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Abstract. This paper investigates the implementation of a lightweight Siamese neural network
for enhancing speaker identification accuracy and inference speed in embedded systems.
Integrating speaker identification into embedded systems can improve portability and versatility.
Siamese neural networks achieve speaker identification by comparing input voice samples to
reference voices in a database, effectively extracting features and classifying speakers accurately.
Considering the trade-off between accuracy and complexity, as well as hardware constraints
in embedded systems, various neural networks could be applied to speaker identification.
This paper compares the incorporation of CNN architectures targeted for embedded systems,
MCUNet, SqueezeNet and MobileNetv2, to implement Siamese neural networks on a Raspberry
Pi. Our experiments demonstrate that MCUNet achieves 85% accuracy with a 0.23-second
inference time. In comparison, the larger MobileNetv2 attains 84.5% accuracy with a 0.32-
second inference time. Additionally, contrastive loss was superior to binary cross-entropy loss
in the Siamese neural network. The system using contrastive loss had almost 68% lower loss
scores, resulting in a more stable performance and more accurate predictions. In conclusion,
this paper establishes that an appropriate lightweight Siamese neural network, combined with
contrastive loss, can significantly improve speaker identification accuracy, and enable efficient
deployment on resource-constrained platforms.

1. Introduction
Speaker identification is often used in biometric security systems to determine person’s identity.
It works by comparing the unknown speaker’s audio to the models of all enrolled speakers.
The best-matching speaker is the one who is most likely to be the person speaking. Speaker
identification is different from speaker verification, which only checks if the speaker’s identity
matches the claimed identity. Speaker identification requiresN comparisons to identify a speaker
from a group of N people, while speaker verification only requires one comparison. The following
are the key steps in speaker identification: (1) extracting features from the audio, (2) comparing
those features to a speaker model in the database of known speakers, and (3) making a decision
based on the comparison.

A successful speaker identification largely depends on the model used on the speaker’s voice.
This model can be created using various techniques such as Gaussian mixture models (GMM),
Hidden Markov models (HMM), support vector machines (SVM), or deep neural networks
(DNN). Lately, DNN have been popular due to their good performance.

In a typical DNN structure, the model learns to classify data using a provided dataset and
generates a prediction probability. However, to achieve high prediction probabilities, the CNN
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Figure 1. Architecture of Siamese Neural Network

must be trained on a sufficiently large dataset. This poses a challenge when a new training
dataset is required to identify a new speaker, as creating and utilizing it can be time-consuming.

Siamese neural networks (SNN), shown in Figure 1, are particularly well-suited for speaker
identification tasks because they specialize in learning the similarity or dissimilarity between
two input samples [1]. For speaker identification, an SNN compares the features of an unknown
speech signal against reference features from a speech database, determining the best match
by comparing similarity scores. Compared to other methods, Siamese networks require fewer
training samples while maintaining high accuracy. They are also more robust to variations in
speech signals and can handle large speech datasets.

The speaker identification process involves comparing an unknown speaker’s utterance to a
database of enrolled speakers. If the utterance matches the database above a certain threshold,
the claim is accepted, otherwise it is rejected. The accuracy of speaker identification depends on
choosing an appropriate threshold value. A low threshold can lead to inaccurate identification,
while a high threshold can make identification difficult [2].

Feature extraction is essential for preprocessing speaker identification data. It reduces
dimensionality by dividing the raw data into smaller, more manageable groups. This aids
training by extracting critical information from speech waves while reducing model complexity
[3, 4]. The extracted features are then input to neural networks for model training.

This paper describes an embedded implementation of speaker identification using Siamese
Neural Networks. It was deployed on the Raspberry Pi 4 Model B. Due to the Pi’s resource
constraints, identifying suitable SNN subnetworks is crucial to ensure acceptable real-time
execution. In addition to well-known lightweight networks like MobileNetv2 and SqueezeNet,
MCUNet, which runs on NAS, is also used as one of SNN’s subnetworks. A wake word detector
is used in conjunction with the speaker identification model to meet the requirements of the
real-time use case. A GUI is created using Qt, an open-source, multi-platform framework, to
allow users to interact with the speaker identification system in real-time [5].

2. Research Method
2.1. Dataset
The dataset used for training is the VoxCeleb2 open-source media dataset that consists of *.m4a
files. It has more than a million utterances from more than 6,000 speakers [6]. It is chosen due
to its variation in noise that can mimic a noisy environment [7]. Thus, the speaker identification
model that is trained by using this dataset will have good noise robustness real-time scenarios.
The raw data is divided into training and testing parts in the ratio 8:2 respectively. This means
that 80% of the dataset is used to train the model, while 20% of the dataset is used to test the
model’s prediction accuracy. This process can also keep the learning model from overfitting its
training data. The feature extraction process then runs on the partitioned dataset.
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2.2. Feature Extraction
Feature extraction is a dimensionality reduction technique that can be used to reduce a large
set of raw data into smaller groups for processing. New features will then be generated from the
existing features that can be found in the original dataset [8]. It is one of the essential phases of
constructing the speaker identification model for extracting meaningful data from speech waves
and reducing model complexity. This extracted information will be loaded into the appropriate
neural network architectures for model training.

Several feature extraction techniques can be used in the speaker identification system, each
with its own pros and cons. For instance, PLP (perceptual linear prediction) and MFCC
(Mel-frequency cepstral coefficients) have been shown to yield superior results due to their
architecture’s close resemblance to human perception of voice. While LPC (linear predictive
coding) is not based on the human auditory system, it is well-suited for systems that require
audio communication over long distances [9].

GFCC (Gammatone frequency cepstral coefficients) is a newer technique that shares many
similarities with MFCC. While MFCC uses triangular Mel-frequency filters and compresses the
signal’s dynamic range through logarithmic nonlinearity, GFCC emphasizes spectral valleys with
a cubic root nonlinearity and employs a gammatone filter bank. GFCC is particularly beneficial
for low-frequency sensitive applications like music and animal sounds. However, it can be more
vulnerable to noise in specific scenarios [10, 11]. In general, MFCC is more commonly used
in speech-related applications due to its accessibility and good performance with traditional
machine learning methods.

For speech related applications using deep learning, Mel-spectrograms are better than MFCC
and GFCC. Unlike MFCC, the Mel-spectrogram simplifies the process by eliminating the need
for DCT computation, as shown in Figure 2. This simplification allows for the retention of the
complex speech signal representation necessary for CNNs, while simultaneously reducing the
overall computational burden. Although it is possible to combine multiple feature extraction
techniques to leverage their respective strengths, Mel-spectrograms alone are often enough to
train accurate models [11].

FFT Log(x)

DCT

Windowing

Speech input
Mel

Filter Bank

MFCC

Mel-
spectrogram

Figure 2. Derivation of MFCC and Mel-Spectrogram

2.3. Loss Function
A loss function evaluates the effectiveness of a neural network in modeling the training data
by comparing the difference between target and predicted output values. Based on the neural
network model’s loss function performance, the hyperparameters of the neural network are
adjusted to achieve the lowest possible average loss score. This ensures that the neural network
model can adapt to the task at hand. SNN can utilize several loss functions, including binary
cross-entropy, contrastive loss, triplet loss, and constellation loss.

Binary cross-entropy is a loss function that can adapt to speaker identification purposes as it
compares each predicted probability to the actual class output of false (0) or true (1), indicating
whether the target is the correct speaker or not. The score is then calculated by penalizing the
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respective probabilities based on how far they are from the predicted value, measuring how close
the predicted value is to the actual value.

The contrastive loss has been shown to outperform the binary cross-entropy loss function
in SNN for speaker identification tasks, as it excels at distinguishing between two objects [12].
Since the primary purpose of SNN is to compare the similarity of different instances rather
than classifying a single instance, the contrastive loss is more appropriate for this scenario. It
operates by bringing similar samples closer together and pushing distinct samples farther apart
when presented with two input samples that are either similar or different. The calculation of
the contrastive loss follows the formula below. Y can be set to 0 if the samples are similar and 1
otherwise. Based on the expression of contrastive loss, the term ||xi − xj ||2 that corresponds to
the Euclidean distance will be minimized in case of the samples are coming from similar groups
else the term max(0, ||xi − xj ||2) will be minimized in case of the samples are coming from
dissimilar groups [13]. This is processed by the equation through the search for the correct pair
of the inputs, xi and xj , so the term of ||xi−xj ||2 that corresponds to their respective Euclidean
distances can be achieved. In short, the loss score is aimed to be lowered by minimizing the term
of ||xi−xj ||2 for the result of the similar group while minimizing the term of max(0, ||xi−xj ||2)
for the result of dissimilar group.

L = (1− Y )× ||xi − xj ||2 + Y ×max(0,m− ||xi − xj ||2) (1)

where
L = Loss score
Y = True output
xi = Observation vector from input
xj = Target vector from training dataset

||xi − xj ||2 = Predicted output
m = Hyperparameter that specifies the lower bound distance between dissimilar samples.

2.4. Model Training
Siamese neural networks offer several advantages for speaker identification, notably high
accuracy, invariance to environmental changes, and invariance to changes in the speaker’s voice,
such as age, accent, and emotion [14]. Once trained, the speaker identification model based
on SNN does not need to be retrained for identifying a new speaker. SNN’s pattern matching
analysis is performed against the reference features of the speech database, and the best match
is identified by comparing the similarity scores. The training process of SNN is carried out by
learning from semantic similarity to do the comparison rather than learning the features directly
from the large-scale dataset to do the classification as CNN does. Therefore, SNN is robust to
the dataset as it focuses on learning from the semantic similarity and only a few samples per
class are required for it to learn the embeddings which place the same classes together.

Several high performance neural network architectures, such as VGG16 and ResNet50, have
been used as subnetworks to speaker identification models [2, 15, 16]. However, these networks
have high resource consumption and are unsuitable for deployment on embedded systems.
Table 1 lists several lightweight CNNs compared to VGG and ResNet.

MobileNetv2 serves as the baseline subnetwork in our work. After feature extraction, the
SNN architecture is first implemented using a customized MobileNetv2 subnetwork with no
classification layer. Input spectrograms are fetched into the subnetworks, and a custom distance
function is used to connect both subnetworks and measure the difference between outputs.
This is followed by a flatten layer and a dense layer utilizing the sigmoid activation function,
outputting values between 0 and 1. The model is trained using binary cross-entropy as the loss
function and Adam as the optimizer with a learning rate of 3e-4. A batch size of 32 is used, and
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Table 1. Selected CNN architectures for speaker identification.

Network Number of Parameters (M) Memory Used (MB) Top-5 ImageNet accuracy

VGG16 [15] 138.3 528 92.9%
ResNet50 [16] 25.6 98 93.6%

MobileNetV2 [17] 3.4 14 71.9%
ShuffleNetV2 [18] 1.4 5 69.4%
SqueezeNet [19] 1.2 5 59.5%
MCUNetV2 [20] 1.1 4 74.3%

the model is trained for 40 epochs with 1000 steps per epoch. The training process is performed
using NVIDIA GeForce GTX1080 Ti with 11GB GPU memory.

In the next phase of the work, contrastive loss was used as the loss function. Contrastive
loss was found to be more suitable for SNN as it pulls clusters of points belonging to the
same class closer in the embedding space while pushing away clusters of points belonging to
different classes [21]. Thereafter, the model is retrained using contrastive loss for more effective
information labeling.

SqueezeNet is then used as a subnetwork of SNN due to its lower parameter count [19].
The batch size is increased to 64 to take advantage of available GPU memory, while all other
parameters remain unchanged. The model is trained for 40 epochs with 1000 steps per epoch
using contrastive loss.

To further enhance the architecture, the subnetwork of the SNN is replaced with the neural
network structure of MCUNet, designed to fit within 256 kB memory constraints. MCUNet
optimizes accuracy, memory usage, and energy efficiency by combining the efficient neural
architecture of TinyNAS with the lightweight inference engine of TinyEngine [20]. The two-stage
neural architecture search of TinyNAS was used without inferring the model using TinyEngine.
TinyNAS creates a specialized network architecture after optimizing it to fit the resource
constraints. To train the speaker identification model using TinyNAS of MCUNet, the batch
size remains at 64 while other parameters remain unchanged, and the model is trained for 40
epochs with 1000 steps per epoch using contrastive loss.

3. Results and Discussion
3.1. Training Results
In addition to accuracy, a model’s performance can be evaluated with a loss score, which
measures the difference between predicted and actual values. On the MobileNetV2 subnetwork,
both binary cross-entry and contrastive loss functions were used, with contrastive loss retained
for the remaining experiments. Due to GPU limits, the SNN batch size was set to 32 and
training converged around the 40th epoch. The same was true for the other subnetworks, so
training was stopped at the 40th epoch to prevent overfitting.

Figures 4 to 7 show the training results for a SNN with MobileNetv2 as the subnetwork. The
plots also compare the training results using binary cross-entropy loss and contrastive loss as
the loss functions, respectively. Figures 8 and 9 show the training results using SqueezeNet as
the subnetwork, while Figures 10 and 11 show the training results using MCUNet. The training
results are summarized in Table 2.

In conclusion, the speaker identification model using MCUNet256kb as the SNN subnetwork
achieved the highest accuracy on the Raspberry Pi 4. The SqueezeNet model demonstrated
the fastest inference time. Regardless of the SNN subnetwork type, all speaker identification
models can be deployed on the Raspberry Pi 4. MCUNet256kb has fewer parameters than
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Figure 3. MobileNetV2 Loss vs Epoch using
binary cross-entropy loss function.

Figure 4. MobileNetV2 Accuracy vs Epoch
using binary cross-entropy loss function.

Figure 5. MobileNetV2 Loss vs Epoch using
constrastive loss function.

Figure 6. MobileNetV2 Accuracy vs Epoch
using constrastive loss function.

Figure 7. SqueezeNet Loss vs Epoch using
constrastive loss function.

Figure 8. SqueezeNet Accuracy vs Epoch
using constrastive loss function.

Figure 9. MCUNet Loss vs Epoch using
constrastive loss function.

Figure 10. MCUNet Accuracy vs Epoch
using constrastive loss function.
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Table 2. Summary of training results.

Network
Loss

Function
Batch
Size

Accuracy
(%)

Loss
Inference
Time (s)

MobileNetv2 Binary cross entropy 32 84.50 0.3466 0.32
MobileNetv2 Contrastive loss 32 84.80 0.1103 0.32
SqueezeNet Contrastive loss 64 83.30 0.1188 0.14

MCUNet256kb Contrastive loss 64 85.00 0.1084 0.23

SqueezeNet but takes longer for inference due to its deeper network and more operations. By
using MobileNetv2 as a baseline, it is possible to build a speaker identification model with
either higher accuracy or faster inference time by making a trade-off between these two factors.
However, the differences in each factor are not significant. This work highlights that MCUNet,
a neural architecture search-based model, can be successfully executed on microprocessors with
high accuracy and low resource consumption.

3.2. Embedded Deployment
The Raspberry Pi 4 Model B was selected as the platform for deploying the speaker identification
model, considering its available resources [22, 23]. The Raspbian 64-bit operating system was
installed first, followed by the libraries needed to run Python scripts. The models were trained
on the GPU, and the model parameters were saved in HDF5 file format before being loaded
into the Raspberry Pi for deployment. A hands-free GUI was created with the PyQt5 library
to provide test inputs to the speaker identification model on the Raspberry Pi 4 [5].

To enhance accuracy and reduce power consumption, a two-stage speaker identification
system is created by integrating a simple wake word detector with the speaker identification
model. The first stage is the always-on wake word detector, while the second stage performs the
actual speaker identification process, triggered only after the correct wake word is detected [24].
The wake word detector is built using the Picovoice end-to-end edge AI platform, with“picovoice”
serving as the wake word [25]. Once the wake word is detected, the speaker identification stage
is activated, and the result is displayed after inference is completed.

4. Conclusion
In conclusion, this paper presents a study on the implementation of a lightweight Siamese
neural network (SNN) for speaker identification on resource-constrained platforms. The results
demonstrate that SNNs, specifically using the MCUNet subnetwork, can achieve high accuracy
and fast inference times on embedded systems like the Raspberry Pi. Furthermore, the
contrastive loss function is found to outperform binary cross-entropy loss in the SNN for
speaker identification tasks. This research establishes that an appropriate lightweight SNN,
combined with contrastive loss, can significantly improve speaker identification accuracy and
enable efficient deployment on resource-constrained platforms. Future work could explore
the performance of SNNs with other lightweight subnetworks and investigate additional loss
functions for further improvements in speaker identification systems on embedded platforms.
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