 

The study focused primarily on the temperature control system development 

for the glycerine heating process. The development includes designing small-scale 

hardware systems for the process based on the information gathered from the 

literature. The hardware system component considers the transducer and actuator, the 

interface between the process plant and the control unit, and the input and output 

signal used for system operation.  

The study also focuses on developing a process model for the glycerine 

heating process. The model is developed and validated through experimental and 

simulation works. The dynamic process behaviour from the developed hardware 

system is judged under the standard step input test application. The step input used is 

in the form of an industry-standard IEC60059 electrical current signal of 4 to 20 mA. 

The main process parameters under consideration are the process gain, a time 

constant, and delay time, which then approximates the FOPDT model. The validation 

process includes comparing the approximated model to experimental data. The 

Microsoft Excel and MATLAB R2017a Simulink software environment are used as a 

simulation tool throughout the research analysis work.  

In this study, the DPI controller with the three control actions, i.e. Derivative, 

Proportional and Integral, is designed to deliver the control output at a desired 

operating temperature of 85oC. The controller parameters adjustment only involves 

the three controller gains using Direct Search Nelder-Mead Optimization algorithm. 

The DPI controller evaluation is scoped to the transient response characteristic 

analysis, specifically the rise time, percentage overshoot, and settling time. Apart 

from that, the controller robustness performance is checked at an operating 
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temperature of 40oC and 85oC for input change tracking analysis. Detailed analysis 

concerning the pole and zero, and steady-state criteria is outside the scope of this 

study. The control performance analysis is a simulation using MATLAB R2017a 

Simulink software environment. The Ziegler-Nichols tuning method, conventional 

PID, and Integral-Proportional Derivative (I-PD) controller are used to verify the 

overall DPI control performance.  

However, the glycerin final product quality and type of sample is not 

considered in the study. Despite this limitation, the study's findings are important 

because techniques related to the instrumentation and control for the purification 

process has not been discussed scientifically in the literature.  

1.7 Thesis Outline 

This thesis consists of six chapters. The content of each chapter is briefed in 

the following paragraphs. 

Chapter 1 presents the introduction and the research study overview. The 

research study background is explained in Section 1.1.1 of the chapter. In Section 1.2 

of the chapter, the description of an issue that needs to be addressed is followed. The 

research study significance is set out in Section 1.3 of the chapter. Section 1.4 

outlines the research objectives, and Section 1.5 outlines the research scope and 

limitations.  

Chapter 2 discusses a review of relevant literature for this study. The review 

covers the glycerin purification process system presented in Section 2.2.  In Section 

2.3, the heating process model is reviewed. A literature review on the controller for 

the temperature control system is presented in Section 2.4. A summary of the chapter 

is presented in Section 2.5. 

Chapter 3 sets out a description of the research methodology used for 

conducting the research study. The chapter begins with Section 3.2, explaining the 
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process flow in completing the research study. The development of the glycerine 

heating process system is briefly explained in Section 3.3. It followed with a brief 

methodology on the process model determination in Section 3.4. Section 3.5 presents 

the DPI controller design methodology. The system performance evaluations carried 

out in this research study are presented in Section 3.6 of the chapter. A summary of 

the chapter is presented in the last section of the chapter. 

Chapter 4 comprises six sections. The chapter begins with Section 4.2, which 

details the methodology on the glycerine heating process’s hardware development. 

Section 4.3 describes the prototype of the glycerine heating system. Details 

methodology of the glycerine heating process modeling is explained in Section 4.4. 

The results are set out in Section 4.5 of the chapter. The overall analysis is presented 

in Section 4.6 and follows a summary of the chapter in Section 4.7.  

Chapter 5 details the design process and the performance analysis of the 

proposed controller. The chapter begins with Section 5.2, which describes the design 

and implementation of the PID controller for the glycerine purification process 

system. It is followed by Section 5.3, which describes the results. System 

performance analysis is presented in Section 5.4, and Section 5.5 summarizes the 

content of the chapter. 

Chapter 6 outlined the conclusions and the recommendation for future 

research work. The chapter begins with Section 6.2, which shows the achievement of 

the study. This section is divided into three subsections that explain each 

achievement accordingly. Section 6.3 describes the recommended research work that 

can be carried out in the future. A summary of the chapter is presented in the last 

section of the chapter. 
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Appendix A Objective Function Programming 

%Objective function for finding out TF of machine using ITAE 

objective function 
%ITAE=int of 0 to inf[(t*abs(e(t))*dt] 
%simpson 1/3 rule is used for integration 
function f=fobs(x,t_end,h)  
global kc 
global ti 
global td 
global y_out 
global ti_me 
kc=x(1); 
ti=x(2); 
td=x(3); 
tt=(0:h:t_end); 
[ti_me,y_out]=sim('ipd_simulink1',tt); 

  

l=length(ti_me); 
f=(ti_me(l)*abs(y_out(l,1)-y_out(l,2)));% scope output 1 and 2  
%(1,1) means 1st element of the 1st output 
%(2,3) represents 2nd element of the 3rd output 
f=0; 
for i=2:2:l-1 
    f=f+4*((ti_me(i)*abs(y_out(i,1)-y_out(i,2)))); 
end 
for i=3:2:l-2 
    f=f+2*((ti_me(i)*abs(y_out(i,1)-y_out(i,2)))); 
end 
f=(h/3)*f; 
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Appendix B Main Programming 

%main program 
global kc 
global ti 
global td 
global y_out 
global ti_me 
x0=[0.8 1990 212];%initial estimation controller parameters 
results=[]; 
error=[]; 
t_end=12000; 
h=-1;%sample time 
x=fminsearch(@fobs,x0,[],t_end,h); 
%[X,FVAL,EXITFLAG,OUTPUT]=fminsearch(@fobs,x0,[],t_end,h,options) 
%options = optimset('Display','iter','MaxIter',20); 
results = [results ; x(1) x(2) x(3)] 
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Appendix C Piping & Instrumentation Diagram for Glycerin Heating Process 
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Appendix D Wiring Diagram for Motorised Stirrer and Heater 
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Appendix E Wiring Diagram for Pump 
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