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Abstract. Floods in recent years have frequently resulted in environmental, economic, as well 
as loss of human life. People are less aware of incoming floods if there is no early warning 
system. This proposal outlines the design of a monitoring system to obtain real-time data on rain 
gauge and water level. The monitoring system is based on IoT via a GSM network to provide 
real-time data cloud and dashboard display on Grafana platform. The rainfall forecasting model 
used Long Short-Term Memory (LSTM) networks to predict future rainfall and water level 
values which could cause floods. The result was experimented with using historical data since 
the current data of the monitoring system is insufficient yet to make an accurate prediction. The 
main findings of the research are the predicted values of streamflow and rainfall for historical 
data, also water level and rain gauge for new data. The primary result was experimented with 
using historical data on two rainfall stations and one streamflow. Also, the primary result was 
experimented with using new data on two water level stations and one rainfall. The forecasting 
method that applied LSTM showed high accuracy of the result reaching more than 90%.  Based 
on these results, the system can be used as a non-structural solution to alleviate the damage 
caused by urban floods.  

1.  Introduction 
Floods are one of the most prevalent and destructive natural dangers in the world [1] . Floods in previous 
years have been the most expensive calamities in terms of property damage and human lose [2]. More 
than 15.5 billion euros in damage was inflicted by the Arno River floods in Italy [3]. Between 1989 and 
1999, floods in the United States claimed at least 988 lives and caused economic damages of around 4.5 
billion dollars [2]. In Malaysia, Floods are one of the most common natural disasters, occurring virtually 
every year, particularly during the monsoon season [4]. The last flood happened in 2021, floods caused 
by rivers flowing into the mainland have inundated many areas, ruined buildings, blocked off important 
highways, and affected the provision of basic services such as water, food, and health care. According 
to [5] more than 18,000 families have affected by this flood. The effects of floods could be mitigated by 
having a flood prediction using flood monitoring system data that allows the residents to be informed 
quickly and efficiently. There are many issues that flood control systems encounter regarding accurate 
and timely forecasting of floods. In order to give a reliable prediction, it is essential to have a flood 
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prediction with flood monitoring system that are both accurate, timely, and provide an early warning. 
The objects of this study are to design and develop IoT flood monitoring system based on water level 
sensors and rain gauge sensors to collect accurate data. Additionally, to establish a forecasting model 
based on Long Short-Term Memory (LSTM) networks for early flood prediction.  

This study proposes a data-driven flood prediction model using LSTM based on the accurately 
collected data that we have from the flood monitoring system. Section 2 introduces the structure of this 
work Section 3 discusses the methodology and the model design for the proposed experiment. 
Experimental results are shown in section 4 and lastly concluding remarks are contained in section 5. 

2.  The structure of the study 
While conventional early warning systems may be appropriate in some circumstances, modern 
technology such as the Internet of Things is critical for real-time data acquisition from a variety of 
sources, data processing, and warning information distribution to people who are likely to be impacted 
by a flood before it occurs. Internet of Things (IoT) refers to the connection of physical devices, cars, 
buildings, and other items embedded with electronics, sensors, actuators, communication protocols, and 
software that collect, share, store, analyze, and process data. The structure of IoT is based on five main 
components which are the things or device (sensor nodes), field getaway, cloud, storage, analytic [6]. 

Machine learning (ML) is a subfield of artificial intelligence (AI) that is used to infer regularities and 
patterns. It enables easier implementation with low computation costs, as well as fast training, testing, 
validation and evaluation while maintaining high performance in comparison to physical models [7]. 
The limitations of physical-based and statistical models discussed in[8] promote the use of advanced 
data-driven models such as machine learning. Promising data-driven prediction models employing ML 
are quicker to develop with minimal inputs [9]. ML techniques have demonstrated their ability to 
outperform conventional flood forecasting approaches with an acceptable level of accuracy during the 
last two decades [9]. In these literatures [9, 10]  they described in detail the ML modelling methodology 
and flood modelling technique and illustrate the basic flow for building the ML model. 

Long Short-Term Memory was introduced by Hochreiter and Schmidhuber in 1997 [11]. LSTM is a 
deep learning technique which is a subfield from ML [12]. LSTMs are a special kind of Recurrent Neural 
Network (RNN) that has been developed to overcome the drawback of RNN in terms of the vanishing 
gradient problem. LSTM networks are the most commonly used variation of Recurrent Neural Networks 
[12]. Graves & Schmidhuber in [13] first described the LSTM architecture that is most frequently used 
in the literature shown in figure [1]. The memory cell and the gates are two important critical 
components of LSTM [14]. The information coming to the memory cell could be manipulated by the 
input gates and forget gates between one time-step and the next. Information may be preserved over 
many time steps because of the gating structure, and gradients can flow over many time steps as well. 
Thus, LSTM could avoid the vanishing gradient problem that happens in the majority of RNN models. 
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Figure 1. LSTM architecture. 
 

The most important component of LSTM unit is the memory cell. It is an essential concept since it 
enables the network to retain its state over time. LSTM unit has three gates, input gate, forget gate and 
output gate. Protecting linear unit against misleading signals is the primary function of three gates. A 
memory cell's state can be changed or blocked using the input gate. Using the forget gate, a memory 
cell may either recall or forget how much data it has stored in its current state. At the LSTM's output, 
the output gate either shows or hides the contents of the memory cell. The output of the LSTM block is 
recurrently connected back to the block input and all of the gates for the LSTM block.  An LSTM has 
sigmoid activation functions for [0, 1] limitation in its input, forget, and output gates. Typically, the 
LSTM block's input and output activation functions are tanh. Here the equations present the vector 
formulas for a LSTM layer forward pass [12]: 
 

𝒛𝒛𝒕𝒕 =  𝒈𝒈(𝑾𝑾𝒛𝒛𝑿𝑿𝒕𝒕 + 𝑹𝑹𝒛𝒛𝒀𝒀𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒛𝒛)                                block input 
𝒊𝒊𝒕𝒕 = 𝝈𝝈(𝑾𝑾𝒊𝒊𝑿𝑿𝒕𝒕 + 𝑹𝑹𝒊𝒊𝒀𝒀𝒕𝒕−𝟏𝟏 + 𝑷𝑷𝒊𝒊⨀𝑪𝑪𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒊𝒊)                 input gate 
𝑭𝑭𝒕𝒕 = 𝝈𝝈(𝑾𝑾𝒇𝒇𝑿𝑿𝒕𝒕 + 𝑹𝑹𝒇𝒇𝒀𝒀𝒕𝒕−𝟏𝟏 + 𝑷𝑷𝒇𝒇⨀𝑪𝑪𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒇𝒇)             forget gate 
𝑪𝑪𝒕𝒕 =  𝒊𝒊𝒕𝒕⨀𝒁𝒁𝒕𝒕 + 𝑭𝑭𝒕𝒕⨀𝑪𝑪𝒕𝒕−𝟏𝟏                                               cell state 
𝒐𝒐𝒕𝒕 =  𝝈𝝈(𝑾𝑾𝒐𝒐𝑿𝑿𝒕𝒕 + 𝑹𝑹𝒐𝒐𝒀𝒀𝒕𝒕−𝟏𝟏 + 𝑷𝑷𝒐𝒐⨀𝑪𝑪𝒕𝒕 + 𝒃𝒃𝒐𝒐)               output gate 
𝒚𝒚𝒕𝒕 = 𝒐𝒐𝒕𝒕⨀𝒉𝒉(𝒄𝒄𝒕𝒕)                                                        block output 

 
where 𝑿𝑿𝒕𝒕is the input vector at time t, the W are rectangular input weight matrices, the R are square 
recurrent weight matrices, p are peephole weight vectors and b are bias vectors. Functions σ, g and h 
are point-wise non-linear activation functions: logistic sigmoid 𝟏𝟏

𝟏𝟏+𝒆𝒆−𝒙𝒙
 is used for as activation function 

of the gates and hyperbolic tangent is usually used as the block input and output activation function. The 
point-wise multiplication of two vectors is denoted with ⨀. 
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3.  Methodology 
 
3.1  Study area 
In this project, two case study has been chosen for our modelling. The reason of choosing other two case 
study is that the data of the monitoring system in not sufficient to do prediction. The first case study 
from the hydrological stations in JB and the second case study is the location of our developed 
monitoring system.  

The first dataset (historical data) was provided by the Official Web of Public Infobanjir. Infobanjir, 
a centralized database system, was developed in the year 1999 and started to be operated in early 2000. 
The Infobanjir system works by collecting real-time rainfall and water level data from nearly 500 
hydrological stations across the country. Hydrological data from each station is transmitted to the 
Telemetry Database/Servers in each state and then transmitted to Infobanjir. In 2011, the Infobanjir 
system was modified further by developing a new web-based and renamed publicinfobanjir system. The 
newly developed publicinfobanjir websites were focusing on providing flood warning information to 
the public by reducing technical information and incorporating the latest media such as Facebook, 
Twitter, and RSS. Important information such as evacuation records, flood status, rainfall and river 
water level alerts are displayed in an interactive manner. Moreover, the database system has been 
enhanced and developed by applying the latest technology, which is capable of receiving and processing 
data in real time over a short period of time. The dataset is collected from three different stations between 
the 1st of June 2010 and until 1st of Dec 2012. The historical data is two Rainfall data (Site 1836001 
RANCANGAN ULU SEBOL and Site 1737001 SEK. MEN. BKT. BESAR at KOTA TINGGI at 
JOHOR) and one streamflow data (Site 1737451 SG. JOHOR at RANTAU PANJANG). The following 
Figure [2] shows the location of these stations. 

 All three stations are installed in the Johor River Basin. The average annual temperature is about 26 
°C [15]. The average annual rainfall of the river is 2500 mm/year. The mean annual streamflow at 
Rantau Panjang station is 37.7 m3/s. The climate in the Johor River is a tropical monsoon climate, 
divided into the northeast monsoon (November–February), and the southwest monsoon (May–August). 
Flooding events frequently occur in December, when the highest rainfall and peak streamflow are 
recorded. The Johor River covers four districts of Johor State: Kota Tinggi, Kluang, Kulai Jaya, and 
Johor Bahru. It is estimated that there were roughly 300,000 people and 70,000 families living in the 
Johor River Basin in Malaysia in 2010 [16]. This study collected hourly streamflow data from the station 
and hourly rainfall data from the two gauges. 

The location of our study (new data) is in University Teknologi Malaysia (UTM). UTM campus is 
located in Johor Bahru in the south of Malaysia.  The rain gauge is installed on an open area and at 
ground level, preferably site with no steep drop-off on the windward side. The sensor should not be 
sheltered by obstructions such as trees and buildings that may prevent rainfall from being collected by 
the rain gauge.  Water level sensor is installed at potential flooding area particularly location which has 
high possibility to experience flash flood (fast rise and overflowing of river water level). There are 
several potential areas for the water level sensor node installation. They are at upstream of the UTM 
catchment and any point within the drainage system (downstream) which have high possibilities of a 
flash flood occurrence. The two water level monitoring stations are located on the campus of UTM 
based on the options shown in the figures [3]. 
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Figure 2. Hydrological Stations in JB. 

 

 
Figure 3. The location of water level sensors. 

 
3.2  System design 
The system architecture of this project, which is a real-time flood monitoring and prediction system, is 
depicted in Figure [4]. The system is divided into two components, physical hardware architecture and 
software architecture. In this system, the sensor network concept is utilized to transmit data from sensor 
nodes to the data logger. The sensor nodes act as a platform for data collection and measurement of the 
present water level and precipitation. The purpose of a data logger is to continuously monitor and record 
environmental factors, allowing for the measurement, documentation, analysis, and validation of 
conditions. Then, using a GSM modem, the data is transmitted to the cloud. Following that, the data is 
shown through an online server. 
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Figure 4. System architecture. 

 
The hardware design explains the overall hardware and devices that have been used in project 

development based on the architecture design. In our project, we used RK400-01 Metal Tipping Bucket 
Rainfall Sensor (TBRS) shown in figure [5]. it depicts our sensor station installation. where the sensor 
is powered by a solar panel. since the rain gauge's reliance on a balanced pivot, it is critical to put tipping 
bucket rain gauges on a level surface. The surface should be stable and vibration-free. We proposed 
RKL-01 Submersible Liquid Level Transmitter (SLT) for our project, as presented in the figure [5]. The 
sensor operates by sensing the liquid medium's hydrostatic pressure. Hydrostatic pressure, referred to as 
head pressure, is the force exerted by the fluid within the vessel. SLT sensor could be installed in two 
liquid mediums, either in static water or dynamic water. in our case, SLT sensor is installed in the 
dynamic water. 

 

 
Figure 5. TBRS and SLT instillation. 

 
This project's software development has two parts. The first part is to create a dashboard as an online 

server database. secondly, Develop an LSTM algorithm for flood forecasting. Figure [6] shows how the 
data is collected in the developed dashboard. We only collect data and save it as CSV file. The data is 
recorded every minute timestamp. But it was only for one month, so to do an efficient flood prediction, 
we will used historical data. 
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Figure 6. The developed online dashboard. 

 
The reason for using LSTM is that we are working with sequential data. When we have sequential 

data with a timestamp for every sample, we consider this data to be time-series data. LSTM are better 
able to model the time domain by allowing a sequence of input vectors to be treated as a single logical 
input for a LSTM model.  LSTM could be used for classification, regression, and generating novel 
output. in our case we will use LSTM for regression problem. Here in figure [7] we have our LSTM 
system flowchart 
 

 
Figure 7. LSTM system flowchart. 
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4.  Results and Discussion 
This section presents the results of LSTM models for flood prediction for both historical data and the 
new data. Then we will choose the most accurate model to be considered. 
 
4.1 LSTM Based on Historical data 
First, we visualized the original historical data in the following figures, for streamflow figre and rainfall 
1,2. we can see the maximum value of streamflow is more than 300 m/s^3 and the maximum values of 
Rainfall 1,2 are 73 mm and 87 mm respectively. 
 

 
Figure 8. Streamflow data representation. 
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Figure 9. Rainfall-1 data representation. 

 
Figure 10. Rainfall-2 data representation. 

 
The simplest model we started with is model 2x2. that means, the input is 2 rows of data, and the 

output is 2 data. in other words, the input is 2 hours, and we get 2 hours prediction in the output. The 
following illustration [9] depicts the outcome of model 2x2 and its evaluation. 
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Figure 11. Model 2x2 results. 

 
Starting with a 2x2 model, the last figure displays the predicted streamflow and rainfall 1,2. We 

chose 500 samples to demonstrate the outcome clearly. If we zoom in on a particular location, we can 
see the forecast for the first and second hour. Where the blue line, orang line and green line represent 
the raw data, first hour and second hour predication respectively.  According to the two lines prediction, 
the first hour is closer to the raw line than the second. Therefore, it is more precise. Therefore, we may 
conclude that the more hours of forecast, the greater the mistake of the most recent hours. The evaluation 
of the model reveals that its accuracy exceeds 90 percent, which is quite good. In addition, the training 
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loss and validation loss approach zero over time. To make our model more efficient, we have to increase 
the predicted output so that we have enough time before the flood happen. the next schedule [] 
demonstrates the models that we designed with their error.  
 

Table 1. Models results. 

 
 

 
 
According to the tables, when we fix the input and increase the output, the error rate also rises. 

After reaching model 2x8, the output was fixed while the input was raised. the error decreased 
slightly. However, the training loss and validation loss fluctuated erratically over time. Based on this, 
we select the model 6x4 which has the maximum output with high accuracy and validation. In the next 
figure [10], the result of model 6x4 has been shown. 

 
4.2  LSTM Based on new data (primary result) 
The original new data is visualized in figure [12] for rainfall and water level1,2. we can observe that the 
maximum value of rainfall is 117 mm, and the maximum values of water level 1,2 are 7.2, 7.7 mm 
respectively. Since we only have data for one month, the majority of the precipitation data is zero. 
Because of this, we were unable to create an accurate rainfall forecast model. In the meanwhile, we 
developed a model to predict water level 1,2 
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Figure 122. model 6x4 results. 

 

 
Figure 133. The original new data representation. 

 
Using the same methodology applied to historical data, we choose the 10 x 4 model with the highest 
output accuracy and validation. In this scenario, the timestamp is 1 minute. hence, we enter 10 minutes 
and receive a forecast of 4 minutes. the following figure [12] shows the result of model 10x4 and its 
evaluation. 
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Figure 14 model 10x4 results. 

 
The flood warning level for both water level sensors is depicted in the following graph [14]. We 

estimated the warning level by measuring the depth of the river at the station location. We may observe 
that the warning level is a significant distance from the predicted values. This indicates that the risk of 
flooding is quite far. This was the actual occurrence. 
 
 

 
Figure 15. Flood warning level. 

 
5.  Conclusion 
In this study, a monitoring system composed rain gauge and two water level sensors is developed to 
forecast the flood using LSTM algorithm. the results of historical data demonstrate that all the models 
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are suitable for prediction. model 6x4 with slightly better accuracy and validation has been chosen 
among other models. Results accuracy reaches above 95%. for monitoring system data, model 10x4 has 
been chosen as highly accurate. in future work, we can have more data for our system so that we could 
include the Rainfall data in prediction and forecast different lengths of time. 
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