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Abstract. Anxiety is a complicated emotional condition that has a detrimental effect on 

people’s physical and mental health. It is critical to accurately recognize anxiety levels in early 

stage. The anxiety can be detected by pattern of brain signal using brain imaging tools. 

However, the common problem with dataset acquired from brain is imbalanced class 

distribution. Hence, the purpose of this work is to mitigate the imbalanced class distribution 

issue by removing data outlier and using improved Synthetic Minority Oversampling 

Technique (SMOTE) for improving the classification performance. This work used of the 

freely accessible Database for Anxious States based on Psychological stimulation (DASPS) 

that comprises of 14 channels electroencephalography (EEG) signal. It acquired from 23 

subjects when they were exposed to psychological stimuli that elicited fear. The DASPS need 

to be processed for removing noises, extracting important features and sampling with Safe-

level SMOTE method. Then, the processed DASPS was categorized into three types of model: 

Model A, Model B, and Model C. The feature Model C from enhanced DASPS class 

distribution obtained the precision of 89.7% and accuracy of 89.5% using optimized k-nearest 

neighbour (k-NN) algorithm. The proposed method showed outstanding classification 

performance than others existing methods in recognizing multistage anxiety. 

1. Introduction 

Currently, clinical symptoms or a set of questionnaires, such as the Beck Anxiety Inventory, the Self-

Rating Anxiety Scale, the State-Trait Anxiety Inventory, the Hamilton Anxiety Scale, and the 

Manifest Anxiety Scale, are used to make the diagnosis of anxiety disorder. However, this diagnosis 

approach is not objective enough and is vulnerable to the possibility of subjective bias [1]. This might 

degrades the overall quality of the evaluation. However, many researchers have found that the 

subjective feelings of anxiety, stress, and emotion can be quantified objectively using a variety of 

techniques to acquire physiological signals from individuals. Among of the techniques are 

electroencephalography (EEG), electrocorticography, and functional magnetic resonance imaging 

(fMRI). The main reason of this technique used for research is because the physiological signals are 

harder to be control or manipulated by individual when facing stress situation. The use of EEG based 

technologies to monitor the individual mental health and cognitive performance is becoming more 

widespread, and researchers have investigated many approaches to diagnosing the anxiety disorder. 

The DASPS was proposed by Baghdadi et al., [2] where it contains EEG information from 23 subjects 

during anxiety elicitation in six different settings. The time, frequency and time-frequency domain 

features were extracted from DASPS and feed into the Stacked Sparse Autoencoder for classification 
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purpose. They had found that the anxiety was well elicited in 1 second with the maximum accuracy for 

2-level of 83.5% and 4-level of 74.6% classes of anxiety based k-NN and support vector machine 

(SVM) classifier. In another work, Shikha et al., [3] applied recursive feature elimination with cross-

validation (RFECV) with the classifiers on the publicly available DASPS database to decrease 

redundancy between features and improve results. They found that the classification accuracy was 

83.9% for 2-level class of anxiety. Their result showed enhancement of around 5% for time-domain, 

8% for time-frequency domain, and 0.5% for all features combination. Table 1 summarized the other 

related studies of anxiety and stress classification using EEG signal. 

 

Table 1. Past studies related to anxiety and stress classification using EEG signal 

EEG databases Methodology Results References 

A database for emotion 

analysis using 

physiological signals 

(DEAP) 

Genetic algorithm (GA) 

with k-NN 

71.8% of accuracy in 

recognize stress and calm 

Hasan et al., [4] 

DEAP Boruta with k-NN 73.4% of accuracy in 

recognize stress and calm 

Jang et al., [5] 

DEAP Borderline-SMOTE 

with Convolutional 

Neural Network (CNN) 

97.5% of accuracy for 

three stages emotional 

recognition 

Chen et al., [6] 

Conduct public English 

speech to simulate 

anxiety 

Support Vector 

Machine (SVM) 

62.6% accuracy for four 

class of stress level 

Li et al., [7] 

 

However, these solutions above, to some part, overlook a crucial issue related to the treatment of data 

imbalance. The imbalance dataset quantity of samples in different classes of the original dataset may 

vary substantially, especially in the multi-classification process. It will have a direct impact on the 

final model performance [8]. Therefore, this project will focus on using computational approach based 

supervised machine learning to create a model to classify the anxiety state level of an individual using 

EEG signals. The Safe-level SMOTE was applied in the pipeline of machine learning to tackle the 

imbalanced DASPS class distribution issue.  

2. Methodology 

2.1. EEG dataset description 

This project employs the publicly accessible DASPS dataset for the purpose of detecting anxiety level, 

which was gathered by Baghdadi et al., [2]. This database consists of raw EEG data (.mat format) 

acquired from the 23 participants. Ten of them were male and 13 of them were female with average 

age of 30 years old. The Emotiv EPOC wireless EEG headset based on 14 channels and two mastoids 

was used to measure and record the brain signal of participant during mental assessment. The 

frequency sampling rate of acquired EEG signals was 128 hertz. The study stimulus anxiety was using 

in-vivo exposure therapy. The assessment was divided into six different situations and each situation 

was divided into two parts. The first was the psychotherapist recites the situation for the first 15 

seconds. Then, the next part was the subject recalls it for the next 15 seconds. After each situation, the 

participants need to rate their felt during assessment based on Self-Assessment Manikin (SAM). The 

participants were instructed to closed eyelids and keep minimal motions while the EEG data was being 

recorded. 
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2.2. Pre-processing of raw EEG signal 

To begin, the extrinsic signal artifacts were removed using a FIR bandpass filter with a cut-off 

frequency of 45 Hz and a cut-off frequency of 4 Hz to eliminate the high-frequencies and low-

frequencies artifacts. These artifacts usually occurred due to power line interference, excessive 

motion, and eyes blinks and movements. It is crucial to identify artifacts components in order to 

minimize inherent signal artifacts. Therefore, the raw EEG signals were decomposed using the 

Informax independent component analysis (ICA) approach. The IClabel EEGLAB plugin classified 

the components into six categories which are brain, muscle, eyes, heart, line noise, channel noise, and 

others. Subsequently, those components containing most non-brain components will be removed. 

Finally, the automatic artifact removal in the toolbox is applied to the processed signal for improving 

the quality of data. This technique removed bad data sections, which unable to be eliminated via both 

ICA and FIR filtered. The entire procedure was automated by an EEGLAB script. 

2.3. Features extraction 

The main intend of extracting features are to reduce the losing of important attributes consisted within 

the interest signal. It converts the signal into the identifiable measurement, a distinguishing attribute, 

and a functioning component by reducing the number of resources from large dataset. This was 

necessary to reduce the implementation complexity, cut-off the cost for signal processing, and to 

prevent the necessity for data compression. In this work, the hybrid pools of the features is from three 

distinct domains which are time domain (Higuchi’s Fractal Dimension and Hjorth parameter: 

complexity, mobility, and activity), frequency domain (spectral entropy and sample entropy), and 

time-frequency domain (absolute power of frequency bands, alpha/beta ratio, theta/alpha ratio, power 

spectral density of frequency bands, and root mean square of frequency bands). The discrete wavelet 

transform (DWT) is used in the time-frequency domain to extract both the time and frequency 

components of the data. Wavelet transforms provide a higher level of resolution than Fourier 

Transforms. The DWT based Daubechies function of order 4 with five decomposition level was used 

extract the EEG rhythms from DASPS dataset. This wavelet attributes was chosen because it well 

suited for processing biomedical signals [9]. The input signal will pass through low-pass and high-pass 

filter, which divided the frequencies into two bands of low-pass component (approximation 

component) and high-pass component (detail component). Figure 1 showed the DWT decomposition 

tree for extracting EEG signal with 128 Hz of frequency sampling. After decomposition, the EEG 

rhythms absolute power were obtained using Welch's approach through estimation of power spectral 

density. Each decomposed signal also contains a statistical feature called the Root Mean Square. 

 

 
Figure 1. Decomposition tree of discrete wavelet transform for extracting time and frequency features 

of EEG rhythms [10] 

2.4. Data augmentation 

The data augmentation is an artificial process to increase the number of samples and datapoints by 

yielding a new samples and datapoints from existing data. In this work, the safe-level SMOTE method 
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was used for data augmentation to compensate the inequitable class distribution of DASPS dataset. 

This step is critical because the minority classes of light and moderate are 5 to 10 times lesser 

compared to majority classes of severe and normal anxiety state. In addition, a few classes of DASPS 

dataset are overlap and positioned next to categorization boundary. In this regard, it caused low 

classification performance. The safe-level SMOTE was operating based on k-NN rules and selection 

of appropriate properties is necessary to acquire promising augmentation output. Three main steps 

taken using k-NN rules which are calculating the distance between neighbors, identify the k closest 

neighbors to determine the bias-variance trade-off related with solve of underfitting and overfitting 

issue, and finally select the new label of samples. The Bayesian optimization will chose the optimal 

hyperparameter for the k-NN model. It had been found that the most optimal k-value was 5. The basic 

steps implement for augmented DASPS using safe-level SMOTE method were locate the criteria area 

to yield the synthetic data and produce the synthetic dataset based on a safe-level ratio. It can be 

summarized as below:  

 

1. Calculate the distance of nearest neighbors (n) and minority class instances in observe set (p) 

using Euclidean distance.  

2. Executing the safe-level SMOTE method based on k-value of 5. 

3. Chose one of k nearest neighbors generated from the minority class. 

4. Recalculate the distance between n and its neighbors with the same k using Euclidean 

distance. 

5. Chose one of the k nearest neighbors generated from the minority class. 

6. Determine the safe-level to p, n, slp, and sln as represents in equations (1) and (2). 

slp = the number of positive instances in k – nearest neighbors for p   (1) 

sln = the number of positive instances in k – nearest neighbors for n   (2) 

7. Determine the safe-level ratio for p and n as in equation (3) and categorized into respective 

cases as in Table 2. Then, the new synthetic instance (si) was generated in the coordinate of si 

as shown in equation (4). 

safelevel_ratio, sl_ratio = slp/sln       (3) 

si = pi+(gap×diff)        (4) 

8. Calculate the difference between p and n. 

9. Refer to the range of random numbers based on the safe level ratio (sl_ratio) in Table 2.    

10. The difference acquired in step 8 was multiplied by a random number in step 9. 

11. The result yield from step 10 was adding to p for generating the new instances. 

12. The steps were repeated until the number of minority class observations was approximately 

similar to that of majority class observations. 

2.5. Data classification and evaluation 

Several methods were used for classified and evaluated before and after DASPS dataset augmented. 

Detail explanation as discussed below. 

 

2.5.1. k-NN algorithms 

The k-NN technique is then used to classify the pool of extracted features. This has the advantage of 

simplifying model and minimizing complexity of process for small datasets. It is efficient to utilize for 

a small, featured dataset because of its non-parametric properties and samples classification was based 

on the votes of the k-nearest neighbors [11]. After each classification, Bayesian optimization is 

implemented to select the maximized hyperparameters for the k-NN model. This optimization 

minimized the scalar objective function f(x) for x in a bounded domain. The x represents the different 

value of hyperparameters of k-NN which includes the number of nearest neighbors, standardization, 

distance, weight, and exponent [12]. 
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Table 2. Rule of synthesis minority instance in safe-level SMOTE [10] 

Cases sl_ratio slp Synthesis at a range 

between p and n, gap 

Description 

1 =∞ 0 do not produce a 

positive synthetic 

instance 

Both p and n instances are noise. Thus, no 

synthetic data are generated. 

  ≠0 gap = 0 The n instance is noise; therefore, synthesis is as 

close as possible to the location of the p instance, 

and the synthetic data will be generated far from 

n by duplicating p. 

2 =1  0 ≤ gap ≤ 1 The safe level of p instance is the same as with n 

instance. The synthetic data will be generated 

along the line between p and n because p is as 

safe as n. 

3 >1  0 ≤ gap ≤ 1/sl_ratio The p instance is safer than the n instances; 

therefore, synthesis is closer to the p position. 

The synthetic data will be generated closer to p at 

a distance [0,1/SLR]. 

4 <1  (1 – sl_ratio) ≤ gap ≤ 

1 

The n instance is safer than the p instance; 

therefore, synthesis is closer to the n position. 

The synthetic data will be generated closer to n at 

a distance [1-SLR,1]. 

 

2.5.2. k-fold cross validation 

Finally, the performance of the DASPS features model is determined based on the k-fold cross 

validation. This work used a 10-fold cross validation, where the dataset was randomly categorized into 

10-fold. Each of fold acquires 1 over 10 of the datasets for validation set and the remain dataset was 

for training set. The validation set was shifting for each iteration of fold. The remain data was feeding 

into the classification model for training. The final accuracy of model performance was obtained from 

average accuracy result from each iteration fold [13]. 

 

2.5.3.Model performance evaluation metrics 

The performance of classifier in this work was determine via a confusion matrix. There are four 

classification performance measures in confusion matrix which are accuracy, precision, F-value, and 

true positive rate (TPR). The accuracy refers to the number of correct predictions yielded by model via 

the entire test dataset, whereas the precision is an accuracy of a positive prediction. Besides, the 

precision also indicates the reliability of a predicted positive result. It can be controlled through tuning 

of model hyperparameters and parameters. Meanwhile, the F-value is a metric for determining the 

correctness of a model based on its precision and recall. The TPR is a metric that determines the 

number of expected true positive (TP) from all positives in dataset instead the expected number of 

false positives (FP). The classification parameter used in this work was represented in equation (5)-(8). 

 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (5) 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (6) 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (7) 

  𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛•𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑇𝑃𝑅
      (8) 
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Three models obtained from this work which are Model A (dataset from original DASPS dataset), 

Model B (synthetic dataset from Model A after augmented using safe-level SMOTE method), and 

Model C (synthetic dataset from Model C after outlier removal). The outlier removal method refers to 

the process of removing bad data point that far from average value of others. The z-score was 

performed to remove the bad data point. Then, the classification results from these models were 

compared and evaluated. 

3. Results and Discussions 

This section was discussed on outcomes obtained from classification performance of DASPS dataset 

models.  

 

3.1. Classification performance of Model A 

Table 3 represents the classification performance from different domain features of DASPS dataset. 

The main purpose was to determine and select the optimal classification performance of domain 

features by k-NN to be further processed with safe-level SMOTE method and outlier removal. 

 

Table 3. The classification performance of different features from DASPS dataset before augmented 

and outlier removal  

Features Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Time 63.2 58.1 41.7 43.8 

Frequency 60.0 29.6 32.1 30.0 

Time-frequency 63.2 55.9 52.7 54.1 

All 61.6 45.9 37.3 38.1 

 

It shown that the frequency domain obtains the overall lowest performance with only 60.0% and 

30.0% of accuracy and F1-score respectively. It only manages to recognize the majority classes which 

is ‘normal and ‘severe’. The model with all feature domain gained the lower classification 

performance than expected. This model achieved accuracy of 61.6% and F1-score of 38.1%, which 

was slightly lowered than the time-frequency domain features. Meanwhile, the time and time-

frequency features achieved similar accuracy of 63%, but yielded different value for other 

classification parameter. The time-frequency features having 10% higher of F1-score (54.1%) 

compared to time-domain features (43.8%). Therefore, it suggested that the time-frequency domain 

was better than other features domain and this features was selected to be augmented with safe-level 

SMOTE and undergo outlier removal process. Through features selection, more time can be saved and 

less architecture complexity instead of performed data improvement on each features. 

 

3.2. Classification performance of Model B 

Figure 2 showed the classification performance of time-frequency domain features after augmented 

using safe-level SMOTE. The classes distribution was improved and balanced especially for minority 

classes of light and moderate anxiety state. It was 80 and 94 new samples had been successfully 

synthesized for the light and moderate anxiety states, respectively. Hence, the number of samples was 

more evenly distributed in the DASPS dataset. The percentage improvement of class distribution for 

each states was: normal (52% to 31%), light (8% to 24%), moderate (4% to 21%), and severe (36% to 

24%). 
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Figure 2. Class distribution before and after augmented using safe-level SMOTE method 

 

Table 4 indicated the classification performance for Model B. This model was generated from Model 

A that augmented using safe-level SMOTE method. It had significantly improved performance than 

Model A of about 16.3%. The others parameter also showed improvement such as precision (23.1%), 

recall (27.3%), and F1-score (41.5%) in comparison to Model A. Therefore, it showed that the Model 

B obtained better and balanced classes distribution, which revealed the safe-level SMOTE was 

efficient for augmented DASPS dataset. The class imbalanced issue had been tackle by using this 

method. Then, the effect of adding an outlier removal method of rejecting bad data point on 

classification will be known in the following section. 

 

Table 4. Classification performance of Model B 

Model accuracy: 80% (+16.3) 

Anxiety states Precision (%) Recall (%) F1-score (%) 

Normal 71.8 65.6 68.6 

Light 89.8 97.0 93.3 

Moderate 94.3 96.2 95.2 

Severe 60.2 62.2 61.2 

Overall 79.0 (+23.1) 80.0 (+27.3) 79.6 (+41.5) 

 

3.3 Classification performance of Model C 

The classification performance of Model C aims to determine the effect of implemented safe-level 

SMOTE method and outlier removal. Based on Table 5, it can be stated that the classification 

performance of Model C was better than Model B. The accuracy of Model C was improved about 10% 

than Model B. All of the indicators also showed better result, where the percentage increment of 

precision was 10.7%, recall was 9.0%, and F1-score was 9.8%. Therefore, it indicated that 

combination of those method yield better classification performance, which considered as a good 

model since it has high F1-score and accuracy. 

 

Table 5. Classification performance of Model C 

Model accuracy: 89.5% (+10.0) 

Anxiety states Precision (%) Recall (%) F1-score (%) 

Normal 92.3 75.8 83.2 

Light 86.7 96.6 91.4 

Moderate 91.7 94.6 93.1 

Severe 87.9 92.0 89.9 

Overall  89.7 (+10.7)  89.0 (+9.0) 89.4 (+9.8) 
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4. Conclusion 

The recent research showed an enhanced classification performance for different states of anxiety level 

from DASPS dataset. A safe-level SMOTE method was used to handle the imbalanced classes 

distribution in dataset. In addition, the outlier removal based z-score method also employed to 

improved classification performance. A few steps were used to process the DASPS dataset which are 

acquire raw DASPS dataset, artefact elimination, features extraction, data augmentation, features 

classification and model evaluation. The result of the modified dataset achieves 89.7% and 89.4% of 

accuracy and F1-score respectively by k-NN classifier on the four-class anxiety classification. In 

conclusion, the proposed method improved the accuracy to 15.1% compared to the existing method. 

Thus, this proposed methodology can be implemented to identify anxiety states and other imbalanced 

dataset. 
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