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ABSTRACT 

Machinery fault diagnosis is essential for ensuring the integrity of machinery. 
To this end, vibration analysis has been proven to be the most effective method. 
However, its effectiveness is highly dependent on the experience and knowledge of 
the machine operator due to abundance of various machine parameters and the 
complexity of machinery. Thus, artificial intelligence (AI) or the machine learning 
approach provides a more consistent diagnostic result based on a trained machine 
learning model and hence leads to a more automated fault diagnosis system that 
minimizes human intervention. Support vector machines (SVM) are frequently used 
in automated machinery fault diagnosis to classify multiple machinery faults by 
handling a high number of input features with small data sets. However, SVM is well 
known for binary fault classifications only (i.e., healthy vs. faulty). When SVM is used 
for multi-fault diagnostics and classification, it results in decreased classification 
accuracy; this is due to the adaptation of SVM for multi-fault classification which 
requires the reduction of multiple classification problems into multiple subsets of 
binary classification problems, producing many contradictory results from each 
individual SVM model. Thus, this research aims to improve the multi-fault 
classification accuracy of SVM by the adaptation of DempsterShafer (DS) evidence 
theory which is referred as Ensemble SVM-DS. Besides, a novel feature selection tree 
(FST) is proposed to improve the computation time of a wrapper-based feature 
selection algorithm such as a genetic algorithm (GA) as part of the improvement for 
the proposed model. In order to fulfil the objectives of this study, the scope of the work 
is divided into two parts: the algorithm development and the experimental study. The 
initial model of feature selection and fault diagnosis algorithm is developed by using 
a bearing dataset downloaded from the Case Western Reserve University Bearing Data 
Center website specifically to represent healthy and faulty ball bearing conditions. 
Then, the proposed algorithms are validated with two sets of vibration signals which 
are recorded in the laboratory at a measured velocity with a sampling frequency of 
2.56 kHz from the belt-driven machinery and SpectraQuest rotating machinery, 
respectively. The analysis showed that the FST is 13 times faster than the GA at 
selecting an optimal feature subset. The novel Ensemble SVM-DS model is developed 
to resolve conflicting results generated from each SVM model and thus increase the 
multi-fault classification accuracy. The analysis showed that the proposed Ensemble 
SVM-DS model improved the fault diagnostic accuracy of bearings (from 76% to 
94%), belt-driven machinery (from 52% to 82%), and SpectraQuest rotating 
machinery (from 48% to 72%), as the Ensemble SVM-DS continuously refined and 
eliminated all conflicting results from traditional SVM models. The proposed 
Ensemble SVM-DS model was found to be more accurate and effective at handling 
multi-fault diagnostic and classification problems commonly faced by industry, and 
was found to be capable of general-purpose machinery fault diagnosis. 
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ABSTRAK 

Diagnosis kerosakan mesin adalah penting untuk menjamin keutuhan mesin. 
Untuk tujuan ini, analisis getaran terbukti merupakan kaedah yang paling berkesan. 
Walau bagaimanapun, keberkesanannya amat bergantung kepada pengalaman dan 
pengetahuan pengendali mesin kerana kelimpahan pelbagai parameter mesin dan 
kerumitan mesin. Oleh itu, pendekatan kecerdikan buatan (AI) atau pembelajaran 
mesin memberikan keputusan diagnosis yang lebih konsisten berdasarkan model 
pembelajaran mesin terlatih dan seterusnya membawa kepada sistem diagnosis 
kerosakan automatik yang memerlukan penglibatan manusia secara minimum. Mesin 
vektor sokongan (SVM) sering digunakan dalam diagnosis kerosakan mesin automatik 
untuk mengelaskan pelbagai kerosakan mesin dengan mengendalikan jumlah ciri-ciri 
masukan yang tinggi dengan data yang kurang. Bagaimanapun, SVM terkenal dengan 
pengelasan kerosakan perduaan sahaja (keadaan normal dan keadaan rosak). Apabila 
SVM digunakan untuk diagnosis dan pengelasan pelbagai kerosakan, ia melibatkan 
penurunan kejituan pengelasan. Ini disebabkan oleh penyesuaian SVM bagi 
pengelasan pelbagai kerosakan memerlukan penurunan pelbagai masalah pengelasan 
kepada beberapa masalah pengelasan perduaan yang menghasilkan banyak keputusan 
yang bercanggah dari setiap model SVM. Kajian ini bertujuan untuk meningkatkan 
kejituan pengelasan pelbagai kerosakan SVM dengan menyesuaikan teori Dempster-
Shafer (DS) yang dinamakan sebagai SVM-DS. Selain itu, akar pokok pemilihan ciri-
ciri baharu (FST) dicadangkan untuk memperbaiki masa pengiraan algoritma 
pemilihan ciri-ciri berasaskan pembalut seperti algoritma genetik (GA) sebagai 
sebahagian daripada penambahbaikan model yang dicadangkan. Untuk memenuhi 
objektif kajian ini, skop kajian dibahagikan kepada dua bahagian iaitu pembangunan 
algoritma dan kajian eksperimen. Model awal pemilihan ciri-ciri dan pengelasan 
kerosakan dibangunkan dengan menggunakan data yang dimuat turun dari laman 
sesawang Case Western Reserve University Bearing Data Center untuk mewakili 
keadaan galas yang normal dan rosak. Kemudian, algoritma yang dicadangkan 
disahkan dengan dua set signal getaran yang dikumpulkan di makmal pada halaju 
getaran yang diukur dengan kadar pensampelan 2.56 kHz bagi mesin pacuan tali sawat 
dan mesin putaran SpectraQuest. Analisis menunjukkan bahawa FST adalah 13 kali 
ganda lebih pantas berbanding GA dalam pemilihan subset ciri-ciri optimum. Model 
SVM-DS baharu dibangunkan untuk mengatasi keputusan yang bercanggah yang 
dihasilkan dari setiap model SVM dan seterusnya meningkatkan kejituan pengelasan 
pelbagai kerosakan. Analisis menunjukkan bahawa model SVM-DS yang dicadangkan 
meningkatkan kejituan diagnosis kerosakan galas (dari 76% kepada 94%), mesin 
pacuan tali sawat (dari 52% kepada 82%), dan mesin putaran SpectraQuest (dari 48% 
kepada 72%) kerana SVM-DS terus ditapis dan dihapuskan semua hasil yang 
bercanggah daripada model SVM tradisional. Model SVM-DS yang dicadangkan 
didapati lebih jitu dan berkesan dalam menangani masalah diagnosis dan pengelasan 
pelbagai kerosakan yang sering dihadapi oleh industri, dan didapati mampu melakukan 
diagnosis kerosakan umum. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Unscheduled maintenance can lead to costly downtime and can threaten human 

life. Accordingly, machinery condition monitoring and fault diagnosis play a vital role 

in the operation, maintenance, aging management, reliability and performance of a 

critical industry such as the power generation, petrochemical, and aviation industries. 

For instance, in December 2016 Malaysia Airlines had to reschedule its flights to 

Medina due to unscheduled maintenance. Various methods have been developed for 

machinery condition monitoring and fault diagnosis, such as vibration analysis 

(Gelman et al., 2014), acoustic analysis (Jena and Panigrahi, 2015), and thermal 

imaging interpretation (Janssens et al., 2015). Vibration spectra analysis has been 

proven as the most efficient condition monitoring and fault diagnostic method for 

rotating machinery (Chen et al., 2013). Hence various vibration signal processing tools 

have been introduced, namely wavelet analysis, empirical mode decomposition, and 

the HilbertHuang transform. These signal processing methods have advanced from 

non-adaptive to self-adaptive signal analysis (Hui et al., 2014). The capabilities of 

vibration analysis have also progressed from qualitative analysis to quantitative 

analysis (Cui et al., 2016). For instance, bearing fault diagnostic methods were 

previously developed to identify the conditions of the bearing (i.e., healthy or faulty), 

but recent diagnostic methods are intended to determine the severity of the bearing 

fault (e.g., the fault size). However, the effectiveness of these diagnostic methods is 

highly dependent on the experience and knowledge of the machine operator. 
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1.2 Research Problem 

Currently, machinery condition monitoring and fault diagnosis in critical 

industrial plants such as oil and gas, power generation, and petrochemical plants is 

implemented by observing trends in the equipment parameters, such as temperature, 

pressure, vibration levels, and operating speeds, at various machine locations. Figure 

1.1 plots the compressor vibration at a measured displacement of a gas turbine and its 

original equipment manufacturer (OEM) limits. The data are gathered from Petronas 

Gas Berhad. The gas turbine was operating within its OEM limits, but was found to 

exhibit obvious damage on multiple blades during its periodic and borescope 

inspections, as depicted in Figure 1.2. Therefore, machinery condition monitoring and 

fault diagnosis solely based on the OEM limits are deemed to be insufficient. 

Figure 1.1 Compressor vibration of a gas turbine (magenta line: alarm limit; red 
line: trip limit) 

Figure 1.2 Multiple instances of blade damage found during the periodic and 
borescope inspections of the gas turbine 

In recent years there has been increasing interest in the use of an artificial 

intelligence (AI) or machine learning approach for machinery fault diagnosis. This 
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approach provides a more consistent diagnostic result based on a trained machine 

learning model. As a result, it leads to a more automated fault diagnosis system that 

reduces or eliminates human intervention. A machine learning algorithm attempts to 

establish a relationship between the input (i.e., data captured by sensors) and the output 

(i.e., the conditions of the machine). Subsequently, the trained machine learning model 

can provide an output based on a new input. Although machine learning-based 

machinery fault diagnosis provides more consistent diagnostic results, its accuracy 

remains highly dependent on the machine learning algorithm applied to analyse the 

input. In other words, the accuracy of diagnostics based on an artificial neural network 

(ANN), self-organizing map (SOM), support vector machines (SVM), the Hidden 

Markov model (HMM), particle filtering, regression analysis and fuzzy logic, and the 

Bayesian technique could be completely different.  

A machine learning algorithm that is able to achieve exceptional classification 

accuracy with limited sampling data is deemed to be crucial in machinery fault 

diagnosis, as the availability of fault sample data is often restricted. The renowned 

machine learning subset of deep learning is thus considered to be unsuitable as it 

requires a large amount of high-quality data for the nested layers in the neural 

networks. Previous studies have reported SVM as superior to other machine learning 

algorithms in fault diagnosis due to its capability to handle a large number of input 

features with a small sampling data set (Kankar et al., 2013; Jedliński and Jonak, 2015; 

Zhang et al., 2015). However, SVM was developed for two-class (binary) problem 

classification. Various strategies can be found in the literature regarding the use of 

SVM for multi-fault classification, including one-versus-one, one-versus-all, binary 

tree, error correcting output code, and directed acyclic graphs (Cheong et al., 2004). 

However, most research on SVM multi-fault classification emphasizes the use of the 

one-versus-one (Wang et al., 2014) and one-versus-all (Liu et al., 2013; Baccarini et 

al., 2011) strategies. These approaches require more than one SVM model for multi-

fault classification, and different SVM models may provide contradictory results, 

which significantly degrade the performance of SVM in multi-fault classification. 

Chen et al. (2014) reported a bearing fault classification accuracy with an original 

SVM, which discard all contradictory outcomes from multiple SVM models is 

76.82%. It is now well established that multi-fault classification with SVM can be 

achieved by reducing a multi-fault problem into multiple binary problems. However, 
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the multi-fault classification performance of SVM has remained unsatisfactory. 

Therefore, this study attempts to improve SVM for multi-fault classification 

performance by adapting DempsterShafer (DS) evidence theory.  

Overall, the problem addressed in this study can be summarised as follows: 

(a) Machinery condition monitoring and fault diagnosis by manually monitoring 

machinery parameters based on the OEM limits is found to be insufficient. 

(b) The machine learning approach provides a more consistent diagnostic result 

based on a trained machine learning model and thus leads to a more automated 

fault diagnosis system, which reduces or eliminates human intervention.  

(c) The literature indicates that the SVM is regarded as the most promising 

machine learning algorithm in machinery fault diagnosis. However, its multi-

fault diagnostic accuracy is found to be significantly degraded due to the 

contradictory results generated by multiple SVM models.  

1.3 Research Question 

This study attempts to address the research questions as follows. 

(a) How can the classification accuracy of an SVM in multi-fault classification be 

improved? 

(b) What is the performance of an SVM in multi-fault classification with fine-

tuned BoxConstraint and KernelScale values? 

(c) Can the improved SVM model be used to classify other machinery fault? 

(d) How can contradictory output from multiple SVM models be reduced by 

selecting the most representable feature subsets of the dataset as input for the 

SVM?  
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(e) How can the computational time of a wrapper-based feature selection

algorithm such as the genetic algorithm (GA) be improved?

1.4 Objective 

This study embarks on the following objectives. 

(a) To develop an algorithm to improve the classification accuracy of an SVM in

multi-fault classification based on DS evidence theory.

(b) To develop an algorithm to improve the computational time of the wrapper-

based feature selection algorithm.

(c) To develop a more robust SVM-based machinery fault diagnostic method for

general-purpose machinery fault diagnosis, which can be used to classify any

machinery fault with a higher classification accuracy than a conventional SVM

model.

1.5 Scope 

The scope of this study is presented below. 

(a) The feature selection and fault diagnosis algorithms are developed in

MATLAB’s Integrated Development Environment (IDE).

(b) A bearing dataset is downloaded from the Case Western Reserve University

(CWRU) Bearing Data Center website specifically to represent healthy and

faulty ball bearing conditions and is used to develop the initial model of feature

selection and fault diagnosis algorithm.

(c) Vibration signals of various machinery conditions are collected from the belt-

driven machinery fault simulator and SpectraQuest machinery fault simulator
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located in the laboratory for verification and generalisation of the developed 

model.  

(d) These three machinery fault datasets are used to develop the machinery fault

diagnosis algorithm for general-purpose machinery fault diagnosis.

1.6 Significance of the Study 

This study set out to enable and improve SVM for multi-fault classification due 

to its capability to handle a high number of input features with a small sampling data 

set. The results of the study will be of great benefit as follows.  

(a) An Ensemble SVM-DS is proposed by continuously refining the classification

results generated by multiple conventional SVM models. The multi-fault

classification accuracy of a conventional SVM significantly improved with the

proposed Ensemble SVM-DS technique. Thus, dependency on knowledgeable

and experienced personnel in machinery condition monitoring and fault

diagnosis could be reduced.

(b) A feature selection technique termed FST is proposed to select an optimal

feature subset by using a faster and more systematic approach, which avoided

repeated computation of the performance of identical feature subsets.

(c) The proposed Ensemble SVM-DS machinery fault diagnostic method is a

better algorithm for general-purpose machinery fault diagnosis as compared to

conventional SVM as it provides a higher classification accuracy in machinery

fault diagnosis.



83 

REFERENCES 

Ali, S.M., Hui, K.H., Hee, L.M. and Leong, M.S. (2018) 'Automated valve fault 

detection based on acoustic emission parameters and support vector machine' 

Alexandria Engineering Journal, 57(1), 121–130. 

Asr, M.Y., Ettefagh, M.M., Hassannejad, R. and Razavi, S.N. (2017) 'Diagnosis of 

combined faults in Rotary Machinery by Non-Naive Bayesian approach' 

Mechanical Systems and Signal Processing, 85, 56–70.  

Avci, E. (2013) 'A new method for expert target recognition system: Genetic wavelet 

extreme learning machine (GAWELM)' Expert Systems with Applications, 40(10), 

3984–3993.  

Baccarini, L.M.R., Rocha e Silva, V.V., de Menezes, B.R. and Caminhas, W.M. 

(2011) 'SVM practical industrial application for mechanical faults diagnostic' 

Expert Systems with Applications, 38(6), 6980–6984.  

Bewes, J., Andrew, L., Antony, M., Pate, F.D. and Henneberg, M. (2019) 'Artificial 

intelligence for sex determination of skeletal remains: Application of a deep 

learning artificial neural network to human skulls' Journal of Forensic and Legal 

Medicine, 62(January), 40–43. 

Bhalla, D., Bansal, R.K. and Gupta, H.O. (2013) 'Integrating AI based DGA fault 

diagnosis using Dempster–Shafer Theory' International Journal of Electrical 

Power & Energy Systems, 48, 31–38.  

Bhattacharyya, A., Saraswat, V.K., Manimaran, P. and Rao, S.B. (2015) 'Evidence 

theoretic classification of ballistic missiles' Applied Soft Computing Journal, 37, 

479–489.  

Bin, G.F., Gao, J.J., Li, X.J. and Dhillon, B.S. (2012) 'Early fault diagnosis of rotating 

machinery based on wavelet packets - Empirical mode decomposition feature 

extraction and neural network' Mechanical Systems and Signal Processing, 27(1), 

696–711. 

Björklund, T., Fiandrotti, T., Annarumma, M., Francini, G. and Magli, E. (2019) 

'Robust License Plate Recognition using Neural Networks Trained on Synthetic 

Images' Pattern Recognition. (In Press) 

Bordoloi, D.J. and Tiwari, R. (2014) 'Optimum multi-fault classification of gears with 



84 

integration of evolutionary and SVM algorithms' Mechanism and Machine Theory, 

73, 49–60.  

Browne, F., Rooney, N., Liu, W., Bell, D., Wang, H., Taylor, P.S. and Jin, Y. (2013) 

'Integrating textual analysis and evidential reasoning for decision making in 

Engineering design' Knowledge-Based Systems, 52, 165–175.  

Castiglione, A., Pizzolante, R., Esposito, C., Santis, A.D., Palmieri, F. and Castiglione, 

A. (2017) 'A collaborative clinical analysis service based on theory of evidence, 

fuzzy linguistic sets and prospect theory and its application to craniofacial disorders 

in infants' Future Generation Computer Systems, 67, 230–241.  

Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R.V., Artés, M. and Li, C. (2016) 'Fault 

diagnosis in spur gears based on genetic algorithm and random forest' Mechanical 

Systems and Signal Processing, 70–71, 87–103.  

Chang, C. and Lin, C. (2011) 'LIBSVM' ACM Transactions on Intelligent Systems and 

Technology, 2(3), 1–27.  

Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S. (2002) 'Choosing Multiple 

Parameters for Support Vector Machines' Machine Learning, 46(1), 131–159.  

Chen, F., Tang, B., Song, T. and Li, L. (2014) 'Multi-fault diagnosis study on roller 

bearing based on multi-kernel support vector machine with chaotic particle swarm 

optimization' Measurement, 47, 576–590.  

Chen, J., Zi, Y., He, Z. and Wang, X. (2013) 'Adaptive redundant multiwavelet 

denoising with improved neighboring coefficients for gearbox fault detection' 

Mechanical Systems and Signal Processing, 38(2), 549–568.  

Cheong, S., Oh, S. and Lee, S. (2004) 'Support vector machines with binary tree 

architecture for multi-class classification' Neural Information Processing - Letters 

and Reviews, 2(3), 47–51.  

Choi, W., Moon, K., Kwak, M., Sung, C., Lee, J., Song, J., Park, J., Chekol, S.A. and 

Hwang, H. (2019) 'Hardware implementation of neural network using pre-

programmed resistive device for pattern recognition' Solid-State Electronics, 

153(December 2018), 79–83.  

Cui, L., Liu, Y. and Zhou, D. (2018) 'Fault Diagnosis of the Planetary Gearbox Based 

on ssDAG-SVM' IFAC-PapersOnLine, 51(24), 263–267.  

Cui, L., Wu, N., Ma, C. and Wang, H. (2016) 'Quantitative fault analysis of roller 

bearings based on a novel matching pursuit method with a new step-impulse 

dictionary' Mechanical Systems and Signal Processing, 68–69(2016), 34–43.  



 

85 

Darekar, R.V. and Dhande, A.P. (2018) 'Emotion recognition from Marathi speech 

database using adaptive artificial neural network' Biologically Inspired Cognitive 

Architectures, 23(January), 35–42.  

Das, A.K., Sengupta, S. and Bhattacharyya, S. (2018) 'A group incremental feature 

selection for classification using rough set theory based genetic algorithm' Applied 

Soft Computing Journal, 65, 400–411.  

Duan, L., Xie, M., Bai, T. and Wang, J. (2016) 'A new support vector data description 

method for machinery fault diagnosis with unbalanced datasets' Expert Systems 

with Applications, 64, 239–246. 

Durodola, J.F., Li, N., Ramachandra, S. and Thite, A.N. (2017) 'A pattern recognition 

artificial neural network method for random fatigue loading life prediction' 

International Journal of Fatigue, 99, 55–67. 

Espinoza, K., Valera, D.L., Torres, J.A., López, A. and Molina-Aiz, F.D. (2016) 

'Combination of image processing and artificial neural networks as a novel 

approach for the identification of Bemisia tabaci and Frankliniella occidentalis on 

sticky traps in greenhouse agriculture' Computers and Electronics in Agriculture, 

127, 495–505.  

Ezhilarasu, C.M., Skaf, Z. and Jennions, I.K. (2019) 'The application of reasoning to 

aerospace Integrated Vehicle Health Management (IVHM): Challenges and 

opportunities' Progress in Aerospace Sciences, 105(December 2018), 60–73.  

Galagedarage Don, M. and Khan, F. (2019) 'Dynamic process fault detection and 

diagnosis based on a combined approach of hidden Markov and Bayesian network 

model' Chemical Engineering Science, 201, 82–96.  

Gao, X. and Hou, J. (2016) 'An improved SVM integrated GS-PCA fault diagnosis 

approach of Tennessee Eastman process' Neurocomputing, 174(2016), 906–911.  

Gelman, L., Murray, B., Patel, T.H. and Thomson, A. (2014) 'Vibration diagnostics of 

rolling bearings by novel nonlinear non-stationary wavelet bicoherence technology' 

Engineering Structures, 80(2014), 514–520.  

Gharesi, N., Arefi, M.M., Ebrahimi, Z., Razavi-Far, R., Saif, M. and Zarei, J. (2018) 

'Analyzing the Vibration Signals for Bearing Defects Diagnosis Using the 

Combination of SGWT Feature Extraction and SVM' IFAC-PapersOnLine, 51(24), 

221–227.  

González, E.L.M., Desforges, X. and Archimède, B. (2018) 'Assessment method of 

the multicomponent systems future ability to achieve productive tasks from local 



86 

prognoses' Reliability Engineering and System Safety, 180(March), 403–415.  

Grbovic, M., Li, W., Xu, P., Usadi, A.K., Song, L. and Vucetic, S. (2012) 

'Decentralized fault detection and diagnosis via sparse PCA based decomposition 

and Maximum Entropy decision fusion' Journal of Process Control, 22(4), 738–

750.  

Guil, F. and Marín, R. (2013) 'A Theory of Evidence-based method for assessing 

frequent patterns' Expert Systems with Applications, 40(8), 3121–3127.  

Shao, H., Jiang, H., Li, X. and W, S. (2018) 'Intelligent fault diagnosis of rolling 

bearing using deep wavelet auto-encoder with extreme learning machine' 

Knowledge-Based Systems, 140, 1–14.  

Han, T., Liu, C., Yang, W. and Jiang, D. (2019a) 'A novel adversarial learning 

framework in deep convolutional neural network for intelligent diagnosis of 

mechanical faults' Knowledge-Based Systems, 165, 474–487.  

Han, T., Liu, C., Yang, W. and Jiang, D. (2019b) 'Learning transferable features in 

deep convolutional neural networks for diagnosing unseen machine conditions' ISA 

Transactions. (In Press) 

He, K., Zhang, X., Ren, S. and Sun, J. (2015) 'Deep Residual Learning for Image 

Recognition' 2016 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 770–778.  

Hitesh and Kumari, A.C. (2018) 'Feature Selection Optimization in SPL using Genetic 

Algorithm' Procedia Computer Science, 132, 1477–1486.  

Hsu, C.W., Chang, C.C. and Lin, C.J. (2010) A Practical Guide to Support Vector 

Classification. Taipei: National Taiwan University. 

Hu, M. Chen, H., Shen, L., Li, G., Guo, Y., Li, H., Li, J. and Hu, W. (2018) 'A machine 

learning bayesian network for refrigerant charge faults of variable refrigerant flow 

air conditioning system' Energy and Buildings, 158, 668–676.  

Hui, K.H., Ooi, C.S., Lim, M.H., Leong, M.S. and Al-Obaidi, S.M. (2017) 'An 

improved wrapper-based feature selection method for machinery fault diagnosis' 

PLoS ONE, 12(12). 

Hui, K.H., Lim, M.H., Leong, M.S. and Abdelrhman, A.M. (2014) 'Time-Frequency 

Signal Analysis in Machinery Fault Diagnosis: Review' Advanced Materials 

Research, 845, 41–45.  

Hui, K.H., Lim, M.H. and Leong, M.S. (2017) 'Evidence-based Automated 

Machinery-Fault Diagnosis' APVC2017: the 17th Asia Pacific Vibration 



 

87 

Conference. 13–15 November 2017, Nanjing University of Aeronautics and 

Astronautics, Nanjing, 1–12. 

Hui, K.H., Lim, M.H., Leong, M.S. and Al-Obaidi, S.M. (2017) 'Dempster-Shafer 

Evidence Theory for Multi-Bearing Faults Diagnosis' Engineering Applications of 

Artificial Intelligence, 57(November 2016), 160–170.  

Hui, K.H., Lim, M.H. and Leong, M.S. (2017) 'Dempster-shafer-based sensor fusion 

approach for machinery fault diagnosis' American Society of Mechanical 

Engineers, Power Division (Publication) POWER. 2017 

Islam, M.L., Shatabda, S., Rashid, M.A., Khan, M.G.M. and Rahman, M.S. (2019) 

'Protein structure prediction from inaccurate and sparse NMR data using an 

enhanced genetic algorithm' Computational Biology and Chemistry, 79(March 

2018), 6–15.  

Jadhav, S., He, H. and Jenkins, K. (2018) 'Information gain directed genetic algorithm 

wrapper feature selection for credit rating' Applied Soft Computing Journal, 69, 

541–553.  

Janssens, O., Schulz, R., Slavkovikj, V., Stockman, K., Loccufier, M., Walle, R.V.D. 

and Hoecke, S.V. (2015) 'Thermal image based fault diagnosis for rotating 

machinery' Infrared Physics & Applications, 73(2015), 78–87.  

Jedliński, Ł. and Jonak, J. (2015) 'Early fault detection in gearboxes based on support 

vector machines and multilayer perceptron with a continuous wavelet transform' 

Applied Soft Computing, 30(2015), 636–641.  

Jegadeeshwaran, R. and Sugumaran, V. (2015) 'Fault diagnosis of automobile 

hydraulic brake system using statistical features and support vector machines' 

Mechanical Systems and Signal Processing, 52–53(1), 436–446.  

Jena, D.P. and Panigrahi, S.N. (2015) 'Automatic gear and bearing fault localization 

using vibration and acoustic signals' Applied Acoustics, 98(2015), 20–33.  

Jia, F., Lei, Y., Lu, N. and Xing, S. (2018) 'Deep normalized convolutional neural 

network for imbalanced fault classification of machinery and its understanding via 

visualization' Mechanical Systems and Signal Processing, 110, 349–367. 

Jiang, S., Chin, K.S., Wang, L., Qu, G. and Tsui, K.L. (2017) 'Modified genetic 

algorithm-based feature selection combined with pre-trained deep neural network 

for demand forecasting in outpatient department' Expert Systems with Applications, 

82, 216–230.  

Jing, C. and Hou, J. (2015) 'SVM and PCA based fault classification approaches for 



88 

complicated industrial process' Neurocomputing, 167, 636–642.  

Jong, K.A.D. (1975) 'An Analysis of the Behavior of a Class of Genetic Adaptative 

Systems'. PhD Thesis, University of Michigan. 

Junior, P.O.C., Conte, S., Addona, D.M.D., Aguiar, P.R., Baptista, F.G., Bianchi, E.C. 

and Teti, R. (2019) 'Damage patterns recognition in dressing tools using PZT-based 

SHM and MLP networks' Procedia CIRP, 79, 303–307.  

Kamadinata, J.O., Ken, T.L. and Suwa, T. (2019) 'Sky image-based solar irradiance 

prediction methodologies using artificial neural networks' Renewable Energy, 134, 

837–845.  

Kankar, P.K., Sharma, S.C. and Harsha, S.P. (2013) 'Fault diagnosis of rolling element 

bearing using cyclic autocorrelation and wavelet transform' Neurocomputing, 110, 

9–17.  

Kankar, P.K., Sharma, S.C. and Harsha, S.P. (2011) 'Rolling element bearing fault 

diagnosis using wavelet transform' Neurocomputing, 74(10), 1638–1645.  

Keskes, H., Braham, A. and Lachiri, Z. (2013) 'Broken rotor bar diagnosis in induction 

machines through stationary wavelet packet transform and multiclass wavelet 

SVM' Electric Power Systems Research, 97, 151–157.  

Konar, P. and Chattopadhyay, P. (2011) 'Bearing fault detection of induction motor 

using wavelet and Support Vector Machines (SVMs)' Applied Soft Computing, 

11(6), 4203–4211.  

Lazakis, I., Raptodimos, Y. and Varelas, T. (2018) 'Predicting ship machinery system 

condition through analytical reliability tools and artificial neural networks' Ocean 

Engineering, 152(February 2017), 404–415.  

Lei, Y., He, Z. and Zi, Y. (2009) 'Application of an intelligent classification method to 

mechanical fault diagnosis' Expert Systems with Applications, 36(6), 9941–9948.  

Lepskiy, A. (2013) 'Estimation of Conflict and Decreasing of Ignorance in Dempster-

Shafer Theory' Procedia Computer Science, 17, 1113–1120.  

Li, S., Liu, G., Tang, X., Lu, J. and Hu, J. (2017) 'An ensemble deep convolutional 

neural network model with improved D-S evidence fusion for bearing fault 

diagnosis' Sensors (Switzerland), 17(8), 1–19. 

Li, S., Yao, Y., Hu, J., Liu, G., Yao, X. and Hu, J. (2018) 'An Ensemble Stacked 

Convolutional Neural Network Model for Environmental Event Sound 

Recognition' Applied Sciences, 8(7), 1–20.  

Li, Y., Yang, Y., Wang, X., Liu, B. and Liang, X. (2018) 'Early fault diagnosis of 



 

89 

rolling bearings based on hierarchical symbol dynamic entropy and binary tree 

support vector machine' Journal of Sound and Vibration, 428, 72–86.  

Li, Y., Liang, X., Wei, Y. and Wang, X. (2018) 'A method based on refined composite 

multi-scale symbolic dynamic entropy and ISVM-BT for rotating machinery fault 

diagnosis' Neurocomputing, 315, 246–260.  

Li, Y., Xu, M., Wei, Y. and Huang, W. (2016) 'A new rolling bearing fault diagnosis 

method based on multiscale permutation entropy and improved support vector 

machine based binary tree' Measurement, 77(2016), 80–94.  

Li, Y., Xu, M., Zhao, H. and Huang, W. (2016) 'Hierarchical fuzzy entropy and 

improved support vector machine based binary tree approach for rolling bearing 

fault diagnosis' MAMT, 98, 114–132.  

Lin, Y., Li, Y., Yin, X. and Dou, Z. (2018) 'Multisensor Fault Diagnosis Modeling 

Based on the Evidence Theory' IEEE Transactions on Reliability, 67(2), 513–521. 

Liu, F., Zhao, Q. and Yang, Y. (2018) 'An approach to assess the value of industrial 

heritage based on Dempster–Shafer theory' Journal of Cultural Heritage, 32, 210–

220.  

Liu, P., Basha, M.D.E., Li, Y., Xiao, Y., Sanelli, P.C. and Fang, R. (2019) 'Deep 

Evolutionary Networks with Expedited Genetic Algorithm for Medical Image 

Denoising' Medical Image Analysis, 54, 306–315.  

Liu, R., Yang, B., Zhang, X., Wang, S. and Chen, X. (2016) 'Time-frequency atoms-

driven support vector machine method for bearings incipient fault diagnosis' 

Mechanical Systems and Signal Processing, 75, 345–370.  

Liu, Y., Zhang, J. and Ma, L. (2016) 'A fault diagnosis approach for diesel engines 

based on self-adaptive WVD, improved FCBF and PECOC-RVM' 

Neurocomputing, 177, 600–611.  

Liu, Y., Zhang, Y., Yu, Z. and Zeng, M. (2016) 'Incremental supervised locally linear 

embedding for machinery fault diagnosis' Engineering Applications of Artificial 

Intelligence, 50, 60–70.  

Liu, Z., Cao, H., Chen, X., He, Z. and Shen, Z. (2013) 'Multi-fault classification based 

on wavelet SVM with PSO algorithm to analyze vibration signals from rolling 

element bearings' Neurocomputing, 99, 399–410.  

Lu, C., Wang, S. and Wang, X. (2017) 'A multi-source information fusion fault 

diagnosis for aviation hydraulic pump based on the new evidence similarity 

distance' Aerospace Science and Technology, 71, 392–401.  



90 

Lu, L., Yan, J. and Meng, Y. (2016) 'Dynamic Genetic Algorithm-based Feature 

Selection Scheme for Machine Health Prognostics' Procedia CIRP, 56, 316–320.  

Lu, L., Yan, J. and De Silva, C.W. (2015) 'Dominant feature selection for the fault 

diagnosis of rotary machines using modified genetic algorithm and empirical mode 

decomposition' Journal of Sound and Vibration, 344, 464–483.  

Luo, S., Cheng, J., Zeng, M. and Yang, Y. (2016) 'An intelligent fault diagnosis model 

for rotating machinery based on multi-scale higher order singular spectrum analysis 

and GA-VPMCD' Measurement, 87(2016), 38–50.  

Ma, B. and Xia, Y. (2017) 'A tribe competition-based genetic algorithm for feature 

selection in pattern classification' Applied Soft Computing Journal, 58, 328–338.  

Ma, S., Cheng, B., Shang, Z. and Liu, G. (2018) 'Scattering transform and LSPTSVM 

based fault diagnosis of rotating machinery' Mechanical Systems and Signal 

Processing, 104, 155–170.  

Ma, S. and Chu, F. (2019) 'Ensemble deep learning-based fault diagnosis of rotor 

bearing systems' Computers in Industry, 105, 143–152.  

Mao, W., Feng, W. and Liang, X. (2019) 'A novel deep output kernel learning method 

for bearing fault structural diagnosis' Mechanical Systems and Signal Processing, 

117, 293–318.  

MathWorks (2016) Statistics and Machine Learning ToolboxTM User’s Guide R2016a 

10.2., Natick: The MathWorks Inc. 

Namdari, M. and Jazayeri-Rad, H. (2013) 'Incipient fault diagnosis using support 

vector machines based on monitoring continuous decision functions' Engineering 

Applications of Artificial Intelligence, 1–14.  

Pacheco, F., Oliveira, J.V.D., Sánchez, R.V., Cerrada, M., Cabrera, D., Li, C., Zurita, 

G. and Artés, M. (2016) 'A statistical comparison of neuroclassifiers and feature 

selection methods for gearbox fault diagnosis under realistic conditions' 

Neurocomputing, 194(2016), 192–206.  

Pearl, J. (1990) 'Reasoning with belief functions: An analysis of compatibility' 

International Journal of Approximate Reasoning, 4(5–6), 363–389.  

Phillips, P. and Diston, D. (2011) 'A knowledge driven approach to aerospace 

condition monitoring' Knowledge-Based Systems, 24(6), 915–927.  

Porebski, S., Porwik, P., Straszecka, E. and Orczyk, T. (2018) 'Liver fibrosis diagnosis 

support using the Dempster–Shafer theory extended for fuzzy focal elements' 

Engineering Applications of Artificial Intelligence, 76(January), 67–79.  



 

91 

Porebski, S. and Straszecka, E. (2018) 'Extracting easily interpreted diagnostic rules' 

Information Sciences, 426, 19–37.  

Potes Ruiz, P.A., Kamsu-Foguem, B. and Noyes, D. (2013) 'Knowledge reuse 

integrating the collaboration from experts in industrial maintenance management' 

Knowledge-Based Systems, 50, 171–186.  

Rajisha, T.M., Sunija, A.P. and Riyas, K.S. (2016) 'Performance Analysis of 

Malayalam Language Speech Emotion Recognition System using ANN / SVM' 

Procedia Technology, 24, 1097–1104.  

Rathman, J.F., Yang, C. and Zhou, H. (2018) 'Dempster-Shafer theory for combining 

in silico evidence and estimating uncertainty in chemical risk assessment' 

Computational Toxicology, 6, 16–31.  

Safa, M., Martin, K.E., KC, B., Khadka, R. and Maxwell, T.M.R. (2019) 'Modelling 

Nitrogen Content of Pasture Herbage Using Thermal Images and Artificial Neural 

Networks' Thermal Science and Engineering Progress.  

Sarabi-Jamab, A., Araabi, B.N. and Augustin, T. (2013) 'Information-based 

dissimilarity assessment in Dempster–Shafer theory' Knowledge-Based Systems, 

54, 114–127.  

Sayed, S., Nassef, M., Badr, A. and Farag, I. (2019) 'A Nested Genetic Algorithm for 

feature selection in high-dimensional cancer Microarray datasets' Expert Systems 

with Applications, 121, 233–243.  

Sene, A., Kamsu-Foguem, B. and Rumeau, P. (2018) 'Data mining for decision support 

with uncertainty on the airplane' Data and Knowledge Engineering, 117(February 

2017), 18–36.  

Shafer, G. (1987) 'Belief functions and possibility measures' Analysis of Fuzzy 

Information. Boca Raton, FL, 51–84. 

Shen, Z., Chen, X., Zhang, X. and He, Z. (2012) 'A novel intelligent gear fault 

diagnosis model based on EMD and multi-class TSVM' Measurement, 45(1), 30–

40.  

Sta, H.B. (2017) 'Quality and the efficiency of data in “Smart-Cities”' Future 

Generation Computer Systems, 74, 409–416. 

Sudha, P., Ramyachitra, D. and Manikandan, P. (2018) 'Enhanced Artificial Neural 

Network for Protein Fold Recognition and Structural Class Prediction' Gene 

Reports, 12(June), 261–275.  

Tao, Z., Huiling, L., Wenwen, W. and Xia, Y. (2019) 'GA-SVM based feature 



92 

selection and parameter optimization in hospitalization expense modeling' Applied 

Soft Computing Journal, 75, 323–332.  

Tian, Y., Fu, M. and Wu, F. (2015) 'Steel plates fault diagnosis on the basis of support 

vector machines' Neurocomputing, 151, 296–303.  

Tidriri, K., Tiplica, T., Chatti, N. and Verron, S. (2018) 'A New Multi-Objective 

Decision-Making Approach Applied to the Tennessee Eastman Process' IFAC-

PapersOnLine, 51(24), 1212–1219.  

Utai, K., Nagle, M., Hämmerle, S., Spreer, W., Mahayothee, B. and Müller, J. (2019) 

'Mass estimation of mango fruits (Mangifera indica L., cv. ‘Nam Dokmai’) by 

linking image processing and artificial neural network' Engineering in Agriculture, 

Environment and Food, 12(1), 103–110.  

Vargas, J., Spiotta, A. and Chatterjee, A.R. (2019) 'Initial Experiences with Artificial 

Neural Networks in the Detection of Computed Tomography Perfusion Deficits' 

World Neurosurgery, 124, e10–e16.  

Vijayanand, R., Devaraj, D. and Kannapiran, B. (2018) 'Intrusion detection system for 

wireless mesh network using multiple support vector machine classifiers with 

genetic-algorithm-based feature selection' Computers and Security, 77, 304–314.  

Wang, C.C., Kang, Y., Shen, P.C., Chang, Y.P. and Chng, Y.L. (2010) 'Applications 

of fault diagnosis in rotating machinery by using time series analysis with neural 

network' Expert Systems with Applications, 37(2), 1696–1702.  

Wang, Y.S., Ma, Q.H., Zhu, Q., Liu, X.T. and Zhao, L.H. (2014) 'An intelligent 

approach for engine fault diagnosis based on Hilbert–Huang transform and support 

vector machine' Applied Acoustics, 75, 1–9.  

Waqar, T. and Demetgul, M. (2016) 'Thermal analysis MLP neural network based fault 

diagnosis on worm gears' Measurement: Journal of the International Measurement 

Confederation, 86, 56–66.  

Wu, C., Jiang, P., Ding, C., Feng, F. and Chen, T. (2019) 'Intelligent fault diagnosis of 

rotating machinery based on one-dimensional convolutional neural network' 

Computers in Industry, 108, 53–61.  

Wu, J., Zhou, R., Xu, S. and Wu, Z. (2017) 'Probabilistic analysis of natural gas 

pipeline network accident based on Bayesian network' Journal of Loss Prevention 

in the Process Industries, 46, 126–136.  

Xiao, M., Ma, Y., Feng, Z., Deng, Z., Hou, S. and Shu, L. (2018) 'Rice blast 

recognition based on principal component analysis and neural network' Computers 



 

93 

and Electronics in Agriculture, 154(June), 482–490.  

Xie, X., Ke, Y., Hao, Y., Song, L. and Wang, H. (2018) 'Feature extraction method for 

roller bearing based on Dempster-Shafer evidence' Proceedings of 2017 9th 

International Conference On Modelling, Identification and Control, ICMIC 2017, 

2018–March (ICMIC), 746–751. 

Yager, R.R. and Liu, L. (2008) ClassicWorks of the Dempster-Shafer Theory of Belief 

Functions Kacprzyk, J., (ed.), Springer, Berlin. 

Yan, X. and Jia, M. (2019) 'Intelligent fault diagnosis of rotating machinery using 

improved multiscale dispersion entropy and mRMR feature selection' Knowledge-

Based Systems, 163, 450–471.  

Yang, B., Lei, Y., Jia, F. and Xing, S. (2019) 'An intelligent fault diagnosis approach 

based on transfer learning from laboratory bearings to locomotive bearings' 

Mechanical Systems and Signal Processing, 122, 692–706.  

Yang, C. and Hou, J. (2016) 'Fed-batch fermentation penicillin process fault diagnosis 

and detection based on support vector machine' Neurocomputing, 190, 117–123.  

Yang, H., Mathew, J. and Ma, L. (2003) 'Vibration Feature Extraction Techniques for 

Fault Diagnosis of Rotating Machinery -A Literature Survey' Asia Pacific Vibration 

Conference. 2003, 1–7. 

Yao, X., Li, S. and Hu, J. (2017) 'Improving Rolling Bearing Fault Diagnosis by DS 

Evidence Theory Based Fusion Model' Journal of Sensors, 2017, 1–14. 

Zadeh, L.A. (1984) 'Review of A Mathematical Theory of Evidence' AI Magazine 5, 

5(3), 81–83.  

Zeng, R., Zhang, L., Mei, J., Shen, H. and Zhao, H. (2017) 'Fault detection in an engine 

by fusing information from multivibration sensors' International Journal of 

Distributed Sensor Networks, 13(7), 1–9. 

Zhang, X., Zhang, Q., Chen, M., Sun, Y., Qin, X. and Li, Heng (2018) 'A two-stage 

feature selection and intelligent fault diagnosis method for rotating machinery using 

hybrid filter and wrapper method' Neurocomputing, 275, 2426–2439.  

Zhang, X., Chen, W., Wang, B. and Chen, X. (2015) 'Intelligent fault diagnosis of 

rotating machinery using support vector machine with ant colony algorithm for 

synchronous feature selection and parameter optimization' Neurocomputing, 167, 

260–279.  

Zhang, X., Qiu, D. and Chen, F. (2015) 'Support vector machine with parameter 

optimization by a novel hybrid method and its application to fault diagnosis' 



94 

Neurocomputing, 149(PB), 641–651.  

Zhang, S.S., Zhang, S.S., Wang, B. and Habetler, T.G., 2019. Machine Learning and 

Deep Learning Algorithms for Bearing Fault Diagnostics - A Comprehensive 

Review. arXiv e-prints, p.arXiv:1901.08247. 

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P. and Gao, R.X. (2019) 'Deep learning 

and its applications to machine health monitoring' Mechanical Systems and Signal 

Processing, 115, 213–237.  

Zhao, Y., Xiao, F. and Wang, S. (2013) 'An intelligent chiller fault detection and 

diagnosis methodology using Bayesian belief network' Energy and Buildings, 57, 

278–288.  

Zheng, J., Pan, H. and Cheng, J. (2017) 'Rolling bearing fault detection and diagnosis 

based on composite multiscale fuzzy entropy and ensemble' Mechanical Systems 

and Signal Processing, 85(September 2016), 746–759.  

Zhong, J.H., Wong, P.K. and Yang, Z.X. (2018) 'Fault diagnosis of rotating machinery 

based on multiple probabilistic classifiers' Mechanical Systems and Signal 

Processing, 108, 99–114.  

Zhong, S. sheng, Fu, S. and Lin, L. (2019) 'A novel gas turbine fault diagnosis method 

based on transfer learning with CNN' Measurement: Journal of the International 

Measurement Confederation, 137, 435–453.  

Zhu, X., Hou, D., Zhou, P., Han, Z., Yuan., Y., Zhou, W. and Yin, Q. (2019) 'Rotor 

fault diagnosis using a convolutional neural network with symmetrized dot pattern 

images' Measurement: Journal of the International Measurement Confederation, 

138, 526–535.  

Zou, X., Wang, F., Chang, Y. and Zhang, B. (2017) 'Process operating performance 

optimality assessment and non-optimal cause identification under uncertainties' 

Chemical Engineering Research and Design, 120, 348–359.  

 



 

95 

Appendix A Example Calculation of the Ensemble SVM–DS 

 

Table A-1 presents an example of DS calculations used to handle conflicting 

results. For example, when SVM results were classified as neither class 1 nor class 2 

(and not class 3 or class 4), the probabilities of class 1 and class 2 can be calculated 

using DS evidence theory to enable a final decision to be made. The values shown in 

Table A-1 were obtained by multiplying basic probability with the results generated 

from the SVM model (column 2), and merging the result with the normalised SVM 

training accuracy (row 2). The SVM training accuracy was obtained based on the 

capability of every individual SVM model to predict the training samples correctly. 

Subsequently, the mass function (m), belief function (Bel), and plausibility (Pl) can be 

calculated as follows. 

Table A-1 Illustration of DS theory calculation 

Class 1 2 Not 3 Not 4 ϴ 

Class m 0.2038 0.2275 0.2500 0.2500 0.0688 

1 0.25 0.0509 0.0569 0.0625 0.0625 0.0172 

2 0.25 0.0509 0.0569 0.0625 0.0625 0.0172 

Not 3 0.25 0.0509 0.0569 0.0625 0.0625 0.0172 

Not 4 0.25 0.0509 0.0569 0.0625 0.0625 0.0172 

 
 

𝑚ሺ1ሻ ൌ
0.0509 ൅ 0.0509 ൅ 0.0509 ൅ 0.0625 ൅ 0.0625 ൅ 0.0172

1 െ 0.1078
 

𝑚ሺ1ሻ ൌ 0.3305 

 
 

𝑚ሺ2ሻ ൌ
0.0569 ൅ 0.0569 ൅ 0.0569 ൅ 0.0625 ൅ 0.0625 ൅ 0.0172

1 െ 0.1078
 

𝑚ሺ2ሻ ൌ 0.3507 

 
 

𝑚ሺ𝑁𝑜𝑡 3ሻ ൌ
0.0625 ൅ 0.0625 ൅ 0.0625 ൅ 0.0172

1 െ 0.1078
 

𝑚ሺ𝑁𝑜𝑡 3ሻ ൌ 0.2294 
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𝑚ሺ𝑁𝑜𝑡 4ሻ ൌ
0.0625 ൅ 0.0172

1 െ 0.1078
 

𝑚ሺ𝑁𝑜𝑡 4ሻ ൌ 0.0893 

 
 
𝐵𝑒𝑙ሺ1ሻ ൌ 0.3305 

𝑃𝑙ሺ1ሻ ൌ 0.3305 ൅ 0.2294 ൅ 0.0893 ൌ 0.6492 

 
 
𝐵𝑒𝑙ሺ2ሻ ൌ 0.3507 

𝑃𝑙ሺ2ሻ ൌ 0.3507 ൅ 0.2294 ൅ 0.0893 ൌ 0.6694 
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Appendix B Ensemble SVM–DS MATLAB Script 
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Appendix C FST MATLAB Script 
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