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ABSTRACT 

The detection of malware intrusion requires the identification of its signature. 

However, cyber security practitioners are having difficulty to manually detect 

signature-based malware due to the increasing number of malware. As a consequence, 

malware are only detected after an incident has occurred. By then it would have already 

incurred monetary loss, thus causing a huge impact on an organisation’s brand and 

clients’ trusts. This research aims to propose a solution for the problem highlighted by 

formulating an improved malware detection framework. The improved malware 

detection framework was formulated based on the malware detection solution 

components identified as malware analysis, malware detection, machine learning 

algorithm, cyber threat intelligence data and digital forensics principle (preservation). 

Then, the formulated framework was implemented and evaluated by performing a 

threat hunting experiment. The implementation of the formulated framework produced 

information that described the distribution of high severity malware which posed the 

most threat in the top three states based on the clustering algorithm used. The 

clustering algorithm used 3 as the value of K which had the best silhouette score based 

on Euclidean distance calculated that is 0.931766381586 and assisted in generating the 

YARA rules. The experiment result shows that the generated YARA rules from the 

clustering algorithm and data enrichment were able to detect Bladabindi, Conficker as 

well as Zbot by referring to the signature derived from the automated malware 

analysis. As a conclusion, the framework itself, steps, techniques and the process flow 

utilised in formulating the improved framework served as an effective malware 

detection solution. Hence, cyber security practitioners can apply the improved 

malware detection framework as a guideline to conduct threat hunting within their 

organisation. 
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ABSTRAK 

Pengesanan pencerobohan perisian merbahaya memerlukan pengenalpastian 

signature. Walau bagaimanapun, pengamal keselamatan siber mengalami kesukaran 

untuk mengesan perisian merbahaya berdasarkan signature secara manual kerana 

jumlah perisian merbahaya yang semakin meningkat. Akibatnya, perisian merbahaya 

hanya dapat dikesan selepas berlakunya kejadian. Pada masa itu, ia akan mengalami 

kerugian kewangan, sehingga menimbulkan impak basar pada jenama organisasi dan 

kepercayaan pelanggan. Kajian ini bertujuan untuk mencadangkan penyelesaian bagi 

permasalahan yang dinyatakan dengan merumuskan kerangka pengesanan perisian 

merbahaya yang lebih baik. Kerangka pengesanan perisian merbahaya yang lebih baik 

dirumuskan berdasarkan komponen penyelesaian pengesanan perisian merbahaya 

yang dikenal pasti sebagai analisis perisian merbahaya, pengesanan perisian 

merbahaya, algotrima pengesanan mesin, data risikan ancaman siber dan prinsip 

forensik digital (pemeliharaan). Kemudian, rangka kerja yang dirumuskan 

dilaksanakan dan dinilai melalui eksperimen threat hunting. Pelaksanaan rangka kerja 

yang dirumuskan menghasilkan maklumat yang menghuraikan pengagihan perisian 

merbahaya berketerukkan tinggi yang menimbulkan ancaman paling besar dalam tiga 

negeri teratas berdasarkan algoritma pengklusteran yang digunakan. Algoritma 

pengklusteran menggunakan 3 sebagai nilai K yang mempunyai Silhouette score 

tertinggi berdasarkan Euclidean distance yang dikira iaitu 0.931766381586 dan 

membantu untuk menghasilan peraturan YARA. Keputusan eksperimen menunjukkan 

bahawa peraturan YARA yang dihasilkan dari algoritma pengklusteran dan pengayaan 

data dapat menggesan Bladabindi, Conficker dan juga Zbot dengan merujuk kepada 

signature yang diperoleh dari analisis data secara automatik. Sebagai kesimpulan, 

kerangka kerja tersebut, langkah, teknik dan aliran proses yang digunakan dalam 

merumuskan kerangka pengesanan perisian merbahaya dapat diguna pakai sebagai 

langkah penyelesaian pengesanan perisian merbahaya yang efektif. Oleh itu, pengamal 

keselamatan siber dapat menerapkan rangka kerja pengesanan perisian merbahaya 

yang ditingkatkan sebagai panduan bagi melakukan threat hunting dalam organisasi 

mereka. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Overview 

This chapter gives the outline of the research that includes the background 

explanation and problem encountered by cyber security practitioners in malware 

detection. In addition to that, the research scope is discussed with consideration of the 

challenges in the research. Apart from that, the proposed solution is briefly described 

in the research contribution and significance of the study sections. The overview for 

each chapter is provided at the end of this chapter. 

1.2 Research Background 

Technology assists humans to solve problems and perform difficult tasks that 

humans are incapable of, for example, when running an algorithm to solve a complex 

mathematical problem within seconds. The birth of the internet has made the world 

borderless that enables tasks to be carried out on mobile technology namely laptops 

and smartphones. The internet allows tasks to be performed online at any time and 

place, for example, performing online banking through mobile devices. However, 

technologies that exist for the benefit of humans are misused by cybercriminals that 

pose harm and threat to others through cybercrimes that involve malware (Deckert & 

Sarre, 2017). One example of cybercrime is hacking a victim’s device to steal their 

personally identifiable information (PII) by attaching malware in the victim’s email 

that has been sent to them (Gunjan et al., 2013). Although technology advancement 

has improved the quality of human life, it also causes cybercrimes to become more 

sophisticated through cyber-attacks,  to create better malware that is more elusive than 

the previous version (Hopkins & Dehghantanha, 2016).  
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Cyber-attacks using malware are prevalent to automate the process of intrusion 

into the targeted organisation’s IT systems, such as in the financial sector. Zero-days, 

vulnerabilities found within applications and operating systems without patching are 

often utilised by cyber criminals to create a new malware variant to avoid security 

tools deployed by cyber security practitioners. Malware is able to evade the security 

systems by changing its signature so that it is not included in the antivirus repository 

for reference. An example of this issue is polymorphic and metamorphic malware that 

are undetected by applying a packing technique to mask its original behaviour (Bat-

Erdene et al., 2017). Malware authors currently develop features that are difficult to 

trace such as the existence of obfuscation technique (Raphel & Vinod, 2015) that 

complicate detection and reverse engineering. Obfuscation technique hides the 

malicious intent of the malware and masks the malware as a legitimate software 

(Martinelli et al., 2018). However, in the background, the malware performs illegal 

processes such as privilege escalation by encrypting malicious code to appear as 

legitimate. This shows the sophistication level of the techniques being deployed for 

malware intrusion.  

 

Generally, the malware intrusion phases consist of reconnaissance, 

weaponisation, delivery, exploitation and installation to intrude and have total control 

over the victim’s systems (Kiwia et al., 2018). The attack model customisable by 

changing the technique used in the malware intrusion phases depending on the scenario 

and its target (Bhatt et al., 2014). Therefore, as depicted in the McAfee December 2018 

threats report, new malware samples jumped in quarter three of 2018 to approximately 

63 million which saw a 53% increase (Boom et al., 2019). Malware consists of many 

variations and the current technology such as antivirus is incapable of detecting new 

malware intrusion as it relies on a predefined repository. Apart from that, solely 

depending on antivirus is not recommended as it consumes a lot of resources and fails 

to completely secure the network or system (Ali Mirza et al., 2018).  
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Figure 1.1 Total malware reported by McAfee Labs (2016-2018) 

 

Figure 1.1 shows the total number of malware estimated by McAfee Lab in 

each quartile of the year from 2016 to 2018 based on the reports issued by McAfee 

Labs (Boom et al., 2019). Based on the McAfee December 2018 threats report, it is 

evident that the number of malware increases each year and that cyber security 

practitioners are dealing with millions of malware each year. This is because new 

malware is created faster than the analysis performed by malware analysts (Bulazel & 

Yener, 2017). The problem is not because of the deficiency in malware analysis 

techniques but rather the manual malware analysis that depends on human is time 

consuming. Conducting malware analysis manually is beyond the human’s capability. 

Thus, security tools exist to help ease malware analysts’ burden. Tools such as 

VirusTotal have the functionality to produce a report on the file scanned and detect 

malware e.g. based on the hash values of the file (VirusTotal, n.d.). Nevertheless, a 

malware detection solution cannot be too dependent on tools as malware evolves and 

tools may become obsolete. 

 

 Apart from using security tools to discover malware, malware detection is 

improved through the utilisation of machine learning algorithm during malware 

analysis (Mohaisen et al., 2015). The process of malware analysis is automated 

through the inclusion of machine learning algorithm to identify malware signatures. 

For example, an automated malware analysis is implemented using machine learning 
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in the dynamic analysis approach for the discovery of out of the norm system call 

(Naval, Laxmi, Rajarajan, et al., 2015). The example shows that malware analysis on 

more than one malware at a time is possible using machine learning algorithms e.g. in 

determining the outlier of a behaviour to recognise malicious activity (Ajay Kumara 

& Jaidhar, 2017). In addition to that, machine learning algorithm and big data system 

are technologies used to counter cyber-attacks (Kozik, 2018) and improve the 

detection of malware (Incer et al., 2018). The data collected is improved through data 

enrichment and malware analysis using machine learning algorithm in the extraction 

of malware characteristics (Martinelli et al., 2017). The extracted malware 

characteristics or behaviour are information which is used in the generation of malware 

signature to detect malware. Apart from analysing malware, cyber threat intelligence 

is used to obtain information of malware signatures. 

 

Cyber threat intelligence is utilisable as an external data for malware signature 

repository enrichment and evidently as the malware analysis main source of 

information. This is because cyber threat intelligence data contains attack details on 

present and arising threats (Abu, Selamat, Ariffin, et al., 2018). It is considered as 

inefficient if the malware analysis is performed on discovered malware. Resources are 

wasted to obtain the same malware analysis result e.g. malware report on the malware 

signature to deal against the same malware.  Instead, malware analysis results shared 

by the cyber security community should be utilised. Static and dynamic analysis are 

the two main malware analysis techniques used to obtain the malware signature. 

However, malware analysis conducted may not be thorough and requires additional 

information such as malware Internet Protocol (IP), malicious Domain Name System 

(DNS) and other reputation data to generate malware signatures through enrichment. 

Therefore, the data regarding malware is not only obtainable from malware analysis 

but also from external cyber threat intelligence data that collects network and system 

data. An example of external cyber threat intelligence data is the data collected from 

the VirusTotal database that contains data such as malware IP, malicious DNS as well 

as other reputation data. The collection of cyber threat intelligence data provides the 

means to establish the understanding of cyber threat in an environment which is 

complemented by the deployment of machine learning algorithm to automate malware 

analysis for the detection of malware.  
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Cyber threat intelligence data contains vital malware information and 

preservation of the data is essential in ensuring the accessibility of the data (Okereke 

& Chukwunonso, 2018). Preservation is a principle in digital forensic to ensure that 

the original data is retrievable to prevent data loss and alteration to the original data 

(Luthfi & Prayudi, 2016). This is conducted to ensure the data integrity where the data 

is preserved before analysis is conducted so that the analysis is carried out on the copy 

of the original data i.e. changes are not made to the original data. Therefore, 

preservation would be ideal for analysis that involves handling crucial data.  

 

Malware detection as early as possible is crucial as most malware incidents are 

detected by the organisation only after experiencing visible consequences such as 

unauthorised money transfer and down of services as stated in the Kaspersky Incident 

Response Analytics Report 2018 (Kaspersky, 2018). By then, it is already too late as 

the impact from the malware incident is huge which affects the organisation brand as 

well as the organisation client’s trust apart from the monetary loss (Pandey et al., 

2020). 

 

1.3 Research Problem 

Since the number of malware increases yearly, cyber security practitioners are 

having difficulty to manually perform signature-based malware detection. y then it 

would have already incurred monetary loss, thus causing a huge impact on an 

organisation’s brand and clients’ trusts. To address this problem, a malware detection 

framework that performs malware analysis through the integration of machine learning 

algorithm, cyber threat intelligence and digital forensics principle (preservation) as a 

malware detection reference for researchers and cyber security practitioners.  

 

1.4 Research Questions 

The research questions of the study are as follows: 

i. What are malware detection solution components? 

ii. How to formulate an improved malware detection framework based on the 

identified malware detection solution components?  
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iii. How to evaluate the improved malware detection framework formulated by a 

threat hunting experiment? 

 

1.5 Research Objectives 

The research objectives that guides the study are as follows: 

i. To identify malware detection solution components. 

ii. To formulate an improved malware detection framework based on the 

identified malware detection solution components. 

iii. To evaluate the improved malware detection framework by performing a threat 

hunting experiment. 

 

1.6 Research Scope 

There are a few challenges encountered in this research. One of the major 

obstacles was the complexity of analysing malware for malware detection. This 

research used cyber threat intelligence data that contains results on malware analysis 

such as Cyber Threat Intelligence Program (CTIP). The use of external cyber threat 

intelligence data helps to avoid wasting resources and redundant work by using the 

malware data that has been shared by cyber security practitioners, researchers or 

organisations. The usage of cyber threat intelligence data is practical for a small 

organisation with limited human and technology capacity. Hence, cyber threat 

intelligence is included in the improved malware detection framework to implement 

automated malware analysis. In addition to that, it can be noted that building a malware 

detection capability and technology is expensive. Therefore the knowledge, as well as 

the skills to build own tools or integrating established tools are essential. This is also 

another challenge for the research to use open-source tools and resources in developing 

the improved malware detection framework. Hence, based on these challenges, the 

scope of the research are as follows:  

 

i. The research focus was to formulate the malware detection framework that 

defines the steps to perform malware detection. The machine learning 

component is only used to automate the malware analysis process of generating 
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information to identify the malware IOCs from the cyber threat intelligence 

data.  

ii. The experiment uses the Cyber Threat Intelligence Program (CTIP) data from 

Microsoft that contains network data of Botnets incidents in Malaysia. 

iii. Data collection is only a method used to obtain the CTIP data and real-time or 

the near real time data collection is not covered in this research. Solving the 

real-time or near-real time data collection issue is not part of the research 

objectives. 

iv. This research selects the clustering algorithm based on the algorithm suitability 

with the cyber threat intelligence data collected. A comparison of K-Means and 

Gaussian Mixture Model is shown in this research to support the selection of 

the clustering algorithm. 

v. The threat hunting experiment performed on three malware is used to 

demonstrate the detection of malware. The experiment results are discussed to 

evaluate if the malware is detected using the framework.  

 

1.7 Research Contribution and Significance 

The use of a single technique is unable to handle sophisticated malware 

(Nguyen et al., 2018) and the traditional signature based approach fails to detect 

malware (Sibi Chakkaravarthy et al., 2019). This is because sophisticated malware 

signatures are unknown which make them undetected by existing malware detection 

solutions e.g. the Intrusion Detection System (IDS), Intrusion Prevention System (IPS) 

and antivirus (Gandotra et al., 2014). These security systems have limited analysis 

ability as they only detect or block malware. Sophisticated malware has various ways 

to hide their malicious intention that aims to evade security systems (Karim et al., 

2014). Example of a method to hide malware malicious intention is the metaphoric 

technique that changes the malware code and creates a new malware signature pattern 

which makes analysing malware difficult (Alam et al., 2014). This technique 

implementation complicates malware analysis which further delays malware 

detection. Malware detection is delayed if malware is analysed manually to discover 

their signatures (Egele et al., 2012). This creates a predicament as malware cannot be 

analysed manually one by one to extract the malware indicator of compromise (IOC) 

e.g. malware signature from large malware samples (Choi et al., 2012). 
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Therefore, it is evident that as the number of new malware increases, the 

workload to find new malware signatures increase. This research proposed an 

improved malware detection framework which defines the guideline in dealing with 

huge malware sample. The malware detection framework design includes the malware 

detection solution components as well as the detection approach used. In addition to 

that, this research provides a better understanding of the underlying malware signature 

evolution for cyber security practitioners to conduct threat hunting within their IT 

systems as a proactive mitigation effort. The technical guidelines included in the 

framework presented is practical and reviewed by professionals as well as 

academicians in the cyber security field. It is helpful for cyber security practitioners to 

have a framework for malware detection to provide the best practices for malware 

detection as the procedures and techniques are crossed-referenced, tested and 

scientifically proven. 

 

At the present, the number of malware continues to increase as previously 

shown in Figure 1.1. There are technical frameworks that are available for reference 

in conducting malware detection such as those proposed in the NIST guideline. NIST 

provides a general guideline in dealing with malware incidents through the incident 

response life cycle (NIST, 2013). However, the NIST general guidelines do not go into 

detail on the implementation process as the life cycle only provides the best practices. 

This is because a typical Standard Operating Procedures (SOP) with technical 

guidelines is self-developed by cyber security organisations to conduct malware 

detection. 

 

Each technique has its advantages and disadvantages. Therefore, a solution 

such a step by step approach on the tools to use, what to look for and what to do with 

any suspicious file encountered (Verma et al., 2013) would contribute to the 

community and is better in helping to establish an understanding of the process to 

detect malware. Therefore, techniques are combined in a framework to improve the 

advantages and to decrease the disadvantages (Elhadi et al., 2012). Combining 

methods and techniques in a framework for malware detection emphasises on making 

decisions based on data analysis and information evaluation (Foroughi & Luksch, 

2018). One of the frameworks proposed in the work of other researchers is B-DAD 
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framework (Elgendy & Elragal, 2016). The framework starts with the intelligence 

phase that collects data and the second phase called the design phase that analyses the 

data collected. The third phase is the choice phase that evaluates the analysis result 

and the framework ends with the implementation phase that operationalises the results. 

The operationalisation of the result implements the data-driven decision making 

process to use the data collected and provide information that assists in making 

decisions. There is an urgent need by cyber security community to advise and provide 

a technical framework in performing automated malware analysis to detect malware. 

Therefore, the objectives of this research are to identify the solution for the problem 

with malware detection, to design a malware detection framework as well as to test the 

solution for malware detection. 

 

The main contributions of the thesis are the design and implementation of an 

improved malware detection framework. Additional technical discussions of  the 

malware detection system development and experiments conducted shown are 

examples for a better understanding of the proposed malware detection framework. 

 

1.8 Thesis Structure 

The thesis is divided into six chapters. The following sections provide an 

overview of each chapter. 

 

1.8.1 Chapter 2 Overview 

Chapter 2 provides a detailed review of the literature to obtain relevant 

information regarding malware detection solutions. The review of malware detection 

methods used by other researchers provide insights on how to derive an appropriate 

solution for malware detection. The research works on malware detection are reviewed 

thoroughly to understand the problems highlighted by cyber security researchers as 

well as the proposed malware detection components included in the solutions. At the 

end of this chapter, a summarised review of the malware detection solution and the 

research gap identified presented. 
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1.8.2 Chapter 3 Overview 

Chapter 3 provides the research design and the plan to achieve the research 

objectives based on the findings from Chapter 2. The three stages of research design 

are elaborated in this chapter to show how the research was conducted. At the end of 

this chapter, the research outcomes are presented along with the research objectives 

and the research design.  

 

1.8.3 Chapter 4 Overview 

Chapter 4 elaborates the Stage 2 of the research work on the framework 

formulation. The formulation of the improved malware detection framework is based 

on the second research objective. The improved malware detection framework is 

formulated based on the identified malware detection solution components is 

discussed. At the end of this chapter, the formulation of the malware detection 

framework is presented. 

 

1.8.4 Chapter 5 Overview 

Chapter 5 explains the Stage 3 of the research work on implementing and 

evaluating the formulated framework. An experiment was conducted for the 

completion of the third research objective, which is to evaluate the improved malware 

detection framework by performing a threat hunting experiment. The result of 

implementing the automated malware analysis is used in the formulated framework 

evaluation. The results include a comparison conducted between UML 1 (K-Means) 

and UML 2 (GMM) to show the suitability of the machine learning algorithm with the 

data that affects the output. At the end of the chapter, the detection of three malware 

is demonstrated in the experiment to explain how the result from the clustering 

algorithm used assists in detecting malware. 
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1.8.5 Chapter 6 Overview 

Chapter 6 revisits the overall research works conducted in this study that starts 

from addressing the research problem, research findings obtained and the contributions 

achieved in this study. Besides stating the research outcomes, this chapter discusses 

methods employed to achieve the research objectives. In addition to that, the 

discussion also includes the contributions and significance of the research. At the end 

of the chapter, the future works of the research are reviewed to understand the possible 

improvements that can be implemented in future studies. 

1.9 Summary 

The research background provides an overview of the malware detection 

current issue. The problem is cyber security practitioners are having difficulty to 

manually perform signature-based malware detection due to the increasing number of 

malware. Therefore, the objectives of this research aim to solve this problem by 

proposing an improved malware detection framework. Review of literature regarding 

malware detection is thoroughly presented in Chapter 2 to gain more information on 

the issue and to obtain further knowledge on malware detection solution components. 
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Appendix A Create Index Pseudo Code 

 

<?php 

require 'vendor/autoload.php'; 

use Elasticsearch\ClientBuilder; 

$client = ClientBuilder::create()->build(); 

$params = [ 

'index' => 'ctip_index', 

'body' => [ 

'settings' => [ 

'number_of_shards' => 3, 

'number_of_replicas' => 2 

], 

'mappings' => [ 

//mapping configuration here 

] 

] 

] 

] 

]; 

$response = $client->indices()->create($params); 

?> 
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Appendix B Indexing Pseudo Code 

<?php 

require 'vendor/autoload.php'; 

use Elasticsearch\ClientBuilder; 

$client = ClientBuilder::create()->build(); 

//Read the data from directory 

//Data parsing 

$params = [ 

'index' => 'ctip_index', 

'type' => 'threat_log', 

'body' => [ 

//Match data attributes to index attributes 

] 

]; 

$response = $client->index($params); 

?> 
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Appendix C Malware Heatmap 
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