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Abstract. Chalcopyrite semiconductors are widely used as absorbers in thin film solar cells, 
especially flexible solar cells, due to their high power conversion efficiency. They also have 
interesting mechanical properties, making them promising materials for flexible, light, and thin 
solar cells. In this work, we report the first-principle calculations of the lattice constant and 
bulk modulus for CuInS2, CuInSe2, and CuIn(S,Se)2 absorber solar materials. All calculations 
are performed using plane wave as implemented in the Quantum ESPRESSO software package 
in the framework of density functional theory using PBE-GGA approximations and ultrasoft 
pseudopotentials. The calculated lattice constant correlates well with the available 
experimental study. The energy-volume and pressure-volume relations are described using the 
third order of Birch-Murnaghan's equation of state to calculate the bulk modulus of the 
absorber solar material, which is associated to the hardness of a material under particular 
conditions. The values of bulk modulus obtained for CuInS2 and CuInSe2 are in good 
agreement with available theoretical results, except for CuIn(S,Se)2, which have been 
calculated and reported for the first time. 

1.  Introduction 
Metal chalcogenide semiconductors are currently interesting technologies due to their excellent 
physical and chemical properties, especially in the fields of electronic, optoelectronic, photonic, non-
linear optic, and photovoltaic applications. Nowadays, there is strong demand for renewable energy as 
a result of the limited availability of non-renewable energy sources such as fossil and nuclear fuels, 
which has led to massive concerns regarding environmental and sustainability issues. The performance 
of solar cells has made it one of the potential alternatives for non-renewable energy resources, and it 
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has been the subject of intensive research, resulting in high power conversion and low environmental 
impact [1]. Currently, the solar technology is dominating by crystalline silicon (c-Si) panels with a 
global market share of about 80% [2]–[4]. However, conventional solar panels in the market are thick, 
heavy, and flat due to the structural components necessary to support the fragile and brittle c-Si solar 
cells [4]. To overcome the current limitations of c-Si solar panel, the thin film solar modules are 
introduced, which are less expensive to manufacture, lightweight, and flexible than traditional silicon-
based panels [5]. To date, the world records for photovoltaic efficiency for thin film technologies 
based on metal chalcogenide compounds were obtained by Solar Frontier and First Solar for 
Cu(In,Ga)Se2 and CdTe with 23.4% [6] and 22.1% [7] efficiency, respectively. 

Ternary metal chalcogenide compounds with tetragonal chalcopyrite structure of CuInS2 and 
CuInSe2 have been widely used as absorbers in thin film solar cells due to their high absorption 
coefficient of about 105 cm-1 in the visible spectral range and adjustable bandgap with high thermal 
and chemical stability, which allows the utilization of low absorber thicknesses [8]–[11]. The stability, 
thermodynamic, optical, and electrical characteristics of these chalcopyrite semiconductors have 
attracted the attention of numerous researchers. Matter of fact, a number of scientists have published 
extensive experimental and theoretical work devoted to the features of these chalcopyrite 
semiconductors [12]–[14]. In addition, the elastic constant of chalcopyrite compounds is also vital to 
investigate in order to have a better knowledge of their mechanical characteristics. For example, 
Kumar et al. [15] have successfully investigated the structural and elastic properties of A"B"""C%&" 
groups such as CuInS2 and CuInSe2 using the density functional theory. Moreover, Amudhavalli et al. 
[16] investigated the elastic properties of several compound combinations of A"B"""C%&" groups such as 
CuInS2 and CuInSe2. On the other hand, there has not been much study reported on the elastic 
properties of CuIn(S,Se)2 compounds. In this work, we investigated the structural and bulk modulus 
properties of the CuInS2 (referred to hereafter as CIS), CuInSe2 (referred to hereafter as CISe) and 
CuIn(S,Se)2 (referred to hereafter as CISSe) absorber solar materials by using first-principle 
calculation based on the density functional theory framework. 

 
Figure 1. Chalcopyrite structure of unit cell of (a) CIS, (b) CISe, and (c) CISSe absorber solar cells. 
The blue, light magenta, yellow, and green spheres represent Ti, In, S, and Se atoms, respectively. 

2.  Computational Method 
The first-principles calculations used to calculate the structural and bulk modulus were performed 
based on the DFT framework as implemented in the Quantum ESPRESSO (QE) code [17]. The 
exchange and correlation effects have been treated within Generalized Gradient approximations 
(GGA) with Perdew-Burke-Ernzerhof (PBE) [18] exchange correlation and the ionic potentials are 
described by ultrasoft pseudopotential (USPP) [19] wave which available from QE website. The 
electronic configuration of USPP for Cu, In, S, and Se were treated as valence electrons of Cu 
(3d104s1) In (4d105s25p1), S (3s23p4), and Se (3d104s24p4) respectively. For the plane-wave basis, the 
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energy cut-off was fixed at 40 Ry. All the atoms were fully relaxed with maximum forces set at 10-5 
Ry/Bohr. The errors on the total energy are set at 10-4 Ry/atom. The Brillouin-zone (BZ) were carried 
out using Γ-centered Monkhorst-Pack grids of 4 × 4 × 2 k-points for ionic relaxations and self-
consistent field (SCF) calculations. The tetragonal chalcopyrite structure with 16 atoms has been used 
to model the unit cell of CIS, CISe, and CISSe, as shown in Figure 1. The bulk modulus and its 
derivative were obtained by fitting the third order of Birch-Murnaghan equation of state (EOS) on 
calculated energy-volume and pressure-volume data. 

3.  Results and Discussion 
In the first step, we constructed the tetragonal chalcopyrite of CIS, CISe, and CISSe as shown in 
Figure 1, and its geometrical structure were fully relaxed by PBE-GGA approximations and USPP 
pseudopotential. The computed optimized lattice parameters are tabulated in Table 1 and is 
comparable with the available reported experimental work. By comparing the calculated unit volume 
to the experimental value, the relative error is about 3.2% for CIS, 1.1% for CISe, and 0.8% for 
CISSe, with the CIS unit volume having the smallest relative deviation. The smallest values of relative 
deviation between present theoretical values and previous experimental work indicate that the fully 
relaxation by PBE-GGA-USPP have good lattice constant prediction. 

Table 1. Computed lattice parameter and volume for optimized geometrical structure of CIS, CISe, 
and CISSe absorber solar cells. 

Absorber Materials 
Lattice Parameter Experimental  

a (Å) c (Å) V (Å3) a (Å) c (Å) V (Å3) ref 

CIS 5.574 11.248 349.469 5.517 11.122 338.524 [20] 

CISe 5.817 11.743 397.354 5.814 11.630 393.124 [21] 

CISSe 5.719 11.512 376.523 5.700 11.500 373.635 [22] 

The calculated bond length for optimized structure of CIS, CISe, and CISSe is tabulated in Table 2. 
The computed bond lengths of Cu-S and In-S in CIS are 2.327 and 2.523, Cu-Se and In-Se in CISSe 
are 2.422 and 2.640, and Cu-S, Cu-Se, In-S, and In-Se in CISSe are 2.299, 2.469, 2.539, and 2.638, 
respectively. The bond length of Cu-S and In-Se in CISSe has decreased compared to CIS and CISe, 
while the bond length of In-S and Cu-Se in CISSe has increased compared to CIS and CISe. 
Compared to the experimental value, the relative errors between the computed bond length and 
experimental values are about 1.70% (Cu-S) and 0.24% (In-S) for CIS, 0.49% (Cu-Se) and 1.97% (In-
Se) for CISe, and there is no available bond length reported for CISSe. 

Table 2. Computed bond length for optimized geometrical structure of CIS, CISe, and CISSe absorber 
solar cells, and available previous experimental data. 

Absorber Materials 
Bond Length (Å) Experimental (Å)  

Cu-S In-S Cu-Se In-Se Cu-S In-S Cu-Se In-Se Ref 

CIS 2.327 2.523 - - 2.288 2.517 - -  [23] 

CISe - - 2.422 2.640 - - 2.434 2.589  [24] 

CISSe 2.299 2.539 2.469 2.638 - - - - - 

In the next step, third order of Birch-Murnaghan’s EOS has been used to obtain bulk modulus and 
its first derivatives by fitting the calculated energy as a function of cell volume at 0 GPa pressure and 
0 K temperature. The cell volume based on the fully relaxation calculations are varied by scale factor 
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of 0.93 to 1.05 with the interval of 0.01, and their ground state energy are calculated and plotted in 
Figure 2. The bulk modulus is obtained by extract the fits of Birch-Murnaghan EOS as follows. 

 (1) 

Where 𝐵,, 𝐵,- , V0, and E0 are the bulk modulus, bulk modulus first derivative, unit cell volume and 
energy at equilibrium ground states, respectively. The calculated bulk modulus and its first derivative 
(in bracket) for CIS, CISe, and CISSe are 65.8 (4.80) GPa, 54.56 (4.89) GPa, and 60.00 (4.85) GPa, 
respectively, as tabulated in Table 3. It can be seen that the calculated bulk modulus is in close 
agreement with previous experimental work by less than 1.80 % error, which reveals the reliability of 
our calculations. The chi-square values obtained for CIS, CISe, and CISSe were 6.52 × 1034,, 
4.90 × 1034,, and 4.62 × 1034,. Figure 3 show the pressure evolution of the unit cell volume of (a) 
CIS, (b) CISe, and (c) CISSe obtained from our DFT calculations and fits of third order Birch-
Murnaghan EOS. Our computation suggest a less dense state is less compressible when fitted to a third 
order Birch-Murnaghan EOS. The chi-square values obtained for CIS, CISe, and CISSe were 
6.52 × 1034,, 4.90 × 1034,, and 4.62 × 1034,. 

 
Figure 2. Energy-volume curves of calculated DFT data and fits of third-order Birch-Murnaghan EOS 
of (a) CIS, (b) CISe, and (c) CISSe absorber solar cells. Blue dots indicate calculated DFT values, 
while smooth red line is fitting of Birch-Murnaghan EOS. 
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Table 3. Extracted bulk modulus (𝐵,) and its first derivative (𝐵,- ) using Birch-Murnaghan EOS for 
CIS, CISe, and CISSe absorber solar materials with available previous theoretical works. 

Absorber Materials  This Work Other Theoretical Works 

CIS 𝐵, (GPa) 65.81 65.55 [25], 65.81 [26] 

 𝐵,-  4.80 - 

CISe 𝐵, (GPa) 54.56 53.6 [27], 54.20 [25]  

 𝐵,-  4.89 - 

CISSe 𝐵, (GPa) 60.00 - 

 𝐵,-  4.85 - 
 

 
Figure 3. Pressure-volume curves of calculated DFT data and fits of third-order Birch-Murnaghan 
EOS of (a) CIS, (b) CISe, and (c) CISSe absorber solar cells. Blue dots indicate calculated DFT 
values, while smooth red line is fitting of Birch-Murnaghan EOS. 
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4.  Conclusion 
In summary, we have investigated the structural and bulk modulus of the CIS, CISe, and CISSe by 
employing the plane wave with PBE-GGA and USPP, which is based on DFT first principle 
calculation as implemented in Quantum ESPRESSO code. The lattice parameter and bulk modulus of 
all compounds were determined and compared. The results obtained show that the lattice parameters 
of CIS, CISe, and CISSe calculated using PBE-GGA and USPP successfully predict the crystal 
structure correctly and in good agreement with previous experimental results. The theoretical bulk 
modulus of the current work for CIS and CISe is found to be consistent with earlier theoretical values, 
and CISSe is theoretically reported for the first time. 
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