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ABSTRACT 

Some recent studies claim that Data Analytics Capability (BDAC) is largely 

focused on developed countries such as the United States and the current adoption 

level of big data analytics in business is still very low. In the context of Malaysia, 

BDAC has not yet reached the optimal level and it was also found that previous 

studies did not evaluate the impact of BDAC on competitive advantage in the 

manufacturing industry. A lacking study on BDAC, competitive advantage, and firm 

performance coupled with inconsistent findings between competitive advantage and 

firm performance has raised many questions, leading to an unclear direction for 

business decision-makers. Hence, this phenomenon has been investigated and the 

study was underpinned by the Resourced-Based View (RBV) and the entanglement 

view of sociomaterialism (EVS) theories in examining the relationships among 

higher order of BDAC, cost advantage, differentiation advantage, market, and 

operational performance. The study adopted a quantitative and cross-sectional 

research method by distributing the survey to the companies listed in the Federation 

of Malaysian Manufacturers (FMM) directory 2018 (49th edition). The sampling 

frame consisted of 3,828 companies. Employing a systematic sampling method, a 

sample size of 1,000 companies was determined for the study. A total of 689 

companies agreed to participate in the research. 191 responses were usable and 

resulted in an effective response rate of 27.72 percent. IBM SPSS version 23 and 

Smart PLS version 3 were used to analyze the data. This study discovered that 

BDAC is a bundle of resources that consists of data, technology, data-driven culture, 

the intensity of organizational learning, and technical and managerial skills. 

Empirical findings provided adequate evidence that BDAC positively influences cost 

advantage and differentiation advantage and subsequently leads to superior firm 

performance. Additionally, the differentiation advantage was found to be a key factor 

in predicting market performance, however, failed to influence operational 

performance. Theoretically, both RBV and EVS could be used to link higher order of 

BDAC, differentiation advantage, and market performance to explain superior firm 

performance. This research outlined some limitations of the study and offered some 

recommendations for future research directions. 
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ABSTRAK 

Beberapa kajian baru-baru ini mendakwa bahawa Keupayaan Analitis Data 
(BDAC) banyak memberi tumpuan kepada negara maju seperti Amerika Syarikat 
dan tahap penerimaan semasa analitik data dalam perniagaan adalah masih sangat 
rendah. Dalam konteks Malaysia, BDAC masih belum mencapai tahap optimum dan 
juga didapati kajian lepas tidak menilai kesan BDAC terhadap kelebihan daya saing 
dalam industri pembuatan. Kajian yang kurang tentang BDAC, kelebihan daya saing 
dan prestasi firma ditambah pula dengan penemuan yang tidak konsisten antara 
kelebihan daya saing dan prestasi firma telah menimbulkan banyak persoalan, yang 
membawa kepada hala tuju yang tidak jelas bagi pembuat keputusan perniagaan. 
Oleh itu, fenomena ini telah disiasat menggunakan Pandangan Berasaskan Sumber 
(RBV) dan keterjalinan teori-teori sosiomaterialisme (EVS) dalam mengkaji 
hubungan antara BDAC, kelebihan kos, kelebihan pembezaan, pasaran, dan prestasi 
operasi. Kajian ini menggunakan kaedah penyelidikan kuantitatif dan keratan rentas 
dengan mengedarkan tinjauan kepada syarikat yang tersenarai dalam direktori 
Persekutuan Pekilang Malaysia (FMM) 2018 (edisi ke-49). Kerangka persampelan 
terdiri daripada 3,828 syarikat. Menggunakan kaedah persampelan sistematik, saiz 
sampel sebanyak 1,000 syarikat telah ditentukan untuk kajian ini. Sebanyak 689 
syarikat bersetuju untuk mengambil bahagian dalam penyelidikan ini. 191 respons 
yang boleh digunapakai telah diterima menghasilkan kadar maklum balas yang 
berkesan sebanyak 27.72 peratus. IBM SPSS versi 23 dan Smart PLS versi 3 
digunakan untuk menganalisis data. Kajian ini mendapati bahawa BDAC ialah 
himpunan sumber yang terdiri daripada data, teknologi, budaya berasaskan data, 
intensiti pembelajaran organisasi dan kemahiran teknikal dan pengurusan. Penemuan 
empirikal memberikan bukti yang mencukupi bahawa BDAC secara positif 
mempengaruhi kelebihan kos dan kelebihan pembezaan dan seterusnya 
mempengaruhi prestasi firma yang unggul. Selain itu, kelebihan pembezaan didapati 
sebagai faktor utama yang meramalkan prestasi pasaran, tetapi gagal mempengaruhi 
prestasi operasi. Secara teorinya, kedua-dua RBV dan EVS boleh digunakan untuk 
menghubungkan BDAC, kelebihan pembezaan dan prestasi pasaran untuk 
menerangkan prestasi firma yang unggul. Penyelidikan ini juga menggariskan 
beberapa batasan kajian dan menawarkan beberapa cadangan untuk hala tuju 
penyelidikan masa hadapan. 
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CHAPTER 1  

 

 

INTRODUCTION 

 Introduction 

This research presents the effect of big data analytics capability (BDAC) on 

competitive advantage and firm performance by offering a resource-based view and 

the entanglement view of sociomaterialism of BDAC in the manufacturing sector. 

Section 1.2 illustrates the background of the study, and Section 1.3 presents the 

existing issues faced by manufacturers in adopting big data analytics for achieving a 

competitive advantage and better firm performance in Malaysia. Section 1.4 specifies 

the research questions to accomplish the research objectives stipulated in Section 1.5 

of this thesis. Section 1.6 explains the scope of this research and Section 1.7 outlines 

the significance of this research. Definitions of the key terms are described in section 

1.8 and followed by outlining the organisation of this thesis.  

 Background of the Study 

Industry 4.0 (the fourth industrial revolution) is revolutionising 

manufacturing by providing manufacturers with the opportunity to utilise advanced 

information technology (IT) capabilities for the sake of gaining competitiveness in 

the market (Boggess, 2019; Subramaniam, 2020). This is critical for firms to achieve 

a competitive advantage in enhancing firm performance through the domain of IT 

(Hardaker, Trick and Sabki, 1994; Kettinger et al., 1994; Daugherty, Germain and 

Droge, 1995; Ravichandran and Lertwongsatien, 2005; Wong, Soh and Chong, 2016; 

Boggess, 2019; Daniels, 2019; Hitch, 2019; Subramaniam, 2020; Shah, 2021). The 

IT domain is found to facilitate the achievement of low-cost or differentiation 

advantage (Porter and Millar, 1985; Feraud, 1998; Chiu and Yang, 2019; 

Subramaniam, 2020). One of the major IT trends that will dominate manufacturing in 
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the year 2021 is having greater visibility into big data analytics that helps 

manufacturers understand more of their business processes (Boggess, 2019; Feyen et 

al., 2021). This is because big data analytics enables manufacturers to improve 

production, optimise operations, and address issues before they arise (Tan, 2018; 

Azeem et al., 2021).  

The fundamental concept of big data analytics indicates two prospects which 

are big data (BD) and business analytics (BA) (Duan and Xiong, 2015; Boldosova 

and Luoto, 2020). Big data refers to data sets that have been accumulated over time 

to meet the 3Vs which are volume, velocity, and variety, whereby volume concerns 

the size of data, velocity relates to the quickness of getting the information on a real-

time basis, and variety refers to the type of data (Panimalar, Shree and Kathrine, 

2017; Azeem et al., 2021). This is consistent with Chen and Zhang (2014); Garmaki, 

Boughzala and Wamba (2016); and Taylor (2021), who claimed that big data is huge, 

real-time, and a variety of data sets that go beyond the traditional computation ability 

to apprehend, analyse, and convert big data into an idea. Business analytics provides 

specialised assistance in accessing, exploring, visualizing, and integrating large 

amounts of data (Chen and Zhang, 2014; Morris, 2021). In Malaysia, big data 

analytics has provided numerous possibilities to improve their operations, and thus, 

big data analytics has become one of the critical elements to develop a knowledge 

economy for the country (Kumar, 2014; Economic Planning Unit, 2020). Therefore, 

the Ministry of Communication and Multimedia Commission (MCMC) and Malaysia 

Digital Economy Corporation (MDEC) aimed to make Malaysia one of the regional 

big data analytics hubs by driving the National Big Data Initiatives to produce 

earnings of RM53.2 trillion in the year 2030 (MDEC, 2021).   

Big data analytics investments in Malaysia have continued to rise and could 

reach RM595 million in the year 2021, increasing by 10.9 percent from the year 

2016 (Chellam, 2018). Big data analytics in the manufacturing industry is anticipated 

to record a compound annual growth rate (CAGR) of above 30.9 percent throughout 

the projection phase in the years 2019 to 2024 (Mordorintelligence, 2019). Thus, it is 

worth studying the effect of big data analytics capability in the manufacturing sector, 

which is comprised of many successful manufacturers like Top Glove (the world’s 
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biggest rubber glove producer) that collaborated with a Malaysia-based big data firm 

on getting some big data analytics resolution that applied detectors to control the 

compound of rubber substances to enhance productivity (Chellam, 2018; Top Glove 

Corporation Bhd, 2020). UMW Holdings Bhd (automotive, equipment, 

manufacturing, and engineering company) has digitised its business processes to 

accumulate data in the interest of applying data analytics and predictive support 

(Zainul, 2017). Intel also applied big data analytics to speed up the testing of its 

microprocessors and enhance its company performance by saving up to $3 million in 

the first year of implementation (Protiviti, 2017; Intel, 2020).  

To increase the productivity of manufacturers, the government is motivating 

them to apply big data analytics to gain competitiveness in the marketplace 

(Govinsider, 2015; Subramaniam, 2020). Malaysian organisations have moved 

slightly across the ad-hoc phase in terms of big data strategy and sponsorship 

projects in the International Data Corporation (IDC)’s Big Data analytics 

MaturityScape from the year 2014 to 2015 (IDC, 2015). The ad-hoc stage has been 

defined as a pilot project, an undefined process, and a lack of resources (IDC, 2015). 

This inferred that many Malaysian organisations are still new to big data analytics 

and only conduct small-scale big data analytics projects due to inadequate big data 

analytics capability (BDAC). According to Schwab (2019), the ranking of Malaysia 

is rated as 33rd place in terms of using technology to support its business operations 

worldwide. Nevertheless, Malaysia is still slow compared to the dominant countries 

like Korea, Singapore, Australia, Hong Kong, etc. (refer to Figure 1.1). The 

aforementioned literature shows the development of the BDAC in Malaysia. As such, 

it is worth strengthening the achievement of competitive advantage and better firm 

performance by studying the contribution of BDAC in the context of the 

manufacturing sector within Malaysia. 
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Source: IDC Malaysia Big Data Analytics Maturity Benchmark, 2015 (n=100) 

Figure 1.1 IDC APeJ Big Data Analytics Maturity Assessment and Benchmark 

 

According to research conducted by Dell EMC (Electromagnetic 

Compatibility) Corporation, around 40 percent of Malaysian businesses have already 

achieved a competitive advantage as a result of adopting big data analytics, while 69 

percent believe that big data will define the winners and losers of their industry since 

the year 2013 (Tan, 2013). In the study conducted by International Data Corporation 

(IDC) (2015), 26 percent of the respondents came from Thailand, the Philippines, 

Malaysia, and Hong Kong have reached a modest standard of maturity and capability 

to reap the value from the adoption of big data analytics, while another 28 percent of 

the respondents have started their big data analytics journey but the outcomes of big 

data analytics adoption have not met their presumptions. 

 

Wong, Chuah, and Ong (2015), who found that around 52 percent of those 

who are ready for change management and adaptability related to big data analytics 

have obtained more business opportunities from the outcomes of big data analytics. 

They further explained that most Malaysian companies have started to change their 

culture to make the right decisions based on the outputs produced by big data 

analytics. However, none of the organisations reached the optimising level by using 

big data analytics to identify business opportunities for creating business value 

(Wong, Chuah, and Ong, 2015). The finding is somehow consistent with Goh (2015) 

and Protiviti (2017), who have found some factors that caused the nascent level of 
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using big data analytics, such as lack of awareness of the benefits of big data 

analytics, the unwillingness of certain organisations to open up their data, insufficient 

human capital, the lack of success stories, etc. Along with this line of thought, Goh 

(2014), Yap (2019) and Chuah and Thurusamry (2021) have stated the prerequisite 

for successful firms to exchange their experience in adopting big data analytics to 

stimulate more firms to accept these up-to-date technologies.  

 

Big data analytics may provide firms with more opportunities to gain a 

competitive advantage (Mcafee and Brynjolfsson, 2012; Singh and Del Giudice, 

2019), as the output generated by the big data analytics software can provide 

unexpected inspiration for firms to make the right decision and, as a result, improve 

their business performance (Akter et al., 2016; Gupta and George, 2016; Mikalef et 

al., 2020). Big data analytics software like cloud-based, parallel computing 

approaches, open-source software, data visualisation tools, and databases are the 

main choices for handling and processing big data (Akter et al., 2016; Gupta and 

George, 2016; Mikalef et al., 2020). Cloud-based services can be described as a 

network that is provided by a remote host via a network connection to communicate 

the computing tasks of multiple computers (Chen, Chang and Lin, 2015).  

To apply parallel computing approaches, many companies have purchased 

the pre-written software called Enterprise Resource Planning (ERP) (Mocean, 2011) 

to make integrated operations that come from manufacturing, marketing, human 

resources, accounting, customer relationship management, and others in a firm 

(Tarigan, Siagian and Jie, 2021). To motivate a company to use big data analytics, 

there is a lot of open-source software that can be used freely to process the data. 

Open-source software is now a trend and has witnessed a rampant evolution due to 

fewer start-up costs, user-friendliness, and many other benefits (Chong, Siti Zaleha 

and Haliyana, 2021). Some examples of open-source software, such as Apache 

Hadoop, Project Storm, and Apache Drill, are just to list some popular big data 

solutions that have been used frequently in the market (Taylor, 2022). Among these, 

extensive spending has been made on big data analytics software like Hadoop, 

NoSQL, HBase, MongoDB, and Cassandra to process the big data to gain some 
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useful statistical information about the current market that they are serving (Mikalef 

et al., 2017). 

 

 Problem Statement 

Manufacturers are under heavy pressure to improve their capability and 

performance in managing big data analytics (Protiviti, 2017; Subramaniam, 2020) 

because the race is to explore this enormous number of data sets to collect some 

unknown configuration, industry direction, and more helpful statistics about the 

current market (Chong, 2017; Feyen et al., 2021). The trend toward adopting data 

analytics is unavoidable as many multinational firms are embracing these new 

technologies to outperform each other (Gupta and George, 2016; Jha, Agi and Ngai, 

2020; Mikalef et al., 2020). International companies, as well as small and medium 

enterprises (SMEs), are also struggling to learn this new technology to survive in the 

exponentially growing data-centric economy (Zainul, 2017; Menon, 2018; Chuah 

and Thurusamry, 2021). If the local companies do not follow the trend, they could 

fail to retain their customers (Tan, 2018; Tien et al., 2020). However, Baharuden, 

Isaac and Ameen (2019) and Tien et al. (2020) cite that the current acceptance level 

of big data analytics in business is still very low and Malaysia is yet to reach an 

optimum level. As such, it is important to study the current stage of their capability 

to use big data analytics in the context of Malaysian manufacturing firms.  

 

In the domain of IT, the adoption rate of big data analytics continues its 

upward trend, and currently, the writing about big data analytics is nevertheless at a 

premature level (Cosic, Shanks and Maynard, 2012; Mikalef et al., 2017, 2020; 

Mandal, 2018; Baharuden, Isaac and Ameen, 2019; Jha, Agi and Ngai, 2020). The 

lack of literature contribution related to big data analytics in Malaysia has attracted 

the attention of researchers and the Malaysian government (Mishra et al., 2018; 

Chuah and Thurusamry, 2021). This is consistent with the Ministry of International 

Trade and Industry (MITI, 2018) by urging more researchers to examine the 
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evolution movement of big data analytics and its key performance indicators for 

firms to stay competitive through the National Fourth Industrial Revolution (4IR) 

Policy. This is reflected in this research by having cost and differentiation advantages 

as the efficiency indicators for manufacturing firms to achieve better firm 

performance through enhancing their big data analytics capability.  

 

 

The literature has shown that big data analytics could establish benefits for 

firms by enabling the improvement of business processes (Wong et al., 2015; Akter 

et al., 2016; Wamba et al., 2017; Mandal, 2018; Subramaniam, 2020) and firm 

performance (Cosic, Shanks and Maynard, 2012; Gupta and George, 2016; 

Gunasekaran et al., 2017; Baharuden, Isaac and Ameen, 2019; Jha, Agi and Ngai, 

2020). Despite empirical evidence that big data analytics has provided benefits to an 

organisation, few studies provide a sound theoretical basis for understanding how to 

qualify a resource or capability in terms of its value, rareness, inimitability, and non-

substitutability (VRIN) that could create BDAC and subsequently achieve 

competitive advantage over time (Gupta and George, 2016; Mikalef et al., 2020). 

Furthermore, not all firms have gained substantial returns after making a large 

investment in big data analytics (Cosic, Shanks and Maynard, 2012; Mcafee and 

Brynjolfsson, 2012; Ross, Beath and Quaadgras, 2013; Davenport, 2014; Maritz, 

Eybers and Hattingh, 2020; Mikalef et al., 2020). The benefits of using big data 

analytics are yet to be clear, although the adoption of big data analytics has increased 

gradually (Shaheera, 2017; Chuah and Thurusamry, 2021). This is because of unclear 

direction to the firms on how to use their BDAC to gain competitive advantage and 

greater firm performance (Akter et al., 2016; Dubey et al., 2016; Gupta and George, 

2016; Mikalef et al., 2020; Papadopoulos et al., 2021). Therefore, this research is 

important to provide a direction to ensure a company can attain a high level of firm 

performance through examining its extent of BDAC in achieving a competitive 

advantage against the backdrop of uncertain global trade.  
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 Research Questions 

This research examined the extent of BDAC in manufacturing firms in 

Malaysia and explained the linkage between BDAC, competitive advantage, and firm 

performance. There are five research questions as follows: 

 

1. What is the current stage of BDAC in manufacturing firms? 

2. Does the BDAC positively influence competitive advantage?   

3. Does the BDAC positively influence firm performance?   

4. Does the competitive advantage positively influence firm performance?  

5. Does the competitive advantage positively mediate the relationship between 

BDAC and firm performance?  

 

 

 

 Research Objectives 

  Five research objectives were stipulated to answer the research questions for 

this research. 

 

1. To identify the current stage of BDAC in manufacturing firms.  

2. To examine the relationships between BDAC and competitive advantage.  

3. To examine the relationships between BDAC and firm performance.  

4. To examine the relationships between competitive advantage and firm 

performance.  

5. To examine the mediating role of competitive advantage between BDAC and 

firm performance. 
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 Research Scope 

Due to time and financial constraints, the scope of the research was focused 

on the following areas only. First, this research assessed the extent of BDAC among 

manufacturing firms in Malaysia. Second, the distributed questionnaire has been 

limited to the manufacturing firms registered in the Federation of Malaysian 

Manufacturers (FMM) 2018 in the 49th edition. Third, this research examined the 

linkage between BDAC, competitive advantage, and firm performance in the 

Malaysian manufacturing industry.  

 

 

 

 Significance of the Study 

1.7.1 Theoretical Significance 

The first theoretical significance is using the Resource-Based View (RBV) 

and the entanglement view of sociomaterialism theories to support the research 

model. RBV provides reasoning to identify and qualify whether a resource or 

capability of the firm may be significant with the criterion of valuable, rare, 

imitability, and non-substitutability (VRIN) to gain competitive advantage and better 

firm performance. According to the entanglement view of sociomaterialism, BDAC 

has been regarded as a bundle of resources that consists of data, technology, data-

driven culture, the intensity of organisational learning, technical and managerial 

skills. The second theoretical significance is to fill in the missing empirical evidence 

between BDAC and competitive advantage. BDAC has been found to be a critical 

variable to achieve differentiation advantage and success with better market 

performance. The third theoretical significance is to provide a sliver of evidence on 

the mediating role of differentiation advantage between BDAC and market 

performance. The fourth theoretical significance is to reply to the call for more 

research echoed by Govinsider (2015); IDC (2015); Baharuden, Isaac and Ameen 

(2019); Jha, Agi and Ngai (2020); Mikalef et al. (2020). This research aims to fill in 

the literature about BDAC by examining the current stage of BDAC and its extent in 
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achieving competitive advantage for greater firm performance among the 

manufacturing firms in Malaysia.  

 

 

1.7.2 Managerial Significance 

The first managerial significance is to present the current stage of BDAC in 

manufacturing firms. The results show that the current stage of BDAC in 

manufacturing is experiencing positive growth compared to the previous literature. 

Although the rate of adoption is progressing well, only 33.5 percent of the 

respondents have reached a professional level of capability to use big data analytics. 

The second managerial significance is to prove BDAC as a valuable, rare, inimitable, 

and non-substitutable resource for manufacturers to enhance their firm performance. 

The research findings indicate that BDAC is significant to achieve a better market 

and operational performance. The third managerial significance is to determine the 

linkage between the BDAC and competitive advantage among the manufacturing 

firms in Malaysia. The results show that BDAC is one of the key resources for 

manufacturers to achieve a differentiation advantage. The fourth practical 

significance is to examine the relationship between competitive advantage and firm 

performance in the context of the manufacturing sector. The research findings show 

that a cost advantage is less likely to help manufacturers achieve greater market and 

operational performance. A differentiation advantage is positively leading to greater 

market performance.  
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 Definition of Key Terms 

This research has identified five variables, which are BDAC, cost advantage, 

differentiation advantage, operational performance, and market performance. The 

section presents the operational definitions of those terms. 

 

i. Big Data Analytics Capability (BDAC) – means a firm’s competencies to 

collect, incorporate, and organise its big data-specific resources like tangible 

resources, intangible resources, and human skills (Gupta and George, 2016; 

Mikalef et al., 2020).  

 

ii. Cost advantage – refers to a strategy to operate at the lowest cost relative to 

its competitors (Best, 2000; Wang et al., 2006; Wong, Soh and Chong, 2016; 

Kankam-Kwarteng, Osman and Donkor, 2019). 

 

iii. Differentiation advantage – refers to a strategy for differentiating a 

company’s product or service offering from its key competitors in terms of 

attributes, speed, and adaptability, where cost is not a significant factor 

(Hambrick, 1983; Wong, Soh and Chong, 2016; Semuel, Siagian and 

Octavia, 2017).  

 

iv. Operational performance - is a measurement perspective of the achievement, 

namely consistency, quality of service, speed of delivery, productivity, 

profitability, inventory turnover rate, and manufacturing cycle time of a 

business operation (Wang et al., 2012; Gupta and George, 2016).  

 

v. Market performance - is a measurement perspective of the firm’s 

achievement namely the speed and success of the firm in entering a new 

market and introducing new products or services to the marketplace (Wang et 

al., 2012; Gupta and George, 2016). 
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Organisation of the Thesis 

This thesis is divided into five chapters. Chapter 1 provides the background 

of the study, justifies the reasons for doing this research with accompanying problem 

statements, research questions, research objectives, research scope, the significance 

of the study, and definition of key terms. Chapter 2 contains literature relating to the 

RBV and the entanglement view of sociomaterialism theories that forms the 

hypothesised relationship of this study as well as the research model. Chapter 3 

presents the research design and sources of the measurement items, sampling 

technique, questionnaire design, and pilot test. The procedure of assessing 

measurement and structural models through Structural Equation Modelling has been 

detailed throughout Chapter 3. Chapter 4 presents the results, respondents’ 

characteristics, the findings of the hypothesised relationships and concludes with a 

summary of the results. Chapter 5 discussed the results, implications of the 

outcomes, and limitations of this research. This research ends by offering future 

research directions and concluding remarks. 
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Appendix A Reliability Analysis (Pilot Test) 
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Appendix B  Questionnaire 
 

 

 

SURVEY QUESTIONNAIRE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

RE: BIG DATA ANALYTICS CAPABILITY FOR SUSTAINABLE 
COMPETITIVE ADVANTAGE AND FIRM PERFORMANCE IN 
MALAYSIAN MANUFACTURING FIRMS.  
 
We are researchers from Universiti Teknologi Malaysia, presently researching on 
the extent of the big data analytics (BDA) capabilities contributing to sustainable 
competitive advantage in improving firm performance. Big data analytics has been 
defined as a process of collecting, organising, and analysing large sets of data 
(called big data) to discover patterns and other useful information (Jain and Maitri, 
2018) that could be used to formulate competitive strategic decision making to 
achieve better firm performance.  
 
As part of the research process, we need to collect data from manufacturing firms 
in order to achieve our research objectives. Enclosed herewith is a questionnaire 
seeking information from you. I hope that you could spend approximately 15 
minutes to answer the questionnaire attached. Kindly return the completed 
questionnaire to our enumerator. 
 
We can assure you that whatever information you provide will be treated with 
utmost confidentiality. The data will be aggregated and no sources or persons will 
be identified. 
 
Your kind cooperation in filling the questionnaire will indeed be very valuable for 
completion of our research project. Should you have any queries, please do not 
hesitate to contact me at clchong@tarc.edu.my. 
 
For the purpose of this study, we require individual who is actively using big data 
analytics to manage the business. If you meet this criterion, please respond to the 
attached survey. Thank you very much for your time and effort. 
 
Yours sincerely, 
 
__________________    __________________ 
Ms. Chong Chu Le     Professor Madya Dr Siti  
PhD Candidate     Deputy Chair of School of GS 
Universiti Teknologi Malaysia   Universiti Teknologi Malaysia 
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11. How knowledgeable are you with regards to the usage of big data analytics 
software in your company? 
 

 Not at all 
 Slightly 
 Neutral 
 Great 
 Extremely strong 

 
2.  How knowledgeable are you with regards to business strategy in your company? 

 Not at all 
 Slightly 
 Neutral 
 Great 
 Extremely strong 

 
3.  How long you have been working in big data analytics?     

 Less than 3 years 
 3-6 years 
 More than 6 years 

 
4.  How long (in years) has your company been operating in Malaysia? 

 1 or less 
 2 to 4 
 5 to 7  
 8 to 10 
 11 or more 

 
5. What is the value of the physical assets in your company? 

 Less than RM 4,000,000                
 RM 4,000,000 to less than RM 8,000,000       
 RM 8,000,000 to less than RM 12,000,000 
 RM 12,000,000 to less than RM 16,000,000 
 RM 16,000,000 or more        

        
6. What is the AVERAGE annual sales of your company in the last 2 years? 

 Less than RM 1,000,000                
 RM1,000,000 to less than RM3,000,000   
 RM3,000,000 to less than RM6,000,000       
 RM6,000,000 to less than RM9,000,000 
 RM9,000,000 to less than RM12,000,000     
 RM12,000,000 or more          

 
 
 
 
 
 

 

Part A – Profile 
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7. What is the total number of full-time employees in your company? 
 Less than 50 
 50 to 99 
 100 to 199 
 200 to 499 
 500 to 999 
 1000 or more 

 
8. What is your position in your company? 

 Top Management / CEO / President 
 Senior/Executive Vice President 
 Vice President 
 Senior/Executive Director 
 Director / Manager 
 Others. Please specify ___________________ 

 
9. What is the form of ownership of your company? 

 Wholly local   
 Wholly foreign   
 Joint venture (if this is selected, please tick the following ownership) 

   Less than 30% local equity 
   30% or more local equity 

 
 
10. Type of industry your organization operates in: (Please mark “X”) 
 
 
 
 
 
 
 
 
 
11. Please mark “X” on the software(s) or tool(s) that have been used: 

 Hadoop   Periscope Data 

 Qualtrics   Zoho Analytics 

 NoSQL   Yellowfin 

 Sisense   Domo 

 Looker   Others: _____________ 

 
 
 
 
 
 
 
 
 

 Chemical/plastic products   Rubber & rubber products 

 Electronics/electric   Textiles/clothing 

 Fabricated metal/machinery   Transport equipment 

 Food/beverages   Wood/paper/printing 

 Metal & metal products   Services: ___________ 
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Please indicate your level of agreement ranging from 1 = strongly disagree to 7 = 
strongly agree to the following statements. 
 
 Strongly disagree 

               Strongly agree 
We have access to very large, unstructured, or 
fast-moving data for analysis.  

1 2 3 4 5 6 7 

We integrate data from multiple internal sources 
into a data warehouse. 

1 2 3 4 5 6 7 

We integrate external data with internal to 
facilitate high-value analysis of our business 
environment.  

1 2 3 4 5 6 7 

We have explored parallel computing 
approaches (e.g., ERP) to process big data.  

1 2 3 4 5 6 7 

We have explored data visualization tools (e.g. 
Sisense, Highcharts, etc.).  

1 2 3 4 5 6 7 

We have explored cloud-based services to 
process data. 

1 2 3 4 5 6 7 

We have explored open-source software to 
process data.  

1 2 3 4 5 6 7 

We have explored different types of databases 
(e.g. NoSQL, RDBMS, etc. to store data.  

1 2 3 4 5 6 7 

We provide big data analytics training to our 
employees.  

1 2 3 4 5 6 7 

Our big data analytics staff has the technical 
skills to accomplish their jobs. 

1 2 3 4 5 6 7 

Our big data analytics staff has suitable 
education qualification to fulfil the jobs.  

1 2 3 4 5 6 7 

Our big data analytics staff holds suitable work 
experience to accomplish their jobs. 

1 2 3 4 5 6 7 

We hire new employees who have the big data 
analytics skills.  

1 2 3 4 5 6 7 

Our managers understand and appreciate the 
business needs of other business units, customers 
and suppliers. 

1 2 3 4 5 6 7 

Our managers are able to work with other 
business units, customers and suppliers to 
increase opportunities using big data analytics. 

1 2 3 4 5 6 7 

Our managers are able to coordinate big data-
related activities in ways that support other 
business units, customers and suppliers.  

1 2 3 4 5 6 7 

Our managers are able to use big data to 
anticipate the future business needs of other 
business units, customers and suppliers.  

1 2 3 4 5 6 7 

Our managers are able to understand and 
evaluate the output extracted from big data 
analytics software.  

1 2 3 4 5 6 7 

Part B – BDA Capability 
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We consider data a valuable asset.  1 2 3 4 5 6 7 
We make decision based on data rather than on 
instinct.  

1 2 3 4 5 6 7 

We are willing to override our own intuition 
when data contradict our viewpoints.  

1 2 3 4 5 6 7 

We continuously improve the business rules in 
response to insights extracted from data.  

1 2 3 4 5 6 7 

We continuously coach our employees to make 
decisions based on data.  

1 2 3 4 5 6 7 

We are able to explore for new and relevant 
knowledge in a technological change.  

1 2 3 4 5 6 7 

We are able to store new and relevant 
knowledge.  

1 2 3 4 5 6 7 

We are able to share new and relevant 
knowledge in a technological change.  

1 2 3 4 5 6 7 

We are able to apply new and relevant 
knowledge in a technological change. 

1 2 3 4 5 6 7 

We have made intensive effort to exploit 
existing competencies in a technological change. 

1 2 3 4 5 6 7 

  

Part C – Competitive Advantage 

 
Big data analytics capability helps my firm to achieve the following objectives 
easily. Use a scale of 1 to 7 with 1 being “never” and 7 being “always” to the 
following statements. 
 

Objectives 
Never 

Always 
To operate at low cost 1 2 3 4 5 6 7 
To offer competitive (low) price 1 2 3 4 5 6 7 
To find ways to reduce cost 1 2 3 4 5 6 7 
To improve operating efficiency by 
controlling cost 

1 2 3 4 5 6 7 

To meet customer’s specifications 1 2 3 4 5 6 7 
To provide good products/services in 
terms of design 

1 2 
3 4 5 6 7 

To offer a short delivery lead time 1 2 3 4 5 6 7 
To meet customer due dates 1 2 3 4 5 6 7 
To provide a wide range of services 1 2 3 4 5 6 7 
To provide reliable and consistent 
services 

1 2 3 4 5 6 7 

To be flexible in accommodating 
changes 

1 2 3 4 5 6 7 

To introduce new services rapidly 1 2 3 4 5 6 7 
To maximise the value of our services to 
clients 

1 2 3 4 5 6 7 
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How do you rate the following areas as compared to the major competitors in your 
main product (s) or service(s) offerings? Use a scale of 1 to 7 with 1 being “Much 
worse than competitors” and 7 being “Much better than competitors” to the 
following statements.  
 

 
Much worse 

Much better 
We have entered new markets more quickly 1 2 3 4 5 6 7 
We have introduced new products or services 
into the market faster 

1 2 3 4 5 6 7 

Our success rate of new products or services 
have been higher 

1 2 3 4 5 6 7 

Our market share has exceeded that of our 
competitors 

1 2 3 4 5 6 7 

Our productivity has exceeded that of our 
competitors 

1 2 3 4 5 6 7 

Our profit rate has exceeded that of our 
competitors 

1 2 3 4 5 6 7 

Our return on investment (ROI) has 
exceeded that of our competitors 

1 2 3 4 5 6 7 

Our sales revenue has exceeded that of our 
competitors 

1 2 3 4 5 6 7 

  

 

 

Thank you for your time 

 

 

 

 

 

 

 

 

 

 

 

 

Part D – Firm Performance 
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Appendix C Frequencies Table 
 

Usage of data analytics 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Good 127 66.5 66.5 66.5 

Excellent 64 33.5 33.5 100.0 

Total 191 100.0 100.0  

 

Decision making 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Good 117 61.3 61.3 61.3 

Excellent 74 38.7 38.7 100.0 

Total 191 100.0 100.0  

 

Duration with data analytics 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Less than 3 years 69 36.1 36.1 36.1 

3-6 years 42 22.0 22.0 58.1 

More than 6 years 80 41.9 41.9 100.0 

Total 191 100.0 100.0  

 

 

In Malaysia 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 2 to 4 25 13.1 13.1 13.1 

5 to 7 19 9.9 9.9 23.0 

8 to 10 23 12.0 12.0 35.1 

11 or more 124 64.9 64.9 100.0 

Total 191 100.0 100.0  
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Physical assets 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Less than RM 4,000,000 24 12.6 12.6 12.6 

RM 4,000,000 to less than 

RM 8,000,000 
35 18.3 18.3 30.9 

RM 8,000,000 to less than 

RM 12,000,000 
37 19.4 19.4 50.3 

RM 12,000,000 to less than 

RM 16,000,000 
9 4.7 4.7 55.0 

RM 16,000,000 or more 86 45.0 45.0 100.0 

Total 191 100.0 100.0  

 

Annual sales 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Less than RM 1,000,000 15 7.9 7.9 7.9 

RM 1,000,000 to less than 

RM 3,000,000 
22 11.5 11.5 19.4 

RM 3,000,000 to less than 

RM 6,000,000 
22 11.5 11.5 30.9 

RM 6,000,000 to less than 

RM 9,000,000 
27 14.1 14.1 45.0 

RM 9,000,000 to less than 

12,000,000 
12 6.3 6.3 51.3 

RM 12,000,000 or more 93 48.7 48.7 100.0 

Total 191 100.0 100.0  

 

Full timer 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Less than 50 29 15.2 15.2 15.2 

50 to 99 33 17.3 17.3 32.5 

100 to 199 34 17.8 17.8 50.3 

200 to 499 33 17.3 17.3 67.5 

500 to 999 21 11.0 11.0 78.5 

1000 or more 41 21.5 21.5 100.0 

Total 191 100.0 100.0  
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Position 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Top 

Management/CEO/President 
23 12.0 12.0 12.0 

Senior/Executive Vice 

President 
33 17.3 17.3 29.3 

Vice President 31 16.2 16.2 45.5 

Senior/Executive Director 34 17.8 17.8 63.4 

Director/Manager 70 36.6 36.6 100.0 

Total 191 100.0 100.0  

 

Ownership 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Wholly local 77 40.3 40.3 40.3 

Wholly foreign 53 27.7 27.7 68.1 

Joint venture less than 30% 

local equity 
29 15.2 15.2 83.2 

Joint venture with 30% or 

more equity 
32 16.8 16.8 100.0 

Total 191 100.0 100.0  

 

Industry 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Chemical/plastics products 22 11.5 11.5 11.5 

Electronics/electric 70 36.6 36.6 48.2 

Fabricated metal/machinery 8 4.2 4.2 52.4 

Food/beverages 25 13.1 13.1 65.4 

Metal & metal products 14 7.3 7.3 72.8 

Rubber & rubber products 8 4.2 4.2 77.0 

Textiles/Clothing 15 7.9 7.9 84.8 

Semiconductor 2 1.0 1.0 85.9 

Wood/paper products 17 8.9 8.9 94.8 

Others 10 5.2 5.2 100.0 

Total 191 100.0 100.0  
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Appendix D Chi-Square Tests 
 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

Knowledge_E * 

Knowledge_L 
94 49.2% 97 50.8% 191 100.0% 

 

Knowledge_E * Knowledge_L Crosstabulation 

 

Knowledge_L 

Total 4.00 5.00 

Knowledge_E 4.00 Count 37 25 62 

Expected Count 39.6 22.4 62.0 

5.00 Count 23 9 32 

Expected Count 20.4 11.6 32.0 

Total Count 60 34 94 

Expected Count 60.0 34.0 94.0 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.360a 1 .244   

Continuity Correctionb .883 1 .347   

Likelihood Ratio 1.388 1 .239   

Fisher's Exact Test    .267 .174 

Linear-by-Linear Association 1.346 1 .246   

N of Valid Cases 94     

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11.57. 

b. Computed only for a 2x2 table 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -.120 .244 

Cramer's V .120 .244 

N of Valid Cases 94  
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Knowledge_E 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 4.00 62 32.5 66.0 66.0 

5.00 32 16.8 34.0 100.0 

Total 94 49.2 100.0  

Missing System 97 50.8   

Total 191 100.0   

 

Knowledge_L 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 4.00 63 33.0 64.9 64.9 

5.00 34 17.8 35.1 100.0 

Total 97 50.8 100.0  

Missing System 94 49.2   

Total 191 100.0   

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

Strategy_E * Strategy_L 94 49.2% 97 50.8% 191 100.0% 

 

Strategy_E * Strategy_L Crosstabulation 

 

Strategy_L 

Total 4.00 5.00 

Strategy_E 4.00 Count 34 23 57 

Expected Count 36.4 20.6 57.0 

5.00 Count 26 11 37 

Expected Count 23.6 13.4 37.0 

Total Count 60 34 94 

Expected Count 60.0 34.0 94.0 
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Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.096a 1 .295   

Continuity Correctionb .684 1 .408   

Likelihood Ratio 1.110 1 .292   

Fisher's Exact Test    .381 .205 

Linear-by-Linear Association 1.085 1 .298   

N of Valid Cases 94     

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 13.38. 

b. Computed only for a 2x2 table 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -.108 .295 

Cramer's V .108 .295 

N of Valid Cases 94  

 

Strategy_E 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 4.00 57 29.8 60.6 60.6 

5.00 37 19.4 39.4 100.0 

Total 94 49.2 100.0  

Missing System 97 50.8   

Total 191 100.0   

 

Strategy_L 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 4.00 62 32.5 63.9 63.9 

5.00 35 18.3 36.1 100.0 

Total 97 50.8 100.0  

Missing System 94 49.2   

Total 191 100.0   
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Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

Duration_E * Duration_L 94 49.2% 97 50.8% 191 100.0% 

 

Duration_E * Duration_L Crosstabulation 

 

Duration_L 

Total 1.00 2.00 3.00 

Duration_E 1.00 Count 18 8 18 44 

Expected Count 14.0 11.2 18.7 44.0 

2.00 Count 6 5 5 16 

Expected Count 5.1 4.1 6.8 16.0 

3.00 Count 6 11 17 34 

Expected Count 10.9 8.7 14.5 34.0 

Total Count 30 24 40 94 

Expected Count 30.0 24.0 40.0 94.0 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Pearson Chi-Square 6.147a 4 .188 

Likelihood Ratio 6.538 4 .162 

Linear-by-Linear Association 2.552 1 .110 

N of Valid Cases 94   

a. 1 cells (11.1%) have expected count less than 5. The minimum 

expected count is 4.09. 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi .256 .188 

Cramer's V .181 .188 

N of Valid Cases 94  

 

 

 

 



224 

Duration_E 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 1.00 44 23.0 46.8 46.8 

2.00 16 8.4 17.0 63.8 

3.00 34 17.8 36.2 100.0 

Total 94 49.2 100.0  

Missing System 97 50.8   

Total 191 100.0   

 

Duration_L 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 1.00 31 16.2 32.0 32.0 

2.00 24 12.6 24.7 56.7 

3.00 42 22.0 43.3 100.0 

Total 97 50.8 100.0  

Missing System 94 49.2   

Total 191 100.0   
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Appendix E Independent-Sample t-Test 
 

 

Group Statistics 
 

Group N Mean Std. Deviation Std. Error Mean 

BDAC Early 94 5.9525 .64459 .06648 

Late 97 5.9786 .67764 .06880 

Cost_mean Early 94 5.9202 .70445 .07266 

Late 97 6.1469 .73310 .07444 

Diff_mean Early 94 6.1312 .56865 .05865 

Late 97 6.1936 .61870 .06282 

MP_mean Early 94 5.8298 .66520 .06861 

Late 97 5.9485 .79299 .08052 

OP_mean Early 94 5.7207 .83429 .08605 

Late 97 5.8428 .92655 .09408 
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Appendix F Assessment of Reflective Measurement Model 
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Appendix G Heterotrait-Heteromethod 
 

 
Original Sample (O) Sample Mean (M) 2.50% 97.50% 

DC -> LC 0.604 0.6 0.457 0.743 
DIFF -> LC 0.766 0.767 0.657 0.866 
DIFF -> DC 0.743 0.745 0.629 0.841 
OL -> LC 0.395 0.401 0.27 0.535 
OL -> DC 0.851 0.849 0.758 0.919 
OL -> DIFF 0.608 0.61 0.484 0.716 
MS -> LC 0.479 0.477 0.326 0.639 
MS -> DC 0.709 0.71 0.598 0.813 
MS -> DIFF 0.698 0.698 0.591 0.776 
MS -> OL 0.622 0.624 0.499 0.725 
MP -> LC 0.542 0.544 0.39 0.684 
MP -> DC 0.54 0.545 0.406 0.684 
MP -> DIFF 0.747 0.75 0.633 0.845 
MP -> OL 0.576 0.582 0.448 0.706 
MP -> MS 0.598 0.601 0.458 0.738 
OP -> LC 0.466 0.468 0.311 0.626 
OP -> DC 0.397 0.398 0.25 0.528 
OP -> DIFF 0.534 0.536 0.409 0.654 
OP -> OL 0.339 0.34 0.189 0.498 
OP -> MS 0.447 0.447 0.295 0.593 
OP -> MP 0.701 0.699 0.548 0.819 
TS -> LC 0.332 0.351 0.22 0.515 
TS -> DC 0.669 0.674 0.527 0.801 
TS -> DIFF 0.615 0.618 0.453 0.743 
TS -> OL 0.622 0.62 0.457 0.773 
TS -> MS 0.76 0.76 0.644 0.868 
TS -> MP 0.664 0.668 0.555 0.79 
TS-> OP 0.651 0.652 0.509 0.766 
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Appendix H Assessment of Common Method Variance 
 

 

Communalities 

 Initial Extraction 

Explore new knowledge 1.000 .825 

Store new knowledge 1.000 .710 

Share knowledge 1.000 .736 

Apply knowledge 1.000 .717 

Exploit competencies 1.000 .747 

Asset 1.000 .617 

Decision 1.000 .711 

Override 1.000 .675 

Extract insight from data 1.000 .725 

Coach employee 1.000 .747 

Understand business needs 1.000 .651 

Increase data analytics 

usage 
1.000 .670 

Coordinate data-related 

activities 
1.000 .734 

Anticipate future needs 1.000 .715 

Understand output from data 

analytics 
1.000 .822 

Training 1.000 .722 

Technical skills 1.000 .699 

Qualification 1.000 .743 

Work experience 1.000 .789 

New employees with data 

analytics skills 
1.000 .712 

Parallel computing 

approaches 
1.000 .698 

Data visualisation tools 1.000 .787 

Cloud-based services 1.000 .716 

Open-source software 1.000 .736 

Databases 1.000 .706 

Large data 1.000 .705 

Multiple internal sources 1.000 .647 

Internal and external data 1.000 .748 

Low cost 1.000 .741 

Low price 1.000 .679 

Reduce cost 1.000 .686 

Control cost 1.000 .738 

Specification 1.000 .622 
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Design 1.000 .705 

Short lead time 1.000 .719 

On time 1.000 .793 

Services 1.000 .703 

Reliable Services 1.000 .700 

Flexible 1.000 .641 

New product 1.000 .750 

Value maximisation 1.000 .773 

New market 1.000 .733 

New product faster 1.000 .724 

High success 1.000 .689 

Market share 1.000 .698 

Productivity 1.000 .807 

Profit rate 1.000 .840 

ROI 1.000 .819 

Revenue 1.000 .820 

Extraction Method: Principal Component Analysis. 

 
 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 19.114 39.009 39.009 19.114 39.009 39.009 

2 3.129 6.387 45.395 3.129 6.387 45.395 

3 2.903 5.925 51.320 2.903 5.925 51.320 

4 2.087 4.259 55.580 2.087 4.259 55.580 

5 1.870 3.815 59.395 1.870 3.815 59.395 

6 1.556 3.175 62.570 1.556 3.175 62.570 

7 1.437 2.933 65.504 1.437 2.933 65.504 

8 1.328 2.711 68.215 1.328 2.711 68.215 

9 1.110 2.266 70.481 1.110 2.266 70.481 

10 1.056 2.155 72.635 1.056 2.155 72.635 

11 .891 1.819 74.454    

12 .848 1.730 76.184    

13 .788 1.608 77.791    

14 .733 1.496 79.287    

15 .669 1.366 80.652    

16 .650 1.326 81.978    

17 .588 1.201 83.179    

18 .559 1.141 84.320    

19 .504 1.029 85.349    

20 .492 1.004 86.353    
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21 .453 .924 87.277    

22 .439 .897 88.174    

23 .426 .869 89.043    

24 .408 .834 89.876    

25 .383 .781 90.657    

26 .348 .710 91.367    

27 .330 .674 92.041    

28 .329 .671 92.712    

29 .318 .649 93.361    

30 .293 .597 93.959    

31 .274 .559 94.518    

32 .247 .504 95.022    

33 .231 .471 95.493    

34 .221 .450 95.943    

35 .211 .431 96.374    

36 .196 .399 96.773    

37 .179 .364 97.138    

38 .175 .357 97.494    

39 .168 .342 97.837    

40 .154 .314 98.151    

41 .142 .289 98.440    

42 .132 .269 98.709    

43 .128 .260 98.970    

44 .108 .220 99.190    

45 .102 .209 99.399    

46 .089 .181 99.580    

47 .085 .173 99.753    

48 .067 .136 99.889    

49 .054 .111 100.000    

Extraction Method: Principal Component Analysis. 
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Component Matrixa 

 

Component 

1 2 3 4 5 6 7 8 9 10 

Explore new knowledge .554 -.347 -.111 .112 -.393 .184 -.155 -.043 -.183 .354 

Store new knowledge .575 -.315 -.041 .366 -.175 .228 -.037 -.114 -.219 -.017 

Share knowledge .486 -.487 .025 .408 -.048 -.015 -.139 -.216 .142 -.087 

Apply knowledge .669 -.291 .014 .244 -.294 -.138 -.108 -.014 -.073 -.055 

Exploit competencies .609 -.249 .021 .100 -.323 .403 -.027 .000 -.186 .038 

Asset .645 -.262 .228 -.082 -.074 .111 .188 .053 -.002 -.133 

Decision .558 -.336 .234 -.017 -.202 -.003 .261 .076 .263 -.219 

Override .643 -.223 .063 .251 -.090 .044 .107 -.194 .232 -.177 

Extract insight from data .645 -.319 -.021 .129 -.273 -.118 .033 .150 .210 .186 

Coach employee .669 -.314 .194 .142 -.172 -.037 .135 .118 .182 -.215 

Understand business needs .599 -.141 -.214 -.118 .070 -.188 -.282 .285 -.058 -.090 

Increase data analytics usage .694 -.213 .018 -.204 .109 -.058 -.059 .245 .084 -.120 

Coordinate data-related 

activities 
.693 -.170 -.124 -.211 .015 -.167 -.110 .336 .020 -.105 

Anticipate future needs .711 -.171 -.099 -.134 .193 -.019 -.250 .078 .033 -.211 

Understand output from data 

analytics 
.677 -.102 -.193 -.316 .245 .016 -.349 .104 .061 -.140 

Training .682 .042 -.413 .055 -.059 .106 -.067 -.163 -.139 -.125 

Technical skills .716 .038 -.388 -.047 -.040 -.088 -.005 -.091 -.082 -.083 

Qualification .535 .037 -.341 .134 .339 .110 .416 -.023 .056 -.135 

Work experience .475 -.250 -.290 .057 .335 .087 .474 .220 .125 .071 
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New employees with data 

analytics skills 
.637 .079 -.241 -.207 .072 .255 .120 -.051 -.210 -.260 

Parallel computing approaches .695 -.083 -.153 -.368 -.032 .061 .003 .022 -.011 .208 

Data visualisation tools .670 -.129 -.101 -.255 -.032 -.162 .201 -.289 -.163 .261 

Cloud-based services .596 -.179 -.216 -.212 -.178 -.349 .109 .079 .151 .207 

Open-source software .665 -.090 -.203 -.355 -.240 -.150 .016 -.049 .049 .185 

Databases .575 .012 .007 -.140 .149 -.135 .505 -.096 -.223 .019 

Large data .771 -.040 -.126 -.099 .159 .200 -.077 .008 -.093 .056 

Multiple internal sources .685 -.053 -.149 -.051 .284 .142 -.085 -.181 -.096 .005 

Internal and external data .731 -.077 -.196 -.081 .277 .102 -.144 -.173 -.148 .051 

Low cost .499 .242 .372 -.312 -.191 .271 .019 .275 .052 .091 

Low price .428 .313 .468 -.185 -.031 .341 -.041 .152 .035 -.042 

Reduce cost .496 .091 .576 -.254 -.074 -.030 .078 -.100 -.114 -.026 

Control cost .620 .172 .429 -.139 -.175 -.088 .100 -.148 -.214 -.069 

Specification .560 -.086 .355 -.043 .281 -.131 .005 -.130 .035 .242 

Design .404 -.121 .193 .182 .445 .276 .025 .013 .205 .374 

Short lead time .609 .056 .279 -.055 .167 .324 -.092 -.115 .320 .082 

On time .637 .121 .064 .023 .125 .006 -.335 -.356 .330 .061 

Services .694 .183 .400 .020 -.036 .020 .016 -.010 -.137 -.081 

Reliable Services .735 .154 .334 -.036 -.013 -.135 -.010 .019 -.051 -.039 

Flexible .555 .073 .286 .198 .210 -.224 -.070 -.238 -.096 -.203 

New product .679 .080 .258 .225 .178 -.348 .054 -.013 -.092 .025 

Value maximisation .724 .135 .208 .079 .127 -.371 -.143 -.045 -.042 .056 

New market .463 .223 -.076 .531 .151 -.019 -.006 .333 -.176 .125 

New product faster .641 .240 .073 .398 .094 .070 .050 .251 -.075 .084 
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High success .662 .303 .044 .183 .041 -.170 -.076 .252 -.059 .143 

Market share .669 .328 -.069 .203 -.098 .116 -.117 .219 -.110 -.027 

Productivity .541 .528 -.268 .178 -.224 -.194 .046 -.061 .191 .028 

Profit rate .628 .565 -.247 .006 -.142 .030 -.008 -.073 .167 -.101 

ROI .602 .523 -.276 -.020 -.244 .102 .082 -.107 .133 -.021 

Revenue .617 .560 -.215 .049 -.155 .056 .094 -.093 .174 .044 

Extraction Method: Principal Component Analysis. 

a. 10 components extracted. 

 

 

 

 

 

 

 

 

 

 

 

 

 



234 

 

Appendix I Full Collinearity Test 
 
Regression 
 

Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 TS, LC, OL, OP, 

MS, MP, DC, 

DIFFb 

. Enter 

a. Dependent Variable: Random 

b. All requested variables entered. 

 
 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .130a .017 -.026 3.14201 

a. Predictors: (Constant), TS, LC, OL, OP, MS, MP, DC, DIFF 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 31.033 8 3.879 .393 .923b 

Residual 1796.746 182 9.872   

Total 1827.779 190    

a. Dependent Variable: Random 

b. Predictors: (Constant), TS, LC, OL, OP, MS, MP, DC, DIFF 

 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) 49.702 .227  218.618 .000   

DC .336 .401 .109 .838 .403 .322 3.110 

DIFF .077 .413 .025 .185 .853 .302 3.307 

LC -.199 .324 -.064 -.614 .540 .494 2.025 

MP -.068 .360 -.022 -.189 .850 .398 2.514 

MS .258 .349 .083 .739 .461 .423 2.362 

OL -.153 .355 -.049 -.429 .668 .409 2.445 

OP -.180 .331 -.058 -.543 .588 .471 2.124 

TS -.254 .368 -.082 -.690 .491 .382 2.617 

a. Dependent Variable: Random 
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Appendix J Assessment of Formative Measurement Model 
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Appendix K Second-order Factor Measurement Model Analysis 
 

1) Outer Weight 

 

 

2) Collinearity Statistics (VIF) 

 

 

 

 

 

 

Cost Culture Data DifferentiationHuman Intangible Intensity Managerial Market OperationalTangible Technical Technology
Cost 1.838 1.838
Culture 2.155
Data 1.932
Differentiation 1.838 1.838
Human 3.574 3.574
Intangible 2.06 2.06
Intensity 2.155
Managerial 1.775
Market
Operational
Tangible 3.414 3.414
Technical 1.775
Technology 1.932
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3) t-value (significance level) 
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Appendix L Third-order Factor Measurement Model Analysis 
 

 

1) Outer Weight 

 

 

 

2) Collinearity Statistics (VIF) 

 

 

 

Cost Culture Data Differentiation Human Intangible Intensity BDAC Managerial Market Operational Tangible Technical Technology
Cost 1.848 1.848
Culture 2.157
Data 1.923
Differentiation 3.059 3.059
Human 3.903
Intangible 2.067
Intensity 2.157
BDAC 1 1 2.4 2.4
Managerial 1.774
Market
Operational
Tangible 3.825
Technical 1.774
Technology 1.923
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3) t-value (significance level) 
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Appendix M Assessment of Normality 
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Appendix N Effect of Control Variables 
 

 

1a) Company Age → Market Performance (path coefficient): 
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1b) Company Age → Market Performance (t – value): 
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1c) Company Age → Operational Performance (Path coefficient): 
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1d) Company Age → Operational Performance (t – value): 
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2a) Physical Asset → Market Performance (Path coefficient): 
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2b) Physical Asset → Market Performance (t – value): 
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2c) Physical Asset → Operational Performance (Path coefficient): 
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2d) Physical Asset → Operational Performance (t – value): 
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3a) Annual Sales → Market Performance (Path coefficient): 
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3b) Annual Sales → Market Performance (t – value): 
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3c) Annual Sales → Operational Performance (Path coefficient): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



254 

 

3d) Annual Sales → Operational Performance (t – value): 
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4a) Number of Employee → Market Performance (Path coefficient): 
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4b) Number of Employee → Market Performance (t – value): 
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4c) Number of Employee → Operational Performance (Path coefficient): 
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4d) Number of Employee → Operational Performance (t – value): 
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5a) Type of Industry → Market Performance (Path coefficient): 
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5b) Type of Industry → Market Performance (t – value): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

261 

 

5c) Type of Industry → Operational Performance (Path coefficient): 
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5d) Type of Industry → Operational Performance (t – value): 
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Appendix O Collinearity in the Structural Model Assessment 
 

 

1) Path Coefficient 

 

 

 

 

2) Collinearity Statistics (VIF) 

 

 

BDAC Cost Culture Data Differentiation Human Intangible Intensity Managerial Market Operational Tangible Technical Technology
BDAC 1 1 2.552 2.552
Cost 1.867 1.867
Culture 2.16
Data 1.911
Differentiation 3.102 3.102
Human 3.873
Intangible 2.121
Intensity 2.16
Managerial 1.775
Market
Operational
Tangible 3.739
Technical 1.775
Technology 1.911
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3) Standard Beta, Standard Error, t-value, p-value 

 

 

 

 

4) BCI LL and BCI UL 

 

  

  

 

 

 

Original Sample (O) Sample Mean (M) Standard Deviation (STDEV) T Statistics (|O/STDEV|) P Values
BDAC -> DIFF 0.776 0.798 0.028 27.897 0
BDAC -> LC 0.582 0.614 0.056 10.458 0
BDAC -> MP 0.242 0.324 0.111 2.181 0.015
BDAC -> OP 0.465 0.544 0.103 4.51 0
Culture -> Intangible 0.756 0.751 0.101 7.505 0
DIFF -> MP 0.474 0.42 0.098 4.814 0
DIFF -> OP 0.088 0.032 0.113 0.785 0.216
Data -> Tangible 0.584 0.578 0.088 6.614 0
Human -> BDAC 0.23 0.241 0.153 1.507 0.066
Intangible -> BDAC 0.356 0.338 0.108 3.284 0.001
Intensity -> Intangible 0.292 0.292 0.115 2.546 0.005
LC -> MP 0.015 -0.003 0.08 0.184 0.427
LC -> OP 0.087 0.067 0.098 0.889 0.187
Managerial -> Human 0.552 0.55 0.085 6.522 0
Tangible -> BDAC 0.485 0.47 0.138 3.52 0
Technical -> Human 0.541 0.537 0.091 5.939 0
Technology -> Tangible 0.502 0.501 0.09 5.581 0

Original Sample (O)Sample Mean (M)Bias 5.00% 95.00%
BDAC -> DIFF 0.776 0.798 0.022 0.708 0.8
BDAC -> LC 0.582 0.614 0.032 0.423 0.638
BDAC -> MP 0.242 0.324 0.082 0.001 0.341
BDAC -> OP 0.465 0.544 0.079 0.184 0.556
Culture -> Intangible 0.756 0.751 -0.004 0.582 0.912
DIFF -> MP 0.474 0.42 -0.054 0.363 0.668
DIFF -> OP 0.088 0.032 -0.056 -0.04 0.332
Data -> Tangible 0.584 0.578 -0.006 0.445 0.732
Human -> BDAC 0.23 0.241 0.011 -0.005 0.485
Intangible -> BDAC 0.356 0.338 -0.018 0.198 0.56
Intensity -> Intangible 0.292 0.292 -0.001 0.102 0.479
LC -> MP 0.015 -0.003 -0.017 -0.106 0.154
LC -> OP 0.087 0.067 -0.02 -0.058 0.262
Managerial -> Human 0.552 0.55 -0.002 0.42 0.703
Tangible -> BDAC 0.485 0.47 -0.015 0.27 0.715
Technical -> Human 0.541 0.537 -0.004 0.371 0.673
Technology -> Tangible 0.502 0.501 0 0.345 0.637
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5) Effect Size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Sample (O) Sample Mean (M) Standard Deviation (STDEV) T Statistics (|O/STDEV|) P Values
BDAC -> DIFF 1.512 1.8 0.351 4.308 0
BDAC -> LC 0.511 0.631 0.183 2.794 0.003
BDAC -> MP 0.044 0.086 0.059 0.743 0.229
BDAC -> OP 0.131 0.181 0.082 1.585 0.057
Culture -> Intangible 13.258 12.95 6.48 2.046 0.02
DIFF -> MP 0.138 0.118 0.059 2.331 0.01
DIFF -> OP 0.004 0.007 0.01 0.392 0.347
Data -> Tangible 59.323 49.513 40.489 1.465 0.071
Human -> BDAC 0.327 0.336 0.359 0.912 0.181
Intangible -> BDAC 1.431 0.958 0.651 2.197 0.014
Intensity -> Intangible 1.981 2.164 1.801 1.1 0.136
LC -> MP 0 0.007 0.01 0.023 0.491
LC -> OP 0.006 0.012 0.016 0.384 0.351
Managerial -> Human 20.484 16.119 8.519 2.404 0.008
Tangible -> BDAC 1.508 1.095 0.736 2.049 0.02
Technical -> Human 19.658 16.23 10.566 1.861 0.031
Technology -> Tangible 43.784 39.846 42.165 1.038 0.15
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Appendix P Path Coefficient of Determination 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R Square R Square Adjusted
BDAC 0.958 0.958
Cost 0.338 0.335
Differentiation 0.602 0.6
Human 0.992 0.992
Intangible 0.98 0.98
Market 0.475 0.467
Operational 0.352 0.342
Tangible 0.997 0.997
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Appendix Q Predictive Relevance Assessment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SSO SSE Q² (=1-SSE/SSO)
BDAC 5348 3040.581 0.431
Cost 764 609.621 0.202
Culture 955 955
Data 573 573
Differentiation 1719 1190.53 0.307
Human 1910 903.562 0.527
Intangible 1910 895.412 0.531
Intensity 955 955
Managerial 955 955
Market 764 529.899 0.306
Operational 764 550.511 0.279
Tangible 1528 675.865 0.558
Technical 955 955
Technology 955 955
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Appendix R PLSpredict 
 

1) PLS-SEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RMSE MAE MAPE Q²_predict
DIFF4 0.679 0.574 9.853 0.283
DIFF7 0.708 0.58 10.002 0.198
DIFF1 0.593 0.511 8.448 0.239
DIFF6 0.635 0.536 9.072 0.358
DIFF9 0.638 0.502 8.522 0.362
DIFF2 0.833 0.653 12.174 0.126
DIFF8 0.755 0.627 11.029 0.304
DIFF5 0.702 0.56 9.796 0.304
DIFF3 0.735 0.598 10.577 0.268
LC4 0.639 0.52 8.719 0.245
LC1 0.998 0.775 16.094 0.147
LC3 0.803 0.645 11.356 0.151
LC2 0.892 0.691 13.133 0.077
MP4 0.861 0.678 13.117 0.286
MP1 0.819 0.63 11.75 0.105
MP3 0.697 0.568 10.178 0.255
MP2 0.752 0.612 11.068 0.253
OP4 0.884 0.688 13.38 0.22
OP2 0.872 0.697 13.436 0.235
OP1 0.836 0.659 12.224 0.163
OP3 0.861 0.659 12.724 0.239
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2) PLS-LM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RMSE MAE MAPE Q²_predict
DIFF4 0.703 0.541 9.279 0.231
DIFF7 0.699 0.558 9.531 0.219
DIFF1 0.635 0.512 8.498 0.127
DIFF6 0.658 0.517 8.731 0.311
DIFF9 0.579 0.436 7.237 0.475
DIFF2 0.882 0.669 12.196 0.02
DIFF8 0.768 0.593 10.304 0.279
DIFF5 0.704 0.574 9.742 0.299
DIFF3 0.764 0.586 10.143 0.208
LC4 0.62 0.481 8.045 0.289
LC1 0.97 0.759 14.601 0.194
LC3 0.783 0.614 10.671 0.194
LC2 0.846 0.655 12.114 0.169
MP4 0.983 0.787 15.121 0.069
MP1 0.828 0.632 11.675 0.085
MP3 0.738 0.561 10.058 0.165
MP2 0.821 0.629 11.396 0.109
OP4 0.933 0.74 14.041 0.132
OP2 0.857 0.669 12.647 0.261
OP1 0.772 0.589 10.83 0.286
OP3 0.889 0.707 13.162 0.189
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Appendix S Assessment of Mediation Effect 
 

1) Specific Indirect Effect 

 

 

 

2) Confidence Interval  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Sample (O)Sample Mean (M)Standard Deviation (STDEV)T Statistics (|O/STDEV|)P Values
BDAC -> LC -> MP 0.009 -0.001 0.05 0.172 0.432
BDAC -> LC -> OP 0.051 0.041 0.061 0.832 0.203
BDAC -> DIFF -> MP 0.368 0.335 0.079 4.633 0
BDAC -> DIFF -> OP 0.069 0.026 0.09 0.76 0.224

Original Sample (O)Sample Mean (M)Bias 5.00% 95.00%
BDAC -> LC -> MP 0.009 -0.001 -0.009 -0.064 0.097
BDAC -> LC -> OP 0.051 0.041 -0.01 -0.04 0.162
BDAC -> DIFF -> MP 0.368 0.335 -0.033 0.267 0.523
BDAC -> DIFF -> OP 0.069 0.026 -0.043 -0.036 0.265
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