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ABSTRACT 

The assessment of accurate hydrodynamic loads on structures due to the 

extreme environmental loadings is the primary concern in the design of offshore 

platforms. The wind-induced waves are normally the most potential loadings with 

nonlinear behaviour, contributing to a complicated solution. The conventional Monte 

Carlo Time Simulation (MCTS) method is required for an accurate analysis of wave 

loads without offering any approximation error. The MCTS technique is considered a 

realistic and versatile approach because it can cover all sorts of nonlinearities to 

evaluate the offshore structural responses. However, this conventional technique is 

very computationally demanding, as reliable results require a large number of 

simulations due to unavoidable excessive sampling variability. Past studies showed 

that an Efficient Time Simulation (ETS) method offered a more effective result 

without scarifying accuracy. Nevertheless, the ETS method is limited to specific sea 

state conditions, in which the level of accuracy decreased with the presence of the 

wave current. Therefore, this study aims to improve the ETS method by taking 

advantage of their excellent correlation between extreme surface elevation and 

corresponding structural responses. Hence, an extended version of the ETS method is 

introduced. A novel model is developed based on regression algorithms and known as 

an ETS-Regression (ETS-Reg) procedure contributing a simplified method for the 

direct calculation of the wave-induced loads. Two ETS-Reg models were developed 

based on different input variables with similar output variables. In model development, 

the first relationship-based model was developed based on the surface elevation (input) 

and nonlinear responses (output), defined as the ETS-RegSE model. The second model 

was an improved version of the ETS-RegSE model, the linearised responses (input) 

with their corresponding nonlinear responses, known as the ETS-RegLR model. In 

short-term analysis, these models will be tested by three sea state conditions and three 

different wave-induced currents. The probability distribution of the 100-year extreme 

response values from the ETS-Reg models have been compared with corresponding 

distributions of 100-year response values from the MCTS procedure to examine the 

accuracy and the efficiency of the developed technique. As a result, for the short-term 

analysis, the ETS-RegLR model delivered an excellent accuracy in the range of 93% to 

99% in predicting 100-year responses compared with the benchmark value using the 

MCTS method for all cases of wave conditions. Meanwhile, the ETS-RegSE model 

varies between 20% and 96%. Remarkably, the efficiency level achieved by the ETS-

RegLR model was in the range of 43 to 51 times more efficient than the MCTS method 

in terms of variance ratio of sampling variability, whereas, the ETS-RegSE model was 

in the range of 22 to 42 times. The same inference appeared for long-term analysis 

since both the ETS-Reg models' accuracies were closely matched to the previous short-

term analysis. The ETS-RegLR model’s accuracy was 95% to 99%, whereas, 89% to 

96% by the ETS-RegSE model. Overall, the ETS-Reg models can lead to better 

performance without extensive simulations, which the models require less 

computationally demanding processes and time. Thus, these innovative models are 

proposed as an alternative technique for frequency domain in the probabilistic 

assessment in the oil and gas industry.  
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ABSTRAK 

Penilaian beban hidrodinamik yang tepat pada struktur disebabkan oleh beban 

persekitaran yang melampau adalah perhatian utama dalam reka bentuk platform luar 

pesisir. Gelombang yang disebabkan oleh angin merupakan beban yang biasanya 

paling berpotensi dengan tingkah laku ketaklelurusan, menyumbang kepada 

penyelesaian yang rumit. Kaedah simulasi masa Monte Carlo (MCTS) konvensional 

diperlukan untuk analisis tepat mengenai beban gelombang tanpa menawarkan ralat 

penghampiran. Teknik MCTS dianggap sebagai pendekatan yang realistik dan serba 

boleh kerana ia dapat merangkumi pelbagai jenis ketaklelurusan untuk menilai tindak 

balas struktur luar pesisir. Walau bagaimanapun, teknik konvensional ini sangat 

memerlukan pengiraan kerana keputusan yang tepat memerlukan sebilangan jumlah 

simulasi yang sangat besar kerana kepelbagaian pensampelan berlebihan yang tidak 

dapat dielakkan. Kajian lepas menunjukkan bahawa kaedah Simulasi Masa Cekap 

(ETS) menawarkan keputusan yang lebih berkesan tanpa menjelaskan ketepatan. 

Namun begitu, kaedah ETS terhad pada keadaan laut tertentu di mana aras 

ketepatannya menurun dengan kehadiran arus gelombang. Oleh itu, kajian ini 

bertujuan untuk meningkatkan kaedah ETS dengan mengambil kira korelasi yang 

sangat baik antara ketinggian permukaan air dan tindak balas struktur yang sepadan. 

Oleh itu, versi lanjutan kaedah ETS diperkenalkan. Model baru dibentuk berdasarkan 

algoritma regresi dan dikenali sebagai prosedur ETS-Regresi (ETS-Reg) yang 

menyumbang kaedah yang dipermudah untuk pengiraan terus beban yang disebabkan 

oleh gelombang. Dua model ETS-Reg dibentuk berdasarkan pemboleh ubah input 

yang berbeza dengan pemboleh ubah output yang sama. Dalam pembangunan model, 

perhubungan pertama berasaskan model dibentuk berdasarkan ketinggian permukaan 

air (input) dan tindak balas tak-lelurus (output), yang dinamakan sebagai model ETS-

RegSE. Model kedua adalah versi yang lebih baik dari model ETS-RegSE, tindak balas 

terlinear (input) dengan tindak balas tak-linear (output) yang sesuai, yang dikenali 

model ETS-RegLR. Dalam analisis jangka pendek, model-model ini akan diuji dengan 

tiga keadaan laut dan tiga arus gelombang yang berbeza. Taburan kebarangkalian nilai 

tindak balas ekstrim 100 tahun dari model ETS-Reg dibandingkan dengan taburan nilai 

tindak balas 100 tahun yang sepadan dari prosedur MCTS untuk memeriksa ketepatan 

dan kecekapan teknik yang dibentuk. Hasilnya, untuk analisis jangka pendek, model 

ETS-RegLR memberikan ketepatan yang sangat baik dalam lingkungan 93% hingga 

99% dalam meramalkan tindak balas 100 tahun berbanding dengan nilai penanda aras 

menggunakan kaedah MCTS untuk semua kes keadaan gelombang. Sementara itu, 

model ETS-RegSE berbeza antara 20% dan 96%. Tahap kecekapan yang dicapai oleh 

model ETS-RegLR berada dalam lingkungan 43 hingga 51 kali lebih efisien daripada 

kaedah MCTS dari segi nisbah varians pemboleh ubah sampel, sedangkan, model 

ETS-RegSE berada dalam lingkungan 22 hingga 42 kali. Kesimpulan yang sama 

muncul untuk analisis jangka panjang kerana ketepatan kedua-dua model ETS-Reg 

sangat berkaitan dengan analisis jangka pendek sebelumnya. Ketepatan model ETS-

RegLR adalah 95% hingga 99%, manakala, 89% hingga 96% oleh model ETS-RegSE. 

Secara keseluruhannya, model ETS-Reg memberi prestasi yang lebih baik tanpa 

simulasi tambahan, yang mana model memerlukan pengurangan proses dan masa 

pengiraan. Oleh itu, model inovatif ini dicadangkan sebagai teknik alternatif untuk 

frekuensi domain dalam penilaian probabilistik dalam industri minyak dan gas.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Crude oil is currently the most abundant energy sources, accounting for an 

estimated 39 percent of fossil energy, followed by coal and natural gas at 33 and 28 

percent, respectively (Ritchie and Roser, 2019). With the arrival of passenger vehicles, 

aviation, road freight, chemical feedstock, industry, shipping and the extensive use of 

electricity (buildings/power), oil has become the dominant fuel during the twentieth 

century (Garside, 2018). Due to high demand, oil and other petroleum commodities 

have been rapidly rising over the years (Cooper et al., 2018).  

High demand has motivated petroleum companies to explore the ocean floor 

to extract oil and other resources, and to deliver the oil onto land for marketing 

purpose. Many oil and gas partnerships have made great efforts to take this opportunity 

to invest in the marine industry (Bennaceur, 2019). To meet this goal, many companies 

require essential equipment and access to thousands of facilities for the exploration 

and production of oil and natural gas with a variety of categories and sizes around the 

world  (Laik, 2018). 

Offshore oil and gas production has evolved in line with technological progress 

to remain relevant in different circumstances (Schmidt et al., 2017). The development 

of oil platforms offers varying capabilities in security, technical, economic and 

national needs that depend on the depth of the ocean as well (Nouban et al., 2016). 

The success of a platform and to the success of the entire operation must take into 

account the most basic offshore drilling in the seabed. Most drilling operations either 

can be accomplished by a fixed or floating offshore platform (Swamidas and Reddy, 

2016). 
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The main focus of this thesis is on fixed platforms because this is the majority 

of platforms installed around the world (Goswami et al., 2019). Recently, this kind of 

fixed offshore structure has played a primary role in oil and gas activity for the past 

decade (Reddy and Swamidas, 2016). The fixed-based structures account for around 

95% of the jacket platforms currently found in different bays, gulf and oceans of the 

world, a percentage that is growing year by year (Limited, 2017). As reported by 

O’Connor et al. (2007); OECD (2016), more than 9000 offshore platform installations 

are in service around the world. These installations are employed for drilling, 

providing water or gas for inoculation into the storage tank for processing crude oil, 

refining the produced water for dumping into the sea and also serve as staff housing 

(Bleasdale, 2018). 

 

Figure 1.1 Main sections of the jacket offshore platform 

Source: (Bücker et al., 2014) 

Shallow water fixed offshore structure is very low-cost and more practicable 

to provide operators and tools on structural platforms (Yu et al., 2015). Under this 

type, the study would concentrate on piled structures, mainly known as the jacket 

offshore platforms. "Jackets" refers to fixed steel offshore structures, which are 

fundamental in support the deck and topsides to ensure the stability of the platforms 
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and piling process (El-Reedy, 2019). They are the most commonly located structure 

for shallow and intermediate water depths reaching up to 400 metres. Jackets had been 

designed to assist topside weights about 50000 tonnes, although it is possible to 

formulate jackets for even larger topside weights as illustrated in Figure 1.1. 

Offshore platforms positioned in the ocean environments are more vulnerable 

to hazardous risks compared to onshore oil rig platforms. Some common dangers that 

can affect the structural integrity are extreme waves, which can exceed 30m or more 

such as an incident in the northern North Sea, as reported by (Bruserud and Haver, 

2019). In this study, the environmental load (e.g. wind-induced wave) is a main 

consideration in the design of offshore structures. For acceptable structural integrity, 

offshore structures should be designed with the capability of withstanding extreme 

wave loads (Henry et al., 2017).  

According to Board (2011), the wave loads from an environmental perspective 

contribute as a dominant load was around 70% affecting the durability of jacket 

structures. Large waves represent a danger to offshore platforms and marine 

installations if the design of marine structures is not followed by the right development 

criteria (Szalewski et al., 2017). Since the harsh environmental loads represent a 

significant role in leading the design of offshore structures, the precise prediction of 

environmental wave loads acting on the structure is indispensable. 

A study revealed that the risks associated with extreme waves, which have a 

tremendous effect on offshore structures, have increased in recent years (ATEX, 2016; 

Slunyaev, 2017). As stated by Demirbilek (2010), a number of platform accidents 

related to extreme waves had been reported, and this is the lessons learned how the 

impact of intense waves hits into the platform structures if the design of offshore 

platform does not follow the predefined guidelines. As demonstrated in Figure 1.2, a 

massive wave had hit the marine structures such as the Hurricane Lilli in the Gulf of 

Mexico. 
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Figure 1.2 EI-322 ‘A’ platform structures damaged by Hurricane Lilli 

Source: (DeFranco et al., 2004) 

Pursuant to (Cruz and Krausmann, 2008), Hurricane Katrina is another 

example that caused damage to more than 30 oil platforms and rigs, the closure of nine 

onshore refineries, and destruction of transport facilities and oil production in the Gulf 

of Mexico region. The damage could be the occurrence of a particular wave 

phenomenon, such as an abnormal wave crest. These strange wave phenomena are 

often referred to as rogue, freak, giant, episodic and extreme waves (Kettle, 2018). The 

abnormal waves are unexpected and unpredictable phenomena that surface waves 

immediately reach without warning and can influence (strike) large force. 

Incidents of “unprecedented” wave phenomena have occurred in different 

locations, for example, Model of Ocean Ranger, Draupner oil rig in the North Sea, 

Jacket platform in the Gulf of Mexico and other offshore platforms related to wave 

cases (Cavaleri et al., 2017). Such incidents have been highlighted because extreme 

waves can lead to dominant failures. Figure 1.3 displays an example of the failure 

mode with an intact structure exposed to a massive wave. An accident on offshore 

jacket structures reveals that leaning installations with huge deformations are the most 

expected results as well as a toppled topside and total collapses (Kajuputra et al., 

2016). 
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Figure 1.3 Excessive environmental load failure mode 

Source: (Ersdal, 2005) 

Based on previous accidents, a risk assessment has been carried out on wave-

related incidents in order to classify the possible hazards. Hazards can pose a danger 

to the structural integrity of offshore structures due to insufficient strength of structures 

(Thapa, 2016). There are two possibilities of risks associated with the inadequate 

strength, which are fatigue failure (cyclic loading) and first excursion failure (Taylor 

et al., 2006). Fatigue failure may occur when a response spends too much of its time 

out of a limit. For instance, degradation of the offshore structure because of fatigue 

coupled with corrosion might reduce the capability of structures to confront excessive 

waves and current loadings.  

Another mode is the first excursion failure, which arise once the structural 

responses exceed a designated safety domain for the first time in a certain year (e.g. 

50-year or 100-year) (Najafian, 2005; Mohd Zaki et al., 2016b; Mukhlas et al., 2016a; 

Santo et al., 2016). Hence, structural integrity requires to be sustained by 

environmental loads during the lifetime of the installation (Nayak and Pandian, 2018). 

Knowledge of how risky ocean conditions interface with fixed structures is required 

to assure the safety of employees and avoid property loss (Procedures, 2017). The 
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safety aspect of the offshore structures should be addressed carefully and consciously 

(Nizamani, 2015).  

The main concern in this view is that obligations about safety should not be 

negotiated. For achieving the safety level, it is essential to emphasise in the design 

phase and construction of an offshore platform at the initial scope of work (Bea, 1992; 

Coccon et al., 2017). The design stage of offshore developments is the first step before 

continuing the next phase of fabrication, installation and operation activities (El-

Reedy, 2019). That is why the calculation of the design wave load in the design stage 

is a crucial task for the construction of offshore structures. The need for design analysis 

is required in order to guarantee safety in design and operation from extreme wave 

loads (Sandhya, 2018). 

To assure structure design is adequately safe, the initial implementation is to 

follow the rules and offshore standards. The standards were established by a competent 

organisation such as the American Petroleum Institute (API), Bureau Veritas (BV), 

Det Norske Veritas (DNV), International Standards Organization (ISO) etc. (DNV, 

1974; BV, 1975; API, 1977; ISO, 2007). Thus, designers should obey all guidelines 

related to the design and construction of fixed offshore structures. For example, an API 

RP 2A standard is a well-recognised rule in the offshore fields (Mangiavacchi et al., 

2005). This standard is practised for specific perspectives of the offshore structure 

design around the world.  

Referring to API RP 2A manual, the guideline declares that the extreme loads 

are generated from a combination of wind, wave and current, in which the wave is the 

most influential load (Goswami et al., 2019). The wave-induced loads acting on 

offshore platforms are necessary for performing the structural analysis in order to 

obtain the offshore responses. Thus, offshore structures were designed to meet a 

standard that would be employed in the context of the level of risk and structural 

reliability (Onoufriou and Forbes, 2001). Historically, the reliability-based design for 

offshore structures is practised on the basis of the calculation of the load-induced 

motion responses (Chandrasekaran, 2017). 
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Prior to evaluating the data magnitude from these wave load-responses, a 

statistical and probabilistic description is required (Vanem et al., 2019). Numerical 

analysis and computational procedures are applied to simulate such wave loads and its 

corresponding structural responses (Şen, 2018). With the numerical simulation, a 

Fourier Transform analysis based on the wave spectrum is used (Yu, 2018). In order 

to determine the design of extreme responses of the structures, the statistical approach 

via extreme value analysis (EVA) method is used (Coles, 2001). EVA is a 

conventional approach used to predict the structural response values that have to fit 

the data into the probability distribution. 

EVA has been presented by a number of researchers (Thas et al., 1997; Cooley, 

2013; Chaves and Melchers, 2014; Horn and Winterstein, 2018). In brief, the result 

from the EVA approach is used as design conditions for the offshore structural 

reliability analysis. Designing the offshore structure is safe when its capability to resist 

the wave loads exceeds the maximum loads that may be applied once in a given time 

period (100-year) (Mat Soom et al., 2019). Thus, the wave-induced loads imposed on 

the marine structures is commonly determined by the 100-year return period (Azman 

et al., 2017; Mat Soom et al., 2018). Also, calculating wave loading on the structures 

could be reached using either the deterministic or probabilistic method (Bjerager, 

1990; Najafian et al., 1995; Golafshani et al., 2011).  

According to Klein et al. (2020), the deterministic method is more suitable with 

the regular waves to forecast structural responses on wave loading. In real life, the 

ocean surface is always changing in time, which are also considerable uncertainties of 

the wind-generated random waves (Qiu et al., 2014). Due to the uncertainty 

perspective (caused by wind, wave and current conditions), the main barrier in 

applying deterministic approach is about the random nature of the ocean that it does 

not consider while calculating the nonlinear properties in the design practice (Gao et 

al., 2016). Due to the nonlinearity excitation, the deterministic-based analytical 

procedures for assessing irregular waves and its corresponding extreme responses are 

less accurate (Osborne, 2001; Clauss and Schmittner, 2005; Helder and Bunnik, 2016). 
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Therefore, the most promising method to estimate random wave-induced 

forces in the ocean conditions is a probabilistic method (Oumeraci et al., 2001). The 

probabilistic approach is more consistent because uncertainties are admitted in the 

calculations (Bruserud and Haver, 2017), which can count random wave-induced loads 

and responses in the ocean environment. Under the probabilistic method, as stated in 

(Najafian et al., 1995; Soares, 2012), there are three main approaches; probability, 

frequency and time domains. Each domain has its own process of evaluating structural 

responses. 

1.2 Problem Statement 

In targeting the early design phase, the structural analysis is utilised to 

determine the extreme structural responses of the structures. The probabilistic 

approach based on the time-domain simulation has been adopted, which is considered 

the best method to establish the short-term and long-term probability distribution of 

extreme offshore structural responses (Cassidy et al., 2003; Abu Husain et al., 2016a; 

Mohd Zaki et al., 2016d; Mukhlas et al., 2016a). A Monte Carlo Time Simulation 

(MCTS) method is practised to produce accurate values from the stochastic events of 

random waves (Norouzi, 2012). The stochastic analysis is feasible to be carried out by 

a robust MCTS technique, although numerous simulated data must be assessed in order 

to achieve the desired level of accuracy (Catelani et al., 2014; Chai et al., 2016).  

Moreover, time-domain is capable of counting all sorts of nonlinearities 

without bringing in any approximations (Abu Husain et al., 2016a). Due to its ability, 

this MCTS method had been applied for evaluation of the extreme responses affected 

by random excitations (Naess and Gaidai, 2008). It is the most precise, realistic and 

multifaceted approach for forecasting the statistical features of extreme offshore 

structural responses opened to irregular wave loads (Metcalfe et al., 2003; Najafian, 

2007c; Saha and Naess, 2010; Abu Husain et al., 2016a; Mohd Zaki et al., 2018a; 

Mukhlas et al., 2018b). At the same time, MCTS method attempted to make less 

computational cost because it is simple to be applied while maintaining the benefits of 

conventional tools and computational simulations. 
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Due to the complex procedure of MCTS (Mukhlas et al., 2016a), the length of 

the simulations depends on the number of response records varied with the 

computational time (completed simulations). Likewise, the numerous stages based on 

each process in wave hydromechanics modelling became more complicated. Also, the 

impact of nonlinearities will burden the process of calculations in analysing the ocean 

wave and its corresponding hydrodynamic loadings (Abu Husain et al., 2016a; 

Mukhlas et al., 2018a). Hence, the MCTS procedure involves a long run of simulations 

which requires more effort to reduce its sampling variability in order to reach 

satisfactory results in the calculation.  

As shown in Figure 1.4, the sampling variability is very computationally 

demanding, and this is the main shortcoming of MCTS procedure because the 

precision required a large number of simulation records (Mohd Zaki et al., 2018a; Abu 

Husain et al., 2019; Mukhlas et al., 2019). The method was repeated 100 times to 

display the impact of sampling variability. As observed, it proves that the MCTS 

method needs a large number of simulations (10,000 records) to reach better accuracy 

equal to 4 percentage error. It indicates that the sampling variability achieves 95 

percent confidence level, which is an acceptable result complied below than 5 percent 

of the sampling variation (API, 2013). This technique’s implementation is very 

complicated when considering 10,000 simulated records for each stage of the 

calculation process of schematic wave hydromechanics (Mukhlas, 2020). That is the 

reason the conventional MCTS method is very time-consuming. 

 

Figure 1.4 Sampling variability of Monte carlo time simulation method 
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Hence, many studies have been conducted to understand the MCTS method 

problems and to make an improvement in terms of efficiency, as shown in Figure 1.5. 

An improved MCTS technique has been extended by many researchers (Najafian and 

Zaki, 2008; Mohd Zaki et al., 2016b; Mukhlas et al., 2018a). On the other hand, in 

order to capture this inefficiency, one of the favourable method was studied by (Abu 

Husain and Najafian, 2011), who presented an Efficient Time Simulation (ETS) 

method. Currently, the ETS method offers excellent efficiency and has proven in the 

full-wave investigation to be a very effective method in the development stages for 

quasi-static responses, dynamic responses and varying sea-state intensity ranging from 

low to high (Abu Husain et al., 2013b; Johari et al., 2016). 

 

Figure 1.5 Design development of the proposed method and their limitations from 

previous methods  

However, the limitation of the ETS method is that it does not perform well for 

low sea state (i.e., Hs = 5 m), especially the existence of the current effect, which will 

reduce the level of accuracy. As stated by Abu Husain et al. (2013b), this can be seen 

as the worst relationship between surface elevation and responses is at low Hs value. 

Some researchers put more effort to tackle this issue by introducing several methods 

such as Efficient Threshold Up-crossing, ETS-Relationship and Optimisation of ETS 

method. In 2013, Lambert et al. (2013) introduced the proficient calculation of 

probability distribution of the offshore structural responses. The fundamental ETU 
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method was developed based on the information of threshold up-crossings connected 

with the speed of the ETS method. However, the comprehensive study was made on 

the aircraft gust loadings. 

Mallahzadeh et al. (2014a); Mallahzadeh et al. (2014b) extended the ETS 

method with related initiatives of the relationship of input and output considerations. 

This improved ETS technique was named the ETS-Relationship (ETS-R) method, also 

known as ETS-Relationship Time Simulation (ETS-RTS) model. A conceptual study 

was carried out to develop an empirical model by introducing the relationships’ 

extreme values between and surface elevations and responses. This initial investigation 

was promising, but to date has not dealt with a comprehensive study. Mallahzadeh et 

al. (2013) reviews were limited to a single-legged structure, single high sea state (Hs 

= 15 m) and did not consider certain other wave possibility conditions.  

In order to improve this ETS-RTS procedure, Johari (2016) optimises the 

number of simulation records which will enhance the selection number of groups. 

Although it makes an enhancement in accuracy and efficiency, it still has the same 

problems in the low Hs value. To this end, referring to Mallahzadeh et al. (2013) as a 

conceptual study, a fully comprehensive examination will be extended in determining 

the 100-year extreme responses. Applying an advantage of ETS method, the proposed 

method is developed from the relationship (scattered distribution data) between two 

variables of extreme surface elevation (input) and its extreme responses (output). Thus, 

a systematic regression analysis is performed in order to obtain the appropriate model 

development based on the excellent relationship, which is also known as the ETS-

Regression (ETS-Reg) model. 

The model would be tested for the real structures. In this study, the examination 

will also be considered according to different sea state conditions, a four-legged 

structure platform, quasi-static jacket platforms, wave structures of nonlinearities 

kinematics loading, intermittent (cyclic) loading and the effect of current wave 

propagation. The improvement of the relationship between extreme values would also 

be conducted. As a result, a new method is likely to solve the complicated issue, 

particularly for the low Hs alongside the current impact.  
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Also, the proposed method is expected to be more efficient than MCTS and 

ETS methods because of simplifying another complicated calculation procedure 

without sacrificing accuracy. As a regression model preferred, there is no need to run 

extensive simulations or to pass through several processes of calculations. The models 

would be a great technique to calculate the responses while at the same time, raising 

its efficiency. 

1.3 Aims and Research Objectives 

The study aim is to develop an efficient procedure for evaluating the 100-year 

fixed offshore structure responses using Efficient Time Simulation (ETS) method by 

taking advantage of their excellent correlation between extreme values of surface 

elevation and linearised responses (input) with their equivalent extreme values of 

nonlinear response (output). 

The study objectives can be further detailed as follows: 

1. To investigate the hydrodynamical relationships between extreme values of

surface elevation and linearised responses with their corresponding nonlinear

responses.

2. To develop a regression model for the prediction of extreme responses by the

utilisation of relationships.

3. To validate the accuracy and efficiency of the regression models for both short-

term and long-term probability distribution in predicting extreme offshore

responses.
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1.4 Scope of the Study 

This study will focus on the four-legged fixed offshore platform without 

internal bracings for a water depth (d) up to 110 m. The application of numerical 

simulation analysis based on the mathematical models is preferred to simulate ocean 

wave hydrodynamic into the real world with the aid of computer ability. The linear 

random wave theory (LRWT) is used to simulate the water kinematics in 

hydrodynamic wave loadings. The forecast for structural responses has been 

extensively used based on probabilistic modelling due to its ability to calculate the 

random nature of loading. The probabilistic-based time domain was selected to 

evaluate 100-year extreme responses in short-term and long-term probability 

distribution. The derivation of the probability distribution of extreme structural 

responses are based on the API RP 2A standard (API, 2014).  

This study only considered the system structure in quasi-static responses. Two 

primary responses would be counted, namely; base shear (BS) and overturning 

moment (OTM) of structural responses, which relies on three hydrodynamic 

components; drag-induced, inertia-induced and total responses. Ensuring the platform 

complies with standards, the structure was tested under various wave conditions, 

including without and with the presence of currents; U = 0 m/s, +0.9 m/s and −0.9 m/s, 

respectively. For a short-term analysis, it considers a single sea state characteristic in 

the calculation. The three cases of sea states are taken into account accordant with low, 

mid and high significant wave heights; Hs = 5 m, 10 m and 15 m associated with its 

zero up-crossing wave period; Tz = 7.94 sec, 11.23 sec and 13.75 sec, respectively. All 

terms related to low, mid and high Hs are also known as the low, mid and high sea 

state, which considers the category of sea state intensity.  

By completing the short-term analysis on fulfilling a good agreement, the study 

continues with a long-term analysis that considers the entire sea states based on the 

scatter diagram alongside their wave frequency of occurrences. These input wave 

parameters (Hs, Tz and d) are used to find the extreme values that correspond to 

irregular wave analysis that correlate strongly to the structural responses (design 

responses) for any specific year of return periods. 
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1.5 Significance of the Study 

This study's primary finding is to provide a simple technique for derivation of 

the probability distribution of extreme structural responses with reference to a 

specified period. Applying the relationship-based model development, the proposed 

model not only reduces the computational demand (time-cost), but it proved to be at 

least equivalent to the MCTS method used in the probability distribution of extreme 

responses. The offered regression model delivers a simplified approach to the 

numerical procedure. There is no need to pass through several calculation stages, and 

it does not need extensive simulations. For example, this simple model is expected to 

be an effective technique to determine design responses. As observed, there is too 

much calculation effort needed in completing the whole process for the long-term 

analysis. 

On the other side, the frequency domain is widely applied in estimating the 

100-year extreme responses. In industry practice, the calculation based on the

frequency domain is preferred because of its efficiency. However, the frequency-based 

approach always yields inconsistent results. This inconsistency is related to the issue 

of underprediction or overprediction values. That is why the presence of the regression 

model based on the time domain are suggested to be more reliable and competent. By 

using this simplified model, the sustainable and competitive choice for analysing the 

fixed offshore structures in the oil and gas sector can be provided. Apart from the 

application, the potential of model development is a generic model that could be 

applied in any random discipline related to excitation forces (e.g. waves, vibration, 

wind turbine, aircraft, renewable energy equipment). 

1.6 Thesis Overview 

This thesis consists of five chapters. The content of each chapter is briefly 

described below. 
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Chapter 1 includes the subject of the specific issue generally addressed; 

following the current problems faced in ocean engineering and the inspiration of the 

newest approach on how to solve it. Once the problem statement is identified, the 

proposed method comes up with the new solution, which is to fulfil the limitation from 

previous studies that had been done up to now. The chapter concludes with the aims 

and objectives, the scope of the study and the significance of the study. In summary, 

this chapter accustoms the reader to what is the focused path in this study. 

Chapter 2 deals with the reliability analysis in offshore structures in 

compliance with the rules and regulations. The study finding is related to the safety 

practices that will be utilised in the design phase and analysis process in order to 

sustain the structural integrity imposed by the wave loadings. Details of the 

probabilistic modelling have been discussed comprehensively, either in the 

probability, frequency and time domains from the previous research achievement. The 

most relevant parts will be reviewed on the fundamental of ocean wave 

hydromechanics and the offshore structural assessment. Under the probabilistic 

analysis, this study will narrowly focus on the new method used in predicting the 

structural responses in the research gap. 

Chapter 3 involves three main simulation procedures in calculating the 

structural responses. An MCTS method is used for benchmark purpose; meanwhile, 

an ETS method is a predecessor method, which is used for a proposed model of ETS-

Reg model. Due to the limitation on specific (certain) wave conditions, the 

improvisation of ETS-Reg model is also introduced. Eventually, the proposed method 

becomes an alternative approach in deriving the short-term and long-term probability 

distribution for the offshore structures. Each procedure is provided as a comprehensive 

workflow. 

Chapter 4 provides two forms of analysis, namely the short-term and the long-

term response analysis. In this chapter, the proposed model would be compared and 

validated with the benchmark method of MCTS. By initially focusing on the short-

term, the model is assessed in relation to low, medium and high sea state and its 

corresponding current impact. This initial analysis is to identify the performance of 
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ETS-Reg model regarding observation of accuracy level and efficiency. Having 

produced a satisfactory result, the study performed a long-term analysis for the cases 

of without and with current imposed, in which the prediction would be conducted 

based on Met-Ocean data (entire wave distribution diagram). Besides, for a more 

detailed analysis, both analyses were examined on the separate hydrodynamic basis, 

which is drag-induced, inertia-induced and total responses. 

Chapter 5, which is the final chapter, explains the accomplishment of the study 

objectives, and summarises the conclusions that are made throughout this study. A 

claim of contribution, whether in academic and practical aspects correlated to the 

theoretical and knowledge, and how this proposed model could compose an impact in 

the offshore oil and gas industry also are mentioned and further study 

recommendations are noted. The published conference paper proceedings and award 

achievements are also recorded. 
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Appendix A Structural Data 

%basic_hse_structural_data_2004 

%'EXPLANATION :  All the units are metric, except mass and force ' 
%'which are in terms of tonnes (1000Kg) and KN, respectively.'

%Note that the lower frequency limit must be greater than zero

%basic_hse_structural_data 
global global_gravitational_constant global_water_depth global_WLW global_WUW 

global global_segment_length global_frequency_interpolation_interval ... 
global_upper_frequency_limit_for_frequency_spectrum_plot 

global_upper_frequency_limit_for_frequency_spectrum_plot = 0.50; %Hz 
global_frequency_interpolation_interval = 0.005; %Hz 
global_gravitational_constant = 9.806; %m/s^2 
global_segment_length = 2^0*1024; 
wave_kinematics_factor = 0.95; 

gnrlsd_stiffness_2 = [98.60 105.56 1210.25 4446.75 3382.74 3070.13 2510.56 20061.60 2489.89 4728.80];  %MN/m 
gnrlsd_stiffness_5 = [23.81 33.86 96.80 1326.71 489.09 813.09 247.26 457.23 369.68 694.73]; %MN/m 
gnrlsd_stiffness_8 = [10.02 15.78 29.09 1105.56 77.43 206.18 135.93 179.16 153.46 235.70]; %MN/m 

natural_frequency_2 = [0.39571 0.41085 1.4202 2.6819 4.7498 5.2018 10.358 10.5 11.067 11.83]; %(Hz) 
natural_frequency_5 = [0.19188 0.2301 0.40378 1.4328 2.1338 2.2316 3.4498 3.783 4.2302 6.4227]; %(Hz) 
natural_frequency_8 = [0.12311 0.15506 0.22128 1.3075 1.6478 1.8101 2.1169 2.1187 2.487 3.7176]; %(Hz) 

damping_ratio = [0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05]; 

%coeffs of generalized responses to derive particular responses 
%coef_modal_amp = [1   0.012 1 1 1 1 1 1 1 1 %first particular response 
% 1   0.012 1 1 1 1 1 1 1 1];   %second particular response  

impulse_method = 'definition';  %choose between 'definition' and 'DFT' 
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cylinder_surface        = 'Rough';   %Choose 'Smooth', 'Rough', 'Drag'(Cd=.7&Cm=0.0) or 'Inertia' (cm=1.7) 
simulation_type         = 'NSA';     %'DSA' or 'NSA' for deterministic or non-deterministic amplitude type        
x_surface_elevation     = 0.1;       %simulate surface elevation at this reference point (meter) 
twosided_fr_spctrm_lngth= 2^11;      %No. of data points of the two-sided frequency spectra 
impulse_response_length = 2^10;      %No. of impulse response function data points 
global_water_depth      = 110.0;     %meter 
NM                      = 120;       %No. of members (nodal forces) which receive wave load 
NRV                     = 2;         %No. of reponse variables 
NMD                     = 10;        %No. of modal responses 
RHOW                    = 1.025;     %(1000 kgs/cubic meter) 
global_WLW              = 0.100;     %Lower frequency limit ratio; take 0.1 for Pierson-Moskowitz spectrum  
global_WUW              = 8.00;      %Upper frequency limit ratio; take 8.0 for Pierson-Moskowitz spectrum 
COEF                    = 1.00;      %Horizontal coordinate scaling coefficient 

  
predominat_wave_direction = 0;       %predominant wave direction in degrees 
number_of_angle_intervals = 2*16;    %Number of angle intervals for directional seas; must be an even number 
coef_n                    = 4;       %the spreading function coeficient for directional seas; normally equal to 4 

  
%Z: vertical elevation of nodal points is measured from seabed and is positive upwards 

  
%  (1)      (2)      (3)        (4)        (5)        (6)         (7)     (8)      (9)    
% Node NO    X        Y          Z     node_below  node_above  DIAMETER   CD       CM        
MATRIX_A = ... 
   [1     -19.0     -17.5       0.0         1          2         1.5     1.05     1.20 
    2     -19.0     -17.5       8.0         1          9         1.5     1.05     1.20 
    3      19.0     -17.5       0.0         3          4         1.5     1.05     1.20 
    4      19.0     -17.5       8.0         3         10         1.5     1.05     1.20 
    5      19.0      17.5       0.0         5          6         1.5     1.05     1.20 
    6      19.0      17.5       8.0         5         11         1.5     1.05     1.20 
    7     -19.0      17.5       0.0         7          8         1.5     1.05     1.20 
    8     -19.0      17.5       8.0         7         12         1.5     1.05     1.20 
    9     -19.0     -17.5      16.0         2         13         1.5     1.05     1.20 
   10      19.0     -17.5      16.0         4         14         1.5     1.05     1.20 
   11      19.0      17.5      16.0         6         15         1.5     1.05     1.20 
   12     -19.0      17.5      16.0         8         16         1.5     1.05     1.20 
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   13 -19.0 -17.5 24.0 9 17 1.5 1.05 1.20 
   14 19.0 -17.5 24.0 10 18 1.5 1.05 1.20 
   15 19.0 17.5 24.0 11 19 1.5 1.05 1.20 
   16 -19.0 17.5 24.0 12 20 1.5 1.05 1.20 
   17 -19.0 -17.5 32.0 13 21 1.5 1.05 1.20 
   18 19.0 -17.5 32.0 14 22 1.5 1.05 1.20 
   19 19.0 17.5 32.0 15 23 1.5 1.05 1.20 
   20 -19.0 17.5 32.0 16 24 1.5 1.05 1.20 
   21 -19.0 -17.5 39.0 17 25 1.5 1.05 1.20 
   22 19.0 -17.5 39.0 18 26 1.5 1.05 1.20 
   23 19.0 17.5 39.0 19 27 1.5 1.05 1.20 
   24 -19.0 17.5 39.0 20 28 1.5 1.05 1.20 
   25 -19.0 -17.5 46.0 21 29 1.5 1.05 1.20 
   26 19.0 -17.5 46.0 22 30 1.5 1.05 1.20 
   27 19.0 17.5 46.0 23 31 1.5 1.05 1.20 
   28 -19.0 17.5 46.0 24 32 1.5 1.05 1.20 
   29 -19.0 -17.5 53.0 25 33 1.5 1.05 1.20 
   30 19.0 -17.5 53.0 26 34 1.5 1.05  1.20 
   31 19.0 17.5 53.0 27 35 1.5 1.05 1.20 
   32 -19.0 17.5 53.0 28 36 1.5 1.05 1.20 
   33 -19.0 -17.5 60.0 29 37 1.5 1.05 1.20 
   34 19.0 -17.5 60.0 30 38 1.5 1.05 1.20 
   35 19.0 17.5 60.0 31 39 1.5 1.05 1.20 
   36 -19.0 17.5 60.0 32 40 1.5     1.05 1.20 
   37 -19.0 -17.5 67.0 33 41 1.5 1.05 1.20 
   38 19.0 -17.5 67.0 34 42 1.5 1.05 1.20 
   39 19.0 17.5 67.0 35 43 1.5 1.05 1.20 
   40 -19.0 17.5 67.0 36 44 1.5 1.05 1.20 
   41 -19.0 -17.5 74.0 37 45 1.5 1.05 1.20 
   42 19.0 -17.5 74.0 38 46 1.5 1.05 1.20 
   43 19.0 17.5 74.0 39 47 1.5 1.05 1.20 
   44 -19.0 17.5 74.0 40 48 1.5 1.05 1.20 
   45 -19.0 -17.5 79.0 41 49 1.5 1.05 1.20 
   46 19.0 -17.5 79.0 42 50 1.5 1.05 1.20 
   47 19.0 17.5 79.0 43 51 1.5 1.05 1.20 
   48 -19.0 17.5 79.0 44    52 1.5 1.05 1.20 
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   49 -19.0 -17.5 84.0 45 53 1.5 1.05 1.20 
   50 19.0 -17.5 84.0 46 54 1.5 1.05 1.20 
   51 19.0 17.5 84.0 47 55 1.5 1.05 1.20 
   52 -19.0 17.5 84.0 48 56 1.5 1.05 1.20 
   53 -19.0 -17.5 88.0 49 57 1.5 1.05 1.20 
   54 19.0 -17.5 88.0   50 58 1.5 1.05 1.20 
   55 19.0 17.5 88.0 51 59 1.5 1.05 1.20 
   56 -19.0 17.5 88.0 52 60 1.5 1.05 1.20 
   57 -19.0 -17.5 93.0 53 61 1.5 1.05 1.20 
   58 19.0 -17.5 93.0 54 62 1.5 1.05 1.20 
   59 19.0 17.5 93.0 55 63 1.5 1.05 1.20 
   60 -19.0 17.5 93.0 56 64 1.5 1.05 1.20 
   61 -19.0 -17.5 98.0 57 65 1.5 1.05 1.20 
   62 19.0 -17.5 98.0 58 66 1.5 1.05 1.20 
   63 19.0 17.5 98.0 59 67 1.5 1.05 1.20 
   64 -19.0 17.5 98.0 60 68 1.5 1.05 1.20 
   65 -19.0 -17.5 102.0 61 69 1.5 1.05 1.20 
   66 19.0 -17.5 102.0 62 70 1.5 1.05 1.20 
   67 19.0 17.5 102.0 63 71 1.5 1.05 1.20 
   68 -19.0 17.5 102.0 64 72 1.5 1.05 1.20 
   69 -19.0 -17.5 105.0 65 73 1.5 1.05 1.20 
   70 19.0 -17.5 105.0 66 74 1.5 1.05 1.20 
   71 19.0 17.5 105.0 67 75 1.5 1.05 1.20 
   72 -19.0 17.5 105.0 68 76 1.5 1.05 1.20 
   73 -19.0 -17.5 108.0 69 77 1.5 1.05 1.20 
   74 19.0 -17.5 108.0 70 78 1.5 1.05 1.20 
   75 19.0 17.5 108.0 71 79 1.5 1.05 1.20 
   76 -19.0 17.5 108.0 72 80 1.5 1.05 1.20 
   77 -19.0 -17.5 110.0 73 81 1.5 1.05 1.20 
  78 19.0 -17.5 110.0 74 82 1.5 1.05 1.20 
   79 19.0 17.5 110.0 75 83 1.5 1.05 1.20 
   80 -19.0 17.5 110.0 76 84 1.5 1.05 1.20 
   81 -19.0 -17.5 112.0 77 85 1.5 1.05 1.20 
   82 19.0 -17.5 112.0 78 86 1.5 1.05 1.20 
   83 19.0 17.5 112.0 79 87 1.5 1.05 1.20 
   84 -19.0 17.5 112.0 80 88 1.5 1.05 1.20 
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   85     -19.0     -17.5     114.0        81         89         1.5     1.05     1.20 
   86      19.0     -17.5     114.0        82         90         1.5     1.05     1.20 
   87      19.0      17.5     114.0        83         91         1.5     1.05     1.20 
   88     -19.0      17.5     114.0        84         92         1.5     1.05     1.20 
   89     -19.0     -17.5     116.0        85         93         1.5     1.05     1.20 
   90      19.0     -17.5     116.0        86         94         1.5     1.05     1.20 
   91      19.0      17.5     116.0        87         95         1.5     1.05     1.20 
   92     -19.0      17.5     116.0        88         96         1.5     1.05     1.20 
   93     -19.0     -17.5     118.0        89         97         1.5     1.05     1.20 
   94      19.0     -17.5     118.0        90         98         1.5     1.05     1.20 
   95      19.0      17.5     118.0        91         99         1.5     1.05     1.20 
   96     -19.0      17.5     118.0        92        100         1.5     1.05     1.20 
   97     -19.0     -17.5     120.0        93        101         1.5     1.05     1.20 
   98      19.0     -17.5     120.0        94        102         1.5     1.05     1.20 
   99      19.0      17.5     120.0        95        103         1.5     1.05     1.20 
  100     -19.0      17.5     120.0        96        104         1.5     1.05     1.20 
  101     -19.0     -17.5     122.0        97        105         1.5     1.05     1.20 
  102      19.0     -17.5     122.0        98        106         1.5     1.05     1.20 
  103      19.0      17.5     122.0        99        107         1.5     1.05     1.20 
  104     -19.0      17.5     122.0       100        108         1.5     1.05     1.20 
  105     -19.0     -17.5     124.0       101        109         1.5     1.05     1.20 
  106      19.0     -17.5     124.0       102        110         1.5     1.05     1.20 
  107      19.0      17.5     124.0       103        111         1.5     1.05     1.20 
  108     -19.0      17.5     124.0       104        112         1.5     1.05     1.20 
  109     -19.0     -17.5     126.0       105        113         1.5     1.05     1.20 
  110      19.0     -17.5     126.0       106        114         1.5     1.05     1.20 
  111      19.0      17.5     126.0       107        115         1.5     1.05     1.20 
  112     -19.0      17.5     126.0       108        116         1.5     1.05     1.20 
  113     -19.0     -17.5     128.0       109        117         1.5     1.05     1.20 
  114      19.0     -17.5     128.0       110        118         1.5     1.05     1.20 
  115      19.0      17.5     128.0       111        119         1.5     1.05     1.20 
  116     -19.0      17.5     128.0       112        120         1.5     1.05     1.20 
  117     -19.0     -17.5     130.0       113        117         1.5     1.05     1.20 
  118      19.0     -17.5     130.0       114        118         1.5     1.05     1.20 
  119      19.0      17.5     130.0       115        119         1.5     1.05     1.20 
  120     -19.0      17.5     130.0       116        120         1.5     1.05     1.20 
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  121       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  122       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  123       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  124       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  125       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  126       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  127       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  128       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  129       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  130       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  131       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  132       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  133     -19.0     -17.5     135.0     132.5       67.5         1.5     1.05     1.20 
  134      19.0     -17.5     135.0     132.5       67.5         1.5     1.05     1.20 
  135     -19.0      17.5     135.0     132.5       67.5         1.5     1.05     1.20 
  136      19.0      17.5     135.0     132.5        0.0         1.5     1.05     1.20 
  137       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  138       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  139       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  140       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  141       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  142       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  143       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  144       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  145       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20 
  146       0.0       0.0       0.0       0.0        0.0         1.5     1.05     1.20]; 

  
% NODAL FLEXIBILITY COEFFICIENTS FOR THE FOLLOWING RESPONSES 

  
% NODE No.  BASE    OVERTURNING 
%           SHEAR    MOMENT 
MATRIX_B = ... 
   [1       1.0       0.0  
    2       1.0       8.0  
    3       1.0       0.0  
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4 1.0 8.0 

5 1.0 0.0 

6 1.0 8.0 

7 1.0 0.0 

8 1.0 8.0 

9 1.0 16.0 

   10 1.0 16.0 

   11 1.0 16.0 

   12 1.0 16.0 

   13 1.0 24.0 

   14 1.0 24.0 

   15 1.0 24.0 

   16 1.0 24.0 

   17 1.0 32.0 

   18 1.0 32.0 

   19 1.0 32.0 

   20 1.0 32.0 

   21 1.0 39.0 

   22 1.0 39.0 

   23 1.0 39.0 

   24 1.0 39.0 

   25 1.0 46.0 

   26 1.0 46.0 

   27 1.0 46.0 

   28 1.0 46.0 

   29 1.0 53.0 

   30 1.0 53.0 

   31 1.0 53.0 

   32 1.0 53.0 

   33 1.0 60.0 

   34 1.0 60.0 

   35 1.0 60.0 

   36 1.0 60.0 

   37 1.0 67.0 

   38 1.0 67.0 

   39 1.0 67.0 
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   40       1.0      67.0  
   41       1.0      74.0  
   42       1.0      74.0  
   43       1.0      74.0  
   44       1.0      74.0  
   45       1.0      79.0  
   46       1.0      79.0  
   47       1.0      79.0  
   48       1.0      79.0  
   49       1.0      84.0  
   50       1.0      84.0  
   51       1.0      84.0  
   52       1.0      84.0  
   53       1.0      88.0  
   54       1.0      88.0  
   55       1.0      88.0  
   56       1.0      88.0  
   57       1.0      93.0  
   58       1.0      93.0  
   59       1.0      93.0  
   60       1.0      93.0  
   61       1.0      98.0  
   62       1.0      98.0  
   63       1.0      98.0  
   64       1.0      98.0  
   65       1.0     102.0  
   66       1.0     102.0  
   67       1.0     102.0  
   68       1.0     102.0  
   69       1.0     105.0  
   70       1.0     105.0  
   71       1.0     105.0  
   72       1.0     105.0  
   73       1.0     108.0  
   74       1.0     108.0  
   75       1.0     108.0  
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   76       1.0     108.0  
   77       1.0     110.0  
   78       1.0     110.0  
   79       1.0     110.0  
   80       1.0     110.0  
   81       1.0     112.0  
   82       1.0     112.0  
   83       1.0     112.0  
   84       1.0     112.0  
   85       1.0     114.0  
   86       1.0     114.0  
   87       1.0     114.0  
   88       1.0     114.0  
   89       1.0     116.0  
   90       1.0     116.0  
   91       1.0     116.0  
   92       1.0     116.0  
   93       1.0     118.0  
   94       1.0     118.0  
   95       1.0     118.0  
   96       1.0     118.0  
   97       1.0     120.0  
   98       1.0     120.0  
   99       1.0     120.0  
  100       1.0     120.0  
  101       1.0     122.0  
  102       1.0     122.0  
  103       1.0     122.0  
  104       1.0     122.0  
  105       1.0     124.0  
  106       1.0     124.0  
  107       1.0     124.0  
  108       1.0     124.0  
  109       1.0     126.0  
  110       1.0     126.0  
  111       1.0     126.0  
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  112 1.0 126.0 

  113 1.0 128.0 

  114 1.0 128.0 

  115 1.0 128.0 

  116 1.0 128.0 

  117 1.0 130.0 

  118 1.0 130.0 

  119 1.0 130.0 

  120 1.0 130.0 

  121 1.0 0.0 

  122 1.0 0.0 

  123 1.0 0.0 

  124  1.0 0.0 

  125 1.0 0.0 

  126 1.0 0.0 

  127 1.0 0.0 

  128 1.0 0.0 

  129 1.0 0.0 

  130 1.0 0.0 

  131 1.0 0.0 

  132 1.0 0.0 

  133 1.0 135.0 

  134 1.0 135.0 

  135 1.0 135.0 

  136 1.0 135.0 

  137 1.0 0.0 

  138 1.0 0.0 

  139 1.0 0.0 

  140 1.0 0.0 

  141 1.0 0.0 

  142 1.0 0.0 

  143 1.0 0.0 

  144 1.0 0.0 

  145 1.0 0.0 

  146 1.0 0.0]; 
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Appendix B Correlation-r and r-squared Values for the Short-term Analysis 

Table B-1 The coefficient of extreme surface elevation and their corresponding 

extreme responses between MCTS, ETS-RSE and ETS-RLR methods based on model 

development of ETS-RegSE and ETS-RegLR regression models for base shear quasi-

static responses with Hs = 5 m, Tz = 7.95 sec and T = 128sec 

a) Drag-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.5157 0.6241 0.9268 0.3895 0.8590 

Polynomial - - - 0.4250 0.8798 

Cubic - - - 0.4597 0.8844 

Current (U = 0.0 m/s) 

Linear 0.7689 0.8837 0.9343 0.7809 0.8729 

Polynomial - - - 0.8179 0.8743 

Cubic - - - 0.8279 0.8746 

Current (U = + 0.9 m/s) 

Linear 0.7182 0.8534 0.9678 0.7283 0.9366 

Polynomial - - - 0.7384 0.9367 

Cubic - - - 0.7443 0.9368 

b) Inertia-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.5800 0.7353 0.9885 0.5407 0.9772 

Polynomial - - - 0.5472 0.9773 

Cubic - - - 0.5629 0.9775 

Current (U = 0.0 m/s) 

Linear 0.6607 0.8089 0.9902 0.6543 0.9805 

Polynomial - - - 0.6546 0.9807 

Cubic - - - 0.6546 0.9809 

Current (U = + 0.9 m/s) 

Linear 0.7366 0.8673 0.9930 0.7523 0.9861 

Polynomial - - - 0.7525 0.9862 

Cubic - - - 0.7534 0.9863 
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c) Total responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.4430 0.5851 0.9598 0.3424 0.9213 

Polynomial - - - 0.3708 0.9378 

Cubic - - - 0.3997 0.9409 

Current (U = 0.0 m/s) 

Linear 0.7240 0.8444 0.9626 0.7131 0.9265 

Polynomial - - - 0.7360 0.9291 

Cubic - - - 0.7377 0.9292 

Current (U = + 0.9 m/s) 

Linear 0.7377 0.8659 0.9719 0.7497 0.9446 

Polynomial - - - 0.7635 0.9448 

Cubic - - - 0.7661 0.9455 

Table B-2 The coefficient of extreme surface elevation and their corresponding 

extreme responses between MCTS, ETS-RSE and ETS-RLR methods based on model 

development of ETS-RegSE and ETS-RegLR regression models for base shear quasi-

static responses with Hs = 10 m, Tz = 11.23 sec and T = 128sec 

a) Drag-induced responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8214 0.8925 0.9462 0.7966 0.8953 

Polynomial - - - 0.8438 0.9011 

Cubic - - - 0.8461 0.9011 

Current (U = 0.0 m/s) 

Linear 0.8605 0.9291 0.9884 0.8632 0.9770 

Polynomial - - - 0.8946 0.9772 

Cubic - - - 0.8946 0.9773 

Current (U = + 0.9 m/s) 

Linear 0.8763 0.9433 0.9898 0.8895 0.9797 

Polynomial - - - 0.9129 0.9799 

Cubic - - - 0.9132 0.9801 
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b) Inertia-induced responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8058 0.9187 0.9936 0.8440 0.9873 

Polynomial - - - 0.8475 0.9875 

Cubic - - - 0.8477 0.9877 

Current (U = 0.0 m/s) 

Linear 0.8347 0.9287 0.9951 0.8625 0.9903 

Polynomial - - - 0.8652 0.9905 

Cubic - - - 0.8662 0.9909 

Current (U = + 0.9 m/s) 

Linear 0.8445 0.9329 0.9965 0.8704 0.9931 

Polynomial - - - 0.8719 0.9934 

Cubic - - - 0.8728 0.9935 

 

c) Total responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8319 0.9043 0.9649 0.8178 0.9311 

Polynomial - - - 0.8518 0.9423 

Cubic - - - 0.8524 0.9435 

Current (U = 0.0 m/s) 

Linear 0.8799 0.9322 0.9891 0.9013 0.9783 

Polynomial - - - 0.9026 0.9786 

Cubic - - - 0.9178 0.9788 

Current (U = + 0.9 m/s) 

Linear 0.8822 0.9444 0.9914 0.8919 0.9829 

Polynomial - - - 0.9108 0.9830 

Cubic - - - 0.9111 0.9835 
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Table B-3 The coefficient of extreme surface elevation and their corresponding 

extreme responses between MCTS, ETS-RSE and ETS-RLR methods based on model 

development of ETS-RegSE and ETS-RegLR regression models for base shear quasi-

static responses with Hs = 15 m, Tz = 13.75 sec, T = 128sec 

a) Drag-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8761 0.9145 0.9819 0.8364 0.9642 

Polynomial - - - 0.9119 0.9707 

Cubic - - - 0.9146 0.9719 

Current (U = 0.0 m/s) 

Linear 0.9127 0.9393 0.9926 0.8824 0.9852 

Polynomial - - - 0.9252 0.9852 

Cubic - - - 0.9263 0.9853 

Current (U = + 0.9 m/s) 

Linear 0.9302 0.9553 0.9894 0.9126 0.9788 

Polynomial - - - 0.9392 0.9788 

Cubic - - - 0.9397 0.9788 

b) Inertia-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8475 0.9194 0.9938 0.8452 0.9876 

Polynomial - - - 0.8471 0.9876 

Cubic - - - 0.8479 0.9877 

Current (U = 0.0 m/s) 

Linear 0.8507 0.9334 0.9945 0.8713 0.9890 

Polynomial - - - 0.8722 0.9890 

Cubic - - - 0.8724 0.9890 

Current (U = + 0.9 m/s) 

Linear 0.8448 0.9296 0.9951 0.8642 0.9902 

Polynomial - - - 0.8653 0.9902 

Cubic - - - 0.8655 0.9903 
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c) Total responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8873 0.9151 0.9820 0.8375 0.9644 

Polynomial - - - 0.9173 0.9723 

Cubic - - - 0.9212 0.9741 

Current (U = 0.0 m/s) 

Linear 0.9164 0.9408 0.9931 0.8851 0.9862 

Polynomial - - - 0.9284 0.9863 

Cubic - - - 0.9296 0.9864 

Current (U = + 0.9 m/s) 

Linear 0.9319 0.9555 0.9903 0.9131 0.9801 

Polynomial - - - 0.9393 0.9806 

Cubic - - - 0.9399 0.9806 

Table B-4 The coefficient of extreme surface elevation and their corresponding 

extreme responses between MCTS, ETS-RSE and ETS-RLR methods based on model 

development of ETS-RegSE and ETS-RegLR regression models for overturning moment 

quasi-static responses with Hs = 5 m, Tz = 7.95 sec, T = 128sec 

a) Drag-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.5283 0.6298 0.9083 0.3966 0.8249 

Polynomial - - - 0.4551 0.8572 

Cubic - - - 0.4943 0.8592 

Current (U = 0.0 m/s) 

Linear 0.7674 0.8838 0.9324 0.7811 0.8695 

Polynomial - - - 0.8201 0.8707 

Cubic - - - 0.8306 0.8707 

Current (U = + 0.9 m/s) 

Linear 0.7439 0.8775 0.9570 0.7701 0.9159 

Polynomial - - - 0.7837 0.9161 

Cubic - - - 0.7891 0.9161 
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b) Inertia-induced responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.5580 0.7113 0.9839 0.5060 0.9681 

Polynomial - - - 0.5187 0.9682 

Cubic - - - 0.5397 0.9683 

Current (U = 0.0 m/s) 

Linear 0.6437 0.7918 0.9854 0.6270 0.9711 

Polynomial - - - 0.6293 0.9711 

Cubic - - - 0.6293 0.9713 

Current (U = + 0.9 m/s) 

Linear 0.7310 0.8667 0.9875 0.7512 0.9751 

Polynomial - - - 0.7513 0.9751 

Cubic - - - 0.7521 0.9755 

 

c) Total responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.4346 0.5826 0.9470 0.3394 0.8968 

Polynomial - - - 0.3815 0.9212 

Cubic - - - 0.4189 0.9238 

Current (U = 0.0 m/s) 

Linear 0.7126 0.8360 0.9528 0.6988 0.9078 

Polynomial - - - 0.7345 0.9103 

Cubic - - - 0.7386 0.9105 

Current (U = + 0.9 m/s) 

Linear 0.7509 0.8770 0.9644 0.7692 0.9300 

Polynomial - - - 0.7881 0.9301 

Cubic - - - 0.7914 0.9310 
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Table B-5 The coefficient of extreme surface elevation and their corresponding 

extreme responses between MCTS, ETS-RSE and ETS-RLR methods based on model 

development of ETS-RegSE and ETS-RegLR regression models for overturning moment 

quasi-static responses with Hs = 10 m, Tz = 11.23 sec, T = 128sec 

a) Drag-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8120 0.8831 0.9462 0.7799 0.8953 

Polynomial - - - 0.8344 0.9011 

Cubic - - - 0.8368 0.9011 

Current (U = 0.0 m/s) 

Linear 0.8621 0.9272 0.9882 0.8597 0.9765 

Polynomial - - - 0.8930 0.9765 

Cubic - - - 0.8931 0.9770 

Current (U = + 0.9 m/s) 

Linear 0.8866 0.9431 0.9884 0.8895 0.9769 

Polynomial - - - 0.9129 0.9770 

Cubic - - - 0.9132 0.9774 

b) Inertia-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.7913 0.9048 0.9849 0.8186 0.9701 

Polynomial - - - 0.8228 0.9704 

Cubic - - - 0.8228 0.9704 

Current (U = 0.0 m/s) 

Linear 0.8339 0.9239 0.9886 0.8808 0.9687 

Polynomial - - - 0.8570 0.9777 

Cubic - - - 0.8580 0.9778 

Current (U = + 0.9 m/s) 

Linear 0.8544 0.9352 0.9912 0.8820 0.9684 

Polynomial - - - 0.8764 0.9825 

Cubic - - - 0.8773 0.9827 
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c) Total responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8091 0.8773 0.9697 0.7697 0.9403 

Polynomial - - - 0.8146 0.9557 

Cubic - - - 0.8156 0.9559 

Current (U = 0.0 m/s) 

Linear 0.8688 0.9233 0.9878 0.8525 0.9758 

Polynomial - - - 0.8819 0.9759 

Cubic - - - 0.8821 0.9764 

Current (U = + 0.9 m/s) 

Linear 0.8888 0.9420 0.9894 0.8873 0.9788 

Polynomial - - - 0.9095 0.9789 

Cubic - - - 0.9096 0.9796 

Table B-6 The coefficient of extreme surface elevation and their corresponding 

extreme responses between MCTS, ETS-RSE and ETS-RLR methods based on model 

development of ETS-RegSE and ETS-RegLR regression models for overturning moment 

quasi-static responses with Hs = 15 m, Tz = 13.75 sec, T = 128sec 

a) Drag-induced responses

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8708 0.9146 0.9885 0.9174 0.9772 

Polynomial - - - 0.9146 0.9794 

Cubic - - - 0.8365 0.9810 

Current (U = 0.0 m/s) 

Linear 0.9126 0.9372 0.9919 0.8783 0.9838 

Polynomial - - - 0.9294 0.9838 

Cubic - - - 0.9307 0.9841 

Current (U = + 0.9 m/s) 

Linear 0.9345 0.9548 0.9892 0.9116 0.9785 

Polynomial - - - 0.9463 0.9785 

Cubic - - - 0.9470 0.9785 
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b) Inertia-induced responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8414 0.9162 0.9851 0.8395 0.9703 

Polynomial - - - 0.8442 0.9704 

Cubic - - - 0.8449 0.9704 

Current (U = 0.0 m/s) 

Linear 0.8555 0.9385 0.9842 0.8808 0.9687 

Polynomial - - - 0.8835 0.9688 

Cubic - - - 0.8835 0.9688 

Current (U = + 0.9 m/s) 

Linear 0.8568 0.9392 0.9841 0.8820 0.9684 

Polynomial - - - 0.8851 0.9684 

Cubic - - - 0.8853 0.9687 

 

c) Total responses 

Methods 

Models 

MCTS ETS-RSE ETS-RLR ETS-RegSE ETS-RegLR 

Coefficient of correlation (r) Coefficient of determination (r2) 

Current (U = - 0.9 m/s) 

Linear 0.8727 0.9128 0.9889 0.8331 0.9780 

Polynomial - - - 0.9161 0.9804 

Cubic - - - 0.9193 0.9823 

Current (U = 0.0 m/s) 

Linear 0.9129 0.9376 0.9922 0.8792 0.9844 

Polynomial - - - 0.9304 0.9845 

Cubic - - - 0.9317 0.9846 

Current (U = + 0.9 m/s) 

Linear 0.9347 0.9548 0.9898 0.9116 0.9794 

Polynomial - - - 0.9461 0.9799 

Cubic - - - 0.9467 0.9802 
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Appendix C Verification Criteria of the ETS-Regression Model 

  In order to define the robustness of model development, the accuracy criterion 

was the main part of the measurements to be considered. Accuracy expresses how 

closely the estimated value corresponds to its actual value of the benchmark. The 

accuracy in the short-term perspective needs to identify as the first measurement. It is 

possible to avoid inaccurate readings, which will contribute to the worse results in the 

long-term analysis. The guideline, as in this appendix, included in this analysis is to 

avoid such unexpected happen. Also, they will clarify the sign of the proposed model 

in good condition. 

i) Confidence Intervals for Pearson's Correlation Analysis 

A hypothesis assessment implies that there is merely not enough depend on the 

relationship only without knowing how the good model was taken into account. In this 

section, the proper analysis which is the scientific technique can be derived via the 

confidence interval (Bewick et al., 2003). In order to measure the confidence interval, 

the distributed sample data (scatterplot) must be converted into the Gaussian 

distribution so as to determine the standard error using the Fisher transformation 

(Kirkwood and Sterne, 2010).  

By this technique, the estimation on the lower and upper limits of the 

confidence interval could be reached by the level of 95 percentiles for the correlation 

coefficient. Thus, the range between these limits is used to calculate any size of sample 

data for obtaining a specified level of accuracy (Whitley and Ball, 2002). Once the 

correlation was analysed, regression analysis would be employed to determine the 

function for this regression line. Normally, such line is responded to as the regression 

model. 

For this pilot test, the analysis was considered for the cases of low and high sea 

states without current impact based on the difference of relationship. With reference 

to Figure 3.19, the pattern of ETS-RSE was chosen due to this relationship was the 

weak relationship and lowest of r-squared among the ETS’s relationship from Sub-
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Subsections 3.6.1.1 and 3.6.1.2. Below is the more description in Table C-1 for the 

correlation and its relating regression analysis. 

Table C-1 ETS-RegSE standard error estimates and confidence intervals for the 

cases of total base shear; quasi-static, Hs = 5 m, Tz = 7.94 sec and U = 0 m/s 

Following this findings, an ETS-RegSE model was applied to these two 

variables, which analysed based on the confident interval producing 0.3225 standard 

error, as shown in Figure C-1. 

Figure C-1 The ETS-RegSE model fit scatterplot related to the confidence interval 

Based on the previous relationship in Figure 3.20, it demonstrate that the ETS-

RLR was the strong relationship and the highest value of r-squared from the relationship 

based on the ETS method. Consequently, the outcome show that the smallest standard 

error obtained was 0.0043, as shown in Figure 2. The small error will help the model 
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to predict the values accurately. This investigation has proven that is why the input 

parameter of linearised responses could reduce the minimal error, as revealed in Table 

C-2. 

Table C-2 ETS-RegLR standard error estimates and confidence intervals for the 

cases of total base shear; quasi-static, Hs = 15 m, Tz = 13.75 sec and U = 0 m/s 

 
 

 

 

Figure C-2 The ETS-RegLR model fit scatterplot related to the confidence interval 

Regarding these comparison of results, the pattern of ETS-RSE relationship 

produced the wide form of scatterplot, whereas the ETS-RLR relationship formed the 

narrow (like linear) relationship. Since the ETS-RLR relationship possesses strong 

relationships, this can be viewed in residuals how the less error affected the high model 

accuracy. As discussed in Chapter 2, the improvement of the ETS-RegSE model has 

generated a huge improvement of relationship intensity where the error in scatterplot 
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could be minimised as much as possible. As shown in Figure C-3, the residual 

comparison can be seen between the ETS-RegSE model and the ETS-RegLR models. 

Figure C-3 Comparison the residual between ETS-RegSE and ETS-RegLR models 

related to its relationship 

Regarding this preliminary analysis, the prediction of 100-year responses by 

ETS-RegLR are better accuracy compared to ETS-RegSE. As expected, the improved 

relationship gave major impact into the model accuracy of ETS-RegLR which is the 

most accurate result achieved due to its strength in relationship-based model 

development. In accordance to Table 3.6, the ETS-RegLR based on cubic model is 

chosen for the permanent model for further studies used in completing the remaining 

short-term and long-term probability distribution of 100-year structural responses. 

ii) Sampling Variability and Confidence Intervals

(a) Wide standard deviation (b) Narrow standard deviation

Figure C-4 The bell-shaped curve by reduction of standard deviation from (a) to 

(b) seeing the improvement in accuracy
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The sampling variability is referred to as the variability deriving from the 

sampling process. The intervals at which the sampling variability is measured are 

called confidence intervals. Smaller sample size or higher variability corresponds to a 

wider confidence interval with a larger error margin, as seen in as seen in Figure C-

4(a). The confidence level also influences the width of the interval. This interval won't 

be as narrow if a higher level of confidence is reached. A close 95% or more 

confidence interval is optimal (preferable as acceptable results), as observed in Figure 

C-4(b). 
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Appendix D Short-term Development of Relationship Patterns based on MCTS and ETS Procedures 
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Appendix E Short-term ETS-Regression Model Developments 
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Appendix F Short-term Analysis on Relationships and its Prediction of 100-year Responses Without Current Impacts 

a) Relationship base shear responses b) Relationship overturning moment responses

ETS-nonlinear 

ETS-linearised 

Weakest 

Strongest 

Lowest Accuracy 

ETS-RegLR 

Highest Accuracy 

ETS-RegSE 
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a) Prediction of 100-year base shear responses b) Prediction of 100-year overturning moment responses

ETS-RegSE 

ETS-RegLR 

Lowest Accuracy 

ETS-RegLR 

Highest Accuracy 

ETS-RegSE 
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