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Abstract. Functional data analysis (FDA) has been widely applied in various scientific 

fields, including climatological, hydrological, environmental, and biomedical. The 

flexibility of the FDA in incorporating temporal elements into the statistical analysis 

makes the method highly demanded compared to the conventional statistical approach. 

This study introduces FDA methods to investigate the variations and patterns of rainfall 

throughout Peninsular Malaysia, which includes 16 rain gauge stations in Peninsular 

Malaysia from 1999 to 2019. A descriptive statistic of the functional data depicted the 

mean and variation of the rainfall curve over time, while the functional principal 

component analysis measured the temporal variability of the rainfall curve. According 

to the findings, the first and second principal components accounted for 87.4% of all 

variations. The first principal component was highly characterised by the stations over 

the eastern region during the northeast monsoon since the highest variability was 

observed from November to January. On the other hand, the stations impacted by the 

inter-monsoon season were best described by the second principal component. Based 

on the factor scores derived from the functional principal component, those rain gauge 

stations with comparable features were then clustered. Overall, the results showed that 

the rainfall pattern is strongly influenced by their geographical and topographical 

features and the seasonal monsoon effect. 

Keywords: Functional data analysis; Functional principal component analysis; Rainfall 

variability. 

 

 
1. Introduction 

Rainfall events are typically defined by a finite number of discrete values that comprise multivariate 

data that may or may not contain all of the information accessible in a smoothing curve. A modern 

statistical method such as functional data analysis (FDA) has been used to capture the intriguing patterns 

that can be found in rainfall data. The FDA technique is used to convert discrete data into a smoothing 
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curve or function. The FDA builds up a smoothing curve that can be examined at any time interval from 

a series of observations at a discrete time interval. The smoothness and differentiability of the smoothing 

curve of functional data distinguish it from conventional multivariate data. The conventional 

multivariate approach fails to capture the underlying process in rainfall data. If a functional concept is 

ignored, then additional information related to the functional nature of the rainfall dataset is not properly 

utilized. 

Functional data analysis techniques have been successfully carried out by several researchers in 

various fields [1–6]. Suhaila and Yusop [7] used a functional analysis of variance to explain the 

geographical and temporal variability in rainfall. Their study brought attention to the variations and 

distinctions in rainfall profiles. On the other hand, Hael et al. [8] used FDA on projected data in the Taiz 

region to analyse the temporal variations which help planners manage rainwater conservation. 

Functional principal component analysis (FPCA) is the most popular tool in FDA. It is used to reduce 

the dimensionality of functional data, capturing the largest amount of variance and exhibiting various 

aspects of the underlying data. The FPCA has been used to interpret lactate curves [9], analyse kinematic 

data [10], gene classification [11], explore variations in glomerular filtration rate curves [12], and model 

aircraft degradation [13]. Suhaila [14] recently applied the FPCA techniques to determine the variations 

of the multivariate El Niño Southern Oscillation Index (MEI). Their findings suggested that the two 

principal components likely represented the variations of El Niño and La Niña episodes. 

The conventional statistical method allows the expression of data variability as either a single value 

or as multivariate values that indicate the standard deviation or the coefficient of variation. However, 

there are no explanations for the temporal aspects. Therefore, this study intends to evaluate the changes 

and variabilities of rainfall data in terms of smoothing curves via functional data analysis. The time when 

the high or low variability occurrences took place will be analysed based on the smoothing curves. The 

FDA method allows for the assessment of temporal aspects. One could argue that the FDA is more 

willing to provide information that isn't accessible through conventional statistical techniques. 

Additionally, it is simpler to comprehend rainfall behaviours and their temporal variation when rainfall 

variabilities are visualised in smoothing curves. FDA is a relatively new technique in climate studies. 

The results of this study should give a thorough analysis of the rainfall pattern and aid in future 

forecasting. 

 

2. Data and Study Area 

The daily rainfall data at 16 rain gauge stations was obtained from the Malaysian Meteorological 

Department from 1999 to 2019. Based on their geographical locations, all rain gauge stations were 

divided into the Northwest, Eastern, Central, Southwest, and Western regions. The climate of Peninsular 

Malaysia is significantly influenced by the monsoons, particularly the Southwest Monsoon (SWM), 

which runs from May to August, and the Northeast Monsoon (NEM), which runs from November to 

February. The two inter-monsoons, from March to April and September to October, are also predicted 

to bring heavy rains. During the NEM season, the eastern region frequently receives more rain than those 

sheltered by the Main Range Titiwangsa. The Main Range Titiwangsa divides Peninsular Malaysia's 

eastern and western parts over 483 km. The locations of the stations under study are shown in Figure 1. 
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Figure 1. The location of the studied stations. 

 

3. Methodology 

In this section, the idea of constructing a series of basis functions to transform discrete rainfall data into 

a smoothing curve will be presented. The variation in the rainfall data will next be investigated using a 

functional principal component analysis and a functional summary of functional data with curve 

visualization. 
 

3.1. Smoothing Rainfall Data 

Consider observed discrete rainfall data, 

 

Xi   = ( x1 (t1 ) , x2 (t2 ) ,..., xi  (tT  )) for  i  =  1,2,…,n;   j=1,2,…,T 

where T =365 days, n is the number of rain gauge stations and xi (t j ) is the amount of rain at day tj of 

the i-th stations. These values are converted into smoothing curves 

linearly as a combination of the basis function; 
yi (t ) which can be expressed 

 
 

 

yi (t ) = dk k  (t ) 
k =1 

(1) 

 

where dk is the basis coefficient, B
k  (.) is the known basis function, and K denotes the maximum size of 

basis functions. The periodic function is represented as a Fourier basis which can be written as 

ŷi  (t ) = do + d1 sin (t ) + d2 cos(t ) + d3 sin (2t ) + d4 cos(2t ) + ... 

 

(2) 
 

which is defined by the basis 0 (t ) = 1, 2r −1 (t ) = sin (rt ), 2r (t ) = cos(rt ). The constant  is 

related to the period T by the relation  = 2 T . By minimizing the sum of squared residuals, the 

expansion of the coefficients dk are calculated using the least squares approach, as in 

SSE =  (x − y (t ))
2 

,i = 1, 2,..., n (3) 
i j j 

j =1 

The errors of the curves can be minimized by using the penalized sum square of error (PSSE), which 

is given as 

PSSE = 
x 

j 

j − y (t j )
2  

+   D4 y (t )
2  

dt (4) 

where    is the parameter for smoothing while  D4 y (t )
2 

measuring the curvature in y at t. 

K 

T 
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 n − df ( )  n − df ( )  

( ) = 
N 

 

1  n 

 
1 N 

1 

 

 

The smoothing parameter  will be chosen based on the minimum generalized cross-validation 

(GCV), 

GCV ( ) = 
 n  SSE 

 

   

 

where df ( ) are the equivalent degrees of freedom of the smoothing operator. 

 
3.2 Summary of Functional Data 

The mean and variance function of curves are given, respectively as 

(5) 

 

1 N 
y t 

i=1 

yi (t ) 
 

(6) 

VAR (t ) =  y  (t ) − y (t )
2

 
 

 

 

(7) 

N i=1 
 

 

where y
i (t ) is the sample curves or functions and y (t ) is the sample mean. 

The dependence of measurements across various argument values is summarised by the functional 

covariance, which is computed for all s and t by 
 

(s,t ) = ( y (s) − y (s))( y (t ) − y (t )). (8) 
i i 

i =1 

 

3.3. Functional Principal Component Analysis (FPCA) 

The FPCA is used to reduce the dimensionality of the variables by establishing a set of new variables as 

linear combinations of the original ones. Let z
i (t ) be the center for functional datasets such as 

 

zi (t ) = yi (t ) − y (t ),i = 1, 2,..., n (9) 
 

where y (t ) is the mean function of ( yi (t ),..., yn (t )) . A FPCA is applied to z
i (t ),i = 1, 2,..., n, produce 

a small group of harmonic functions which draw attention to the principal source of variation in the data. 

The first principal component w1 (t ) describes a weight function, zi (t ) that exists over the same range. 

The first component gives the maximum variation in the functional principal component scores as 
 

fi1 = w1 (t ) zi (t )dt (10) 

 

subject to the normalisation constraint  w  (t )
2
dt = 1 . 

 

Repeat for the following components fik =  wk (t )zi (t )dt by maximising the variance of the 

corresponding scores under the constraints  wk (s )wj (s )ds = 0, k  2, k  j. 

 

 

i 

 

y 

N 
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4. Results and Discussion 

This section gives a summary statistic of the rainfall data at the stations under study. The process of 

rainfall smoothing and its variations will be discussed based on the functional principal component 

analysis. 

 
4.1 Descriptive analysis of annual rainfall data 

Table 1 displays the summary statistics of annual rainfall data for stations over the northwest, east, 

central, southwest, and west regions of Peninsular Malaysia. Petaling Jaya, which is located in the 

western region of Peninsular Malaysia, has the greatest annual mean rainfall with nearly 3384.41 mm 

but the lowest variability. It appears that the annual rainfall values at Petaling Jaya did not exhibit 

significant year-to-year variation. Sitiawan, at the high north of the western area, recorded the lowest 

annual rainfall. The eastern stations recorded higher annual mean rainfall and a higher coefficient of 

variation than other regions, as indicated in Table 1. Throughout the NEM season, the eastern region is 

known for having more frequent and intense downpours than other areas. As a result, stations in the 

eastern region of Peninsular Malaysia have higher annual mean rainfall than stations in other parts of 

the country. 

 

Table 1. Summary statistics of annual rainfall data for each studied station. 

 

Location  Coding Latitude Longitude Annual 

Mean 

CV 

Northwest Alor Setar NW1 6° 12' N 102° 15' E 2176.04 13.66 

Region Bayan Lepas NW2 5° 18' N 100° 16' E 2367.96 17.49 
 Baling NW3 5° 68' N 100° 91' E 2232.14 16.89 
 Dungun E1 4° 46' N 103° 25' E 2872.19 21.16 

Eastern Kota Bharu E2 6° 10' N 102° 18' E 2726.14 21.98 

Region Kuantan E3 3° 46' N 103° 13' E 3015.48 19.31 
 Pasir Mas E4 06° 02' N 102° 07' E 2855.36 25.37 

Central 
Region 

Tanah Rata C1 4° 28' N 101° 23' E 2604.46 15.48 

 Pontian SW1 01° 29' N 103° 23' E 1921.30 16.34 

Southwest Tangkak SW2 02° 16' N 102° 32' E 1947.81 16.76 

Region Kluang SW3 02° 01 'N 103° 19' E 2147.85 17.54 
 Melaka SW4 2° 16 'N 102° 15' E 1978.54 12.79 
 Senai SW5 1° 38' N 103° 40' E 2554.30 15.57 

Western Petaling Jaya W1 3° 06' U 101°39' T 3384.41 11.01 

Region Lenggong W2 5° 06' N 100° 58' E 2105.07 15.92 
 Sitiawan W3 4° 13' N 101° 42' E 1825.10 15.08 

 

4.2 Smoothing rainfall data using Fourier Basis function 

A Fourier basis function was employed to describe the rainfall pattern since the climate in Malaysia is 

influenced by the monsoon season. The rainfall data were smoothed using a Fourier basis function that 

consists of sine and cosine functions, which can be expressed in terms of harmonics. Seven basis 

functions were used to describe the rain patterns in the central and southwest regions, but only five were 

needed for the northwest and west. On the other hand, the rainfall pattern in the eastern region required 

the use of nine basis functions. The deviations for the three, five, and seven basis functions were still 

significantly higher. When nine basis functions were applied, however, the deviation was significantly 

decreased, and no more basis functions were needed. Consequently, nine basis functions, including four 

harmonics, could accurately depict the rainfall distribution over the eastern stations. Due to the high 

unpredictability and fluctuations in rainfall patterns observed at these rainfall stations, an increase in the 

number of basis functions is essential. 
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Figure 2. The right panel shows the observed mean daily rainfall with its corresponding smoothing 

curves for the regions and their rate of change in the left panel. 

 
Figure 2 illustrates the smoothing curves for each region based on the required number of basis 

functions. The right panel of Figure 2 shows a bimodal rainfall pattern for the northwest, southwest, 

west, and central regions. During the inter-monsoon, the first peaks in these four regions occurred 

between April and May. It was demonstrated that the first peak was lower than the second peak. The 

temporal delay between the northwest and the other three regions was very different during the second 

peak, though. While rainfall peaked in November for the other three regions, it did so in September and 
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October for the northwest region. Rainfall decreased after the second peak and hit its lowest level in 

early February. But for the western regions, the lowest rainfall occurs in July. The left panel of Figure 2 

shows the rate of change in rainfall. Positive changes in rainfall were observed from February to April 

and August to September for the west, southwest, northwest, and central regions, where the season 

changes from SWM and NEM to inter-monsoon, respectively. On the other hand, negative changes can 

be seen at the end and the beginning of the year. 

Figure 2 demonstrates how the pattern of the rainfall stations in the eastern area differs from those 

in the other four regions. The range of the average daily rainfall is 5 to 25 mm. The rainfall has been 

seen to follow a unimodal trend, with November and December seeing the highest peak. Rainfall levels 

are low from mid-May to mid-September, increasing in October until it reaches its peak and drastically 

decreasing after mid-February. Based on the rate of change, a significant change in rainfall occurred 

during the NEM flow from October to early February, but only small tweaks occurred from mid- 

February to October. 

 

4.3 Summary of functional data 

Figure 3 illustrates the descriptive statistics of functional mean and functional variation for 16 stations 

from 1999 to 2019. It reveals that the highest mean rainfall was observed in November during the NEM 

season. Conversely, the lowest mean rainfall was recorded between February and March and July and 

August. The NEM brings heavy rain and stormy seas, and it occasionally causes flooding in the eastern 

part of Peninsular Malaysia. Rainfall variability is high between the end of November and early January, 

while other months have moderate fluctuations. The high rainfall variability reflects the influence of the 

northeast monsoon. During this period, the cold surge from northern Asia impacted most of the southern 

part of the South China Sea, including Malaysia. In addition, the Intertropical Convergence Zone 

(ITCZ), a cloud band that circles the globe around the equator and is frequently wetter than the southwest 

monsoon, impacts the area. Hence, a high rainfall peak was observed from November to January. 

 

 
Figure 3. The smoothing mean and variance curves for all regions. 

 

4.4 Estimating the variation of functional data via functional principal component analysis 

Functional principal component analysis was carried out to identify the main sources of variation in the 

rainfall data. For the first two principal components, the variance rates were 70.1% and 17.3%, 

respectively. The overall variation in the rainfall data was explained by these two components, which 

accumulated to 87.4%. The first principal component (PC1) that showed the largest variation was seen 

in November, as shown in Figure 4. Contrarily, the second principal component (PC2) revealed that 

April had the greatest fluctuating rainfall values. 
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Figure 4. Centered Harmonic Functions. 

 

A high correlation between the principal component and the given variable was demonstrated by the 

high loading score for that variable. Based on the score values of PC1, the highest score values were 

dominated by the eastern stations, as depicted in Figure 5(a). It shows that PC1 was associated with the 

eastern region of Peninsular Malaysia during the NEM. Rains during the inter-monsoon season from 

April to May and September to October played a significant role in forming the second component, PC2. 

Stations in the northwesterly and western areas dominated it, as shown in Figure 5(b). The interval 

between monsoons, or the "grey period," is when the southwest and northeast monsoons alternately 

change, which is referred to here as the inter-monsoon. During the southwest and northeast monsoon 

shifts, the weather plays havoc and suddenly switches from a hot, sunny day to a violent thunderstorm. 

The weather is cloudy and wet most of the time during the period. 
 

(a) (b) 

Figure 5. Smoothing curves with the highest loading for the (a) first principal component and 

(b) second principal component. 

 

The scores of the first two principal components were then mapped onto Figure 6. The figure shows 

some exact groupings that reveal the most important type of variation in the rainfall curve. These stations 

are grouped based on their high PC1 scores: Kuantan, Dungun, Pasir Mas, and Kota Bharu. On the other 

hand, based on the shape of their curves, Alor Setar, Bayan Lepas, and Baling could be grouped together 

as a single cluster. In Figure 6, Petaling Jaya stands out as a distinct cluster since it has the highest PC2 

score, suggesting that the area may have a distinct rainfall shape from other stations. Also, Tanah Rata 

in the central part of Peninsular Malaysia and Senai in the southwest could each have their cluster. 
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Figure 6. Map of scores for PC1 and PC2. 

 
 

4. Conclusion 

In this study, functional data analysis was used to convert rainfall data from each region into smoothing 

curves that can be analysed at any time interval. Additional information, such as the changes in rainfall, 

could be estimated based on the derivative of the smoothing Fourier function. A positive or negative 

change could be observed from the smoothing curve over the time interval. The functional findings of 

this study showed that more basis functions are needed than in the other regions to fully represent the 

variation in the pattern of rainfall over the eastern region. The highest rainfall is recorded during the 

NEM season, while the lowest rainfall occurs between mid-May and September during the southwest 

monsoon. In contrast, the northwest regions got less rain during the months when the northeast monsoon 

flowed, while the second inter-monsoon was the wettest time. 

The rainfall patterns over Peninsular Malaysia could be adequately described by the first two 

principal components, which represented 87.4% of the total variation. According to the first principal 

component, the northeast monsoon season occurs most frequently in the east. In contrast, the first inter- 

monsoon season occurs most commonly in the regions represented by the second principal component. 

Additionally, the topographical and geographical implications will significantly impact Peninsular 

Malaysia's rainfall patterns. The current work is limited to exploring and profiling rainfall patterns. 

However, the findings from this study can provide additional information for those who work with the 

water management system as an alternative way to describe rainfall events, such as in terms of rainfall 

variability, rate of change, and potential anomalies. In addition, further research should consider 

inferential aspects in the analysis, such as comparing rainfall patterns using the functional analysis of 

variance, building up the relationship using the functional linear model, and forecasting rainfall values 

using functional time series. 
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