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ABSTRACT 

Digital photogrammetry is an effective way for gathering data for DEM extraction, and recent advances in recording techniques and 
data processing have allowed for higher resolution and faster rapid generation of photogrammetric 3D models result. The model has 
a spatial and spectral high-resolution advantage with good geometrical positioning accuracy. The DEM quality is the primary 
requirement for any application and must satisfy users’ requirement. The DEM quality is usually affected by several factors during 
acquisition and processing stages.  Considerable researches have been conducted on several parameters influencing the DEM 
accuracy. The review focused on discussions on topics related to unmanned aerial vehicle DEM accuracy assessment. Five 
parameters were considered: UAV technology; UAV Georeferencing; UAV and computer vision; UAV and LiDAR; and UAV flight 
parameters. Summary of the methods, their strength, weakness and regions of the most recent articles are presented. Based on this 
review conclusion was drawn on the UAV DEM accuracy challenging issues that need more attention from the geospatial 
community and suggestions for future work are offered. But there might be other possible factors that are not treated in this paper. 

1 INTRODUCTION 

There are a variety of techniques for mapping that can be 
employed in the field of geoinformation science. Theodolite 
surveying is one of the techniques used, although it is laborious, 
time-consuming, labor-intensive, dangerous, and requires 
several personnel. Total station equipment, developed in the 
1990s to replace theodolite-based data collection, processing, 
and results, is labor-intensive, time-consuming, and hazardous 
if not used properly (Ajayi & Ajulo, 2021), The Global 
Positioning System (GPS) study does not provide 
comprehensive or precise data (Zolkepli et al., 2021). Time-
consuming, expensive, with a blind spot, and low-quality 
mapping is laser scanning survey (Chatzistamatis et al., 2018). 
Manned aircraft take a long time, are expensive, and don't do a 
good job of mapping large areas (Fernández et al., 2016). 

Knowing the physical characteristics of the earth's surface is 
critical since human interference changes the form, texture, and 
pattern of natural resources.  DEM depicts the actual surface of 
the planet and aids in understanding the terrain's characteristics 
(Lakshmi & Yarrakula, 2018).  Digital elevation and terrain 
models (DEMs) are obtained from several different sources. 
Ground survey, aerial photographs, radar satellite data and 
optical satellite data are among the sources.  

Recent advancements in digital photogrammetry recording and 
data processing have allowed for an increase in resolution and a 
quicker turn-around of results. Polidori, 2020 further stated that, 
it is still not clear how accurate DEM assessments should be 
conducted. This is because there are no set (standard) rules in 
place. According to Mesa-Mingorance & Ariza-López, (2020), 
the process of evaluating DEMs for quality and documentation 
is hard and needs more attention from the geospatial 
community. 

The accuracy of these models depends on a number of 
variables, including flight design, camera quality, camera 
calibration, SfM algorithms, and georeferencing strategy (Sanz-
Ablanedo et al., 2018). Aerial photogrammetry (manned 
aircraft) has had limitations in the past, such as the necessity for 
a competent pilot to fly the aircraft and inability to fly on 
cloudy days (Darwin et al., 2014). UAVs provide several 
benefits, including low cost, survey automation, high 
repeatability and direct video return (Laporte-Fauret et al., 
(2019). The newest automation and development in surveying 
engineering, combining unmanned aerial systems (UAS) and 
structure from motion (SfM) with multi-view stereo 
(MVS) photogrammetry, give high-resolution topographic data 
(Deliry & Avdan, 2021). 

Drones will generate a new market that the next generation will 
be dependent on (Singhal et al., 2018). UAVs are currently used 
for jobs that were thought to be impossible just a few years ago 
(Beloev, 2016). A popular topic is a 3D reconstruction 
algorithm based on UAV aerial photos (Zhang, 2021). Future 
technologies should concentrate on enhancing payload, 
endurance, and human-UAV interaction. The issue of mistakes 
is crucial to all scientific endeavors, and one tenet of scientific 
techniques is to push the bounds of "truth" through improving 
tools and minimizing errors (Wechsler, 2007). 

2 UAV TECHNOLOGY 

If you let them fly, they'll create a new remote sensing market 
in your nation (Colomina & Molina, 2014). Unmanned aerial 
vehicles (UAVs) are aircraft that can fly without a competent 
pilot and can quickly and cheaply cover a small area to create 
maps with sub-meter accuracy. Compared to traditional aerial 
photogrammetric techniques, an accurate large-scale 
topographic map can be created quickly (Ahmad et al., 2018). 
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The efficient method of producing very high-resolution spatial 
datasets for mapping and spotting changes in land cover across 
a very limited region at a low cost is UAV photogrammetry 
technology (Jumaat et al., 2018). Land use planning can be 
accompanied by UAV pictures generated by DEM to reduce 
time and achieve high accuracy (Aleshin et al., 2020). A UAV 
system has advantages for recording cultural assets, including 
the ability to use mobile mapping in close-range applications 
without the need for terrestrial imaging (Eisenbeiss, 2004).  

Products made by UAVs can be used for mapping the 
sustainable path of a railway track (Sammartano & Spanò, 
2016) and tracking environmental changes in extreme polar 
environments (Lamsters et al., 2020). It is reliable, flexible, and 
cost-effective for keeping an eye on oil and gas pipelines for 
safety, maintenance, and security (Gómez & Green, 2017). 

UAV systems are simple to operate, can be utilized in 
hazardous and inaccessible locations, can cover small areas, can 
fly along projected flight paths, and can do so at a low cost with 
quick data collection and high-accuracy mapping output (Krenz 
et al., 2019). Their view from above gets around the fact that 
surveyors using ground-based methods can only see. UAV 
photogrammetry used to fill the gap between visual and satellite 
remote sensing measurements (Fraser et al., 2016).  

UAV accuracy is equivalent to measurements made on the 
ground (Blistan et al., 2016). UAV is a portable and highly 
dynamic data collection tool, efficient, flexible, affordable, 
labor-saving, and secure, suitable for accurate mapping and 
monitoring (Kentsch et al., 2021). UAV models used in traffic 
analysis are greatly improved by the UAV cameras' bird's-eye 
perspective (Outay et al., 2020).   

Topographic surveys have been conducted using stereoscopic 
vision of aerial pictures and topographic map reading.  Building 
inspection and monitoring can benefit from UAV technology, 
especially when it comes to accuracy and speed while looking 
for fractures in structures (Bohari et al., 2021). UAVs serve as a 
foundation for the execution of the most appropriate cadastral 
mapping methodologies (Crommelinck et al., 2016). UAS-
based remote sensing data can be useful in giving precise 
information (Liu et al., 2021; Yaacob et al., 2022). Summary of 
the most recent articles is presented in Table 1. 

 

3 UAV GEOREFERENCING 

Control point positioning and measurement in the field are 
limited or constrained by a variety of environmental factors. 
Using more GCPs will assure redundancy and improve 
estimates of the camera's interior orientation parameters, 
different solutions can be adopted for the UAV imagery 
georeferencing without the use of any GCP (i.e., direct 
georeferencing approach) (Colomina & Molina, 2014).  

Aerial photography accuracy is dependent on the quantity and 
placement of GCPs; they must be evenly dispersed over the 
area (Handayani et al., 2017). The distance of the reference 
point from the points affects DEM height inaccuracy (Aleshin 
et al., 2019). The best results from the RPAS photogrammetric 
survey are obtained when combined with GCP measurements 

made by highly accurate topographic instrumentation. 
According to Menegoni et al., (2020), the use of GCPs can 
eliminate the uncertainty brought on by the direct approach. 
According to Ferrer-González et al., (2020), just 5 GCPs are 
required to achieve RMSExy, less than two times the project's 
GSD. The accuracy of XYZ UAV photogrammetry is about the 
same as that of RTK GPS.  

UAVs are an alternative to conventional image acquisition 
techniques that allow for flexible, high-resolution image 
acquisition while bridging the gap between terrestrial and aerial 
photogrammetry (Babatunde et al., 2021). The NRTK method 
provides quick survey operations with a few centimeters of 3D 
positional accuracy. While NRTK requires a robust GSM 
network, the PPK strategy needs an operational CORS station 
and DRTK demands more work in the field with faster 
processing (Losè et al., 2020). 

The number and location of GCPs are employed as a function 
of the accuracy of the UAV and SfM photogrammetry surveys 
(Baiocchi et al., 2021). Until a specific GCP density is attained, 
an increase in GCP numbers boosts the DSM's accuracy. The 
practice of manually fixing the coordinates in the GCP's center 
has an impact on both the horizontal and vertical accuracy 
(Gindraux et al., 2017). Lower points make more projections, 
but the location of their locations affects how many projections 
they have (Sanz-Ablanedo et al., 2018). A sufficient number of 
GCPs must be taken into account in the data georeferencing 
workflow in order to provide highly accurate geospatial outputs 
(Mirko et al., 2019). A photogrammetric product with 
decimeter-level accuracy can be produced using UAV direct 
georeferencing results (Eker et al., 2021). The error of the 
computed camera locations was not significantly impacted by 
the use of GCPs. UAV photogrammetry makes it possible to 
acquire DTMs with a high degree of accuracy and spatial 
resolution (Jiménez-Jiménez et al., 2021).  

There aren't enough studies that examine the connection 
between errors and their separations from the nearest GCPS 
(Deliry & Avdan, 2021). The inaccuracy only increased with 
distance from GCPs, according to the majority of researchers. 
This issue needs in-depth statistical investigation because it is 
not fully addressed or clarified. Additional research is also 
necessary to assess the accuracy of UAV-SfM in surveying 
applications, such as profiles, cross-sections, and volumetric 
analyses. Sensor resolution, image overlap, flight height, GCPs-
numbers, distribution, and accuracy are the key determinants of 
DEM accuracy as well as Processing software also plays a 
significant role  There is no published research on how the 
quantity of GCPs affects the accuracy of a UAV SfM analysis, 
and a number of results are either ambiguous or ambiguous, if 
not conflicting (Elsheshtawy & Gavrilova, 2021). Summary of 
the most recent articles is presented in Table 1. 

 

4 UAV AND COMPUTER VISION 

It is encouraging that UAV offers unbeatable prices for its 
performance, services, and goods in modest projects. 
Techniques in computer vision are the means of achieving this 
level of automation (Colomina & Molina, 2014). UAVs and 
SfM algorithms can be used to shorten acquisition times and 
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assign them to unskilled operators (in terms of 3D skills). The 
fact that the 3D specialists do not need to be there is a 
significant benefit (Alessandri et al., 2020). Flexible spatial and 
temporal resolution is available in the UAV data generated 
(Śledź & Ewertowski, 2022). SfM approach uses a high-
redundancy bundle adjustment based on matching features in 
numerous overlapping, offset images to automatically solve the 
camera pose and scene geometry (Westoby et al., 2012). When 
comparing vertical photogrammetric results to oblique 
photographs, more accurate surfaces are produced (Cordova & 
Azambuja, 2018). Tan & Li, (2019), stated that the oblique 
photos when taken along with the nadir photos lessen "the 
bowling effect." 

A digital camera needs to be calibrated for accurate 
measurements or results. For achieving an accurate 
measurement, laboratory and field calibration are the most 
effective and dependable methods of calibration (Darwin et al., 
2013). Oblique pictures are added to the network, which 
dramatically lowers systematic DEM inaccuracy (James & 
Robson, 2014). This eliminates the practical requirement for 
chalkboards to be printed for camera calibration (Herrera et al., 
2016). With enough input photos, the planar system achieves 
the same precision as a known-target calibration. Without risky 
correlations, the Canrady-Brown calibration parameters and 
camera internal orientation were accurately determined (Molina 
et al., 2017). An accurate model can be created from vertical-
only photos using either a robust pre-calibration or a robust 
self-calibration, and adding oblique photography may enhance 
the results (Harwin et al., 2015). Self-calibration and more 
redundant image matching (Sadeq, 2018) led to the better 
result. 

The use of UAVs is a cost-effective and efficient method for 
large-scale aerial mapping (Wang et al., 2021), more accurate 
and easier than other methods (Laporte-Fauret et al., 2019). 
Aerial images with a spatial resolution of less than 10 cm can 
be produced by the UAV-based remote sensing system 
(Rokhmana & Utomo, 2016). Variation in camera resolution 
affect the  precision, while the accuracy remained constant 
Even in the most remote and difficult geographic areas, GPS 
PPP enables large-scale photogrammetric mapping from UAVs 
(Handayani et al., 2017).          

When compared to the centimeter-level accuracy of UAV 
photogrammetry and MLS, the 3D data from the Topcon GLS-
2000 scanner (mm level) is sufficient to serve as a reference 
point cloud (Abbas et al., 2021).  The spectral response of 
various features can be used to modify the weights of R, B, and 
G (Chaudhry et al., 2021). The spatial resolution of the photos 
is directly linked to how well the model works (Jakovljevic et 
al., 2020; Xu et al., 2020). GPS PPP enables large-scale 
photogrammetric mapping from UAVs since it removes all 
spatial operational constraints related to a GPS reference station 
network (Stott et al., 2020).  

Direct georeferenced UAV platform ensures mapping 
placement capabilities even in GCP-free environments that 
requires immediate attention (Tsai et al., 2010). Image 
resolutions, camera types, side overlap, and terrain slope were 
not statistically different from each other. Model accuracy 
increased when using the RGB camera and finer image 
resolution, while the NIR camera and coarser resolution 
decreased model accuracy, but no statistically different models' 

absolute prediction error around the mean was found (Domingo 
et al., 2019). When compared to the similar product resulting 
from nadir-viewing images, the acquisition geometries greatly 
improve upon it (Kyriou et al., 2021). combined usage of 
orthophoto and oblique photography lessen the negative 
consequences of faulty camera models (Menegoni et al., 2020). 
Summary of the most recent articles is presented in Table 1. 

5 LIDAR AND UAV 

Low-cost UAVs and advances in traditional sensors and battery 
technology are improving remote sensing and 3D surface 
modelling. For monitoring, inspection and updating topographic 
maps, UAV imagery has the potential to be a good replacement 
for cloud cover imagery at a better ground resolution and more 
reasonably priced (Rossi et al., 2018). 

In places like hilly or high-risk environments where it is 
impossible to undertake GPS surveys, TLS-derived point clouds 
can be used as GCPs (Tong et al., 2015). UAV imaging gives 
good information on forest parameters for the assessment of 
canopy height with an accuracy less precise than LiDAR due to 
the canopy (Gressin et al., 2020). Due to the vegetation, the 
UAV had a few blind spots on the roof, whereas some of the 
façades had the opposite problem (Chatzistamatis et al., 2018). 
A large region could be scanned with extreme precision and 
under darkness thanks to a LiDAR system, but the technology 
is incredibly pricey and difficult to employ in small places 
(Alessandri et al., 2020).  

Compared to the generated LiDAR slope, the UAV-generated 
slope (40 and 60 m alt) is better classified. Less point cloud in 
UAV photos results in a clear slope that can be observed on a 
decent slope map (Mokhtar et al., 2019). UAV allows the 
production of DSM with a comparable level of accuracy (Long 
et al., 2016). Both the resolutions of the data sets obtained by 
UAV are improved. UAV data is less expensive and simpler to 
use while still enabling the production of DSM with a 
comparable level of accuracy. 

The average measurement percentage derived from the UAV-
CRP data was discovered to be less than 1% when compared to 
the terrestrial LiDAR data (Congress & Puppala, 2021). UAV 
DTM's vertical accuracy was comparable to a LiDAR bare 
ground DTM, the amount of error may be decreased by 
enhancing aircraft stability and camera calibration (Ajayi & 
Palmer, 2019). When compared to the laser scanning method, 
both temporal and spatial aspects have high-quality, affordable, 
and produced levels of detail that are very impressive (Zolkepli 
et al., 2021). Summary of the most recent articles is presented 
in Table 1. 

6 UAV FLIGHT PARAMETERS 

The flight parameters considered in this article are percentage 
overlap and flight height. 

6.1 Percentage Overlap 

A minimum of 60% forward and 30% lateral overlaps are 
needed to ensure a stereoscopic view of a scene and prevent 
gaps for a successful photogrammetric results (Rau et al., 
2012). 
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Low-overlapping UAV images can be used to accurately 
generate photogrammetric products, but this produces 
models with visible gaps. Topographical maps can be 
updated and revised using UAS photos with a low number of 
GCPs and a high percentage of forward and side overlap 
(Daramola et al., 2017). Image overlaps are affected by the 
external flight conditions (Graça et al., 2014). 

A UAV is designed to fly in a straight line, but because of 
the wind speed, it experiences crabbing when taking aerial 
photos in the form of strips. Increased percentage overlap 
improves building shapes and boosts product accuracy 
(Sadeq, 2018). Since there will be no more mismatches 
between true points, a high percentage of overlap will 
become more stable. 

Each pair of images has a 60% overlap and a 30% side lap.  
overlap virtually eliminate occlusion (Karantanellis et al., 
2020). It is important for the photos to have enough overlap 
in order to be processed (Siebert and Teizer, 2012). The 
accuracy of RMSExyz does not increase or decrease in 
proportion to the percentage of overlaps (Muhammad & 
Tahar, 2021). 

The median of the tie points increases logically as the 
forward overlap increases, and a logical increase in the side 
and forward percentage overlaps leads to an increase in the 
number of point clouds. Changes in the forward and side 
overlap settings do not reveal any overarching pattern in how 
the datasets behave. Chaudhry et al., (2020) stated that the 
trade-off between UAV surveying parameters can give very 
accurate results at a low cost of computation. 

6.2 Flying Height 

Images of a specific area of the earth's surface can be 
obtained using UAV photogrammetry at specific altitudes. 
Lower altitude produces sharper images, whereas greater 
altitude enhances UAV control. UAVs have several benefits, 
including the ability to fly at low altitudes; low cost; quick 
data collection and processing for identifying changes in the 
coastline; and precise results. UAV systems for low altitude 
have an advantage and have considerable development 
potential (Junqing et al., 2012). As a low-flying UAV can 
acquire precise data, especially in steep terrain, it has an edge 
over satellites. At different elevations (20m, 40m, and 60m), 
the combined error of X, Y, and Z is at centimeter level 
(Nagendran et al., 2018). The produced DSMs are all quite 
similar and are not significantly affected by variations in 
flight altitude (Ajayi, 2019). Increase in altitude increases the 
area coverage and number of tie points (Yusoff et al., 2018). 
Flat areas mapped more accurate than mountainous (Syafuan 
et al., 2021). 

The flying height of the vehicle during recording determines 
the spatial resolution of the aerial photogrammetric (Anurogo 
et al., 2017). Various flying altitudes revealed no gaps or 
errors in the overlapping image regions, but they did 
highlight some technical issues with the matching process, 
such as edge matching, spatial continuity, and radiometric 
consistency (Udin & Ahmad, 2014).  Incorporating 
photographs captured at various flight altitudes increases the 

number of unique survey sites and, as a result, contributes to 
substantial image overlap (Ćmielewski et al., 2021). A 
doming effect associated with UAV photogrammetry image 
processing lowers the quality of the outcomes outside the 
area (bounded by GCPs) (Casella et al., 2020). In locations 
with GCP boundaries, changing altitude or camera types has 
no discernible impact on the accuracy of the final DEMs. 
Plans and sections that don't have a lot of detail can benefit 
from accurate surveys done by low AGL missions (Mugnai 
& Tucci, 2022). Summary of the most recent articles is 
presented in Table 1. 

7 CONCLUSION 

UAV photogrammetry is the newest technique for generating 
DEM/DTM/DSM widely accepted as a result of its high level 
of automation. It enables the generation of accurate, high-
resolution DEM at minimal cost. 

Previous UAV research: Can fly on cloudy days, used in 
tasks that were unthinkable only a few years ago, and does 
not require a professional pilot onboard. Its bird's-eye view 
perspective overcomes surveyors' positional view limitations. 
But its major drawback is that it is not suitable for large areas 
and there are regulations restricting its operation. 

Research about UAV Investigation: can be used for fast 
survey operations without GCP, but an increase in the 
number of GCPs increases the accuracy. The relationship 
between errors and distances from the nearest GCP is not 
sufficiently addressed. More research is needed to determine 
the accuracy of UAV-SfM in surveying applications. 
Different numbers and distributions of GCPs need to be 
investigated. 

UAV Image Processing and Computer Vision: UAV 
achieves a high level of automation. It’s flexible and efficient 
for spatial and temporal resolution, suitable for emergency 
cases. Spatial resolution is directly related to model accuracy. 
Indirect georeferencing is more accurate. 

UAV and UAV LiDAR: UAV is an alternative to RS 
platforms, suitable for replacement of cloud cover areas at 
higher resolution. It bridges the gap between terrestrial and 
aerial data collection. UAV-Suffers from canopy in forest 
area. LiDAR allowed scanning of wide areas in total 
darkness. 

UAV Flight Parameters: Its ability to fly at low altitude 
eliminates mismatching problems and guarantees complete 
coverage of the stereo pair. Requires more disc space and 
increases processing time. The decision on applying higher 
or lower flying altitude should be reviewed. 
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