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Abstract. With microplastics pollution becoming a global concern, there comes a need for 
sensors to attain an optimal level of sensitivity to detect microplastics in water. This work 
investigated the effects of cladding layer shapes on the sensitivity performance of an optical 
waveguide sensor for microplastics detection in water. In this research, three different cladding 
shapes—C-shaped fiber, D-shaped fiber, and rectangular waveguide with circular core—were 
simulated by using Wave Optics Module-COMSOL Multiphysics® software. The results 
indicated that the C-shaped fiber exhibited significantly higher sensitivity, with a sensitivity 
value of 1.070x10-3 compared to the D-shaped fiber and rectangular waveguide with 3.845x10-4 
and 3.842x10-4, respectively. The sensitivities of the D-shaped fiber and rectangular waveguide 
were relatively similar and did not exhibit any significant difference. The higher sensitivity of 
the C-shaped fiber is attributed to its larger exposed core area to the analyte, resulting in higher 
interaction of the evanescent wave with the analyte. However, fabricating the C-shaped fiber is 
more challenging compared to the other two shapes. This research highlights the significance of 
cladding shapes in optical waveguide sensor sensitivities and provides design optimization 
insights for microplastics detection in water.  

1.  Introduction 
 
Plastics have numerous uses in various industries and are commonly utilized in day-to-day life such as 
in packaging, food containers, and drinking bottles. Nonetheless, improper handling of discarded 
plastics can result in ecological degradation, particularly in water habitats like rivers, oceans, and lakes 
[1]. This can lead to the formation of microplastic fragments that pose a risk to aquatic animals and 
human health [2]. 

 
Several studies have been conducted particularly in detecting microplastics in water by adopting 

methods such as Raman [3], near infrared (IR) [4], and Fourier transform infrared (FTIR) spectroscopy 
[5]. Nevertheless, some disputed issues have risen with respect to these methods, which include their 
complex processing steps, low yield, and high costs, thus making them time-consuming and inefficient 
[6-8]. 
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To address these limitations, a proposed solution was to simulate an optical waveguide sensor using 
Wave Optics Module-COMSOL Multiphysics® software. The proposed method offers prompt and in-
situ detection, effectively mitigating the aforementioned issues [9]. Furthermore, three commonly 
known shapes of cladding waveguides were analyzed to enhance the sensor's sensitivity through further 
optimization. Furthermore, the study investigated the effective refractive index changes at different 
analyte refractive index mediums, along with the core principles of physics behind these factors. 

 

2.  Simulation Settings 
 
The cross-sections of the novel europium-aluminum doped polymer composite optical planar waveguide 
sensor for the three different cladding shapes—C-shaped fiber, D-shaped fiber, and rectangular 
waveguide with circular core—are illustrated in Figure 1(a), Figure 1(b), and Figure 1(c), respectively. 
The sensor comprises a core with diameter of 9 μm and refractive index of 1.510, surrounded by cladding 
with refractive index of 1.501. The operating wavelength of 617 nm was chosen because it has the lowest 
attenuation window of a practical waveguide [10]. The refractive index range for microplastics in water 
was set between 1.480 and 1.500 with an RI step increment of 0.005. In this range, 1.490 RIU represents 
the refractive index of low-density polyethylene (LDPE) [1]. 

 

 

Figure 1 Cross-sectional view of the optical waveguide sensor with three different cladding shapes: (a) C-shaped fiber, (b) 
D-shaped fiber and (c) rectangular waveguide with circular core  

 

3.  Results and Discussion 
 
The electric field distribution of all three waveguides with different cladding shapes can be analyzed by 
studying the mode field diameter (MFD) at a selective analyte refractive index (RI) of 1.490, as shown 
in Figure 2. The core-analyte border is located at the 4.5 µm position, allowing the penetration depth of 
the evanescent wave to be examined in the post-border region as shown in the inset of Figure 2. In this 
region, the C-shaped fiber exhibits a more significant penetration of the evanescent wave into the analyte 
compared to the other two cladding types. This increased penetration enables higher interaction between 
the evanescent wave and the analyte, resulting in higher sensitivity of the sensor. 

(a) 
 

(b) 
 

(c) 
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Figure 2 MFD of the C-shaped fiber, D-shaped fiber, and rectangular waveguide at a selective analyte RI of 1.49 

 
Different effective mode index, neff can be achieved by varying the analyte RI. The changes in neff, 

referred to as Δneff, were plotted at different analyte RIs as shown in Figure 3. The inset graph in Figure 
3 provides a closer look at the D-shaped fiber and rectangular waveguide curves, which were separated 
when magnified. With an increase in the refractive index (RI) of the analyte from 1.4800 to 1.5000, the 
Δneff experiences a non-linear growth. This non-linear variation arises from the nonlinearity exhibited 
by the evanescent wave energy during its interaction with the analyte medium [10]. Nonetheless, Xiao 
et al. proposed a method for assessing sensitivity by examining the changes with a linear fit, thereby 
easily determining sensitivity based on the graph's slope [10]. As a result, the sensor recorded an 
estimated sensitivity for the C-shaped-fiber, D-shaped fiber, and rectangular waveguide as 1.070x10-3, 
3.845x10-4 and 3.842x10-4 respectively, in dimensionless unit.  

 
The results of the study showed that the C-shaped fiber had a significantly higher sensitivity 

compared to the D-shaped fiber and rectangular waveguide. Conversely, no significant difference in 
sensitivity was observed between the D-shaped fiber and rectangular waveguide. This similarity is 
attributed to the indistinguishable cladding layer surrounding both the D-shaped fiber and rectangular 
waveguide from the core section's perspective. On the other hand, the increased sensitivity of the C-
shaped fiber can be attributed to its larger exposed core area to the analyte, leading to a higher interaction 
of the evanescent wave with the analyte. Nonetheless, the production of the C-shaped fiber is relatively 
more complex compared to the other two shapes. 

 



6th Photonics Meeting 2023
Journal of Physics: Conference Series 2627 (2023) 012006

IOP Publishing
doi:10.1088/1742-6596/2627/1/012006

4

 
 
 
 
 
 

 
Figure 3 Effective mode index changes Δneff versus analyte refractive index for all three cladding shapes: C-shaped fiber, 
D-shaped fiber, and rectangular waveguide. The inset graph provides a closer look at the D-shaped fiber and rectangular 

waveguide curves, which were separated when magnified. 

 

4.  Conclusion 
 
The study demonstrated the simulation of an optical waveguide sensor with different cladding shapes 
for detecting microplastics in water. The sensor was simulated for a range of analyte refractive indices 
from 1.480 to 1.500, relative to the microplastic refractive index. The C-shaped fiber exhibited the 
highest sensitivity of 1.070x10-3, while the D-shaped fiber and rectangular waveguide had sensitivities 
of 3.845x10-4 and 3.842x10-4, respectively, in dimensionless units. This higher sensitivity of the C-
shaped fiber is attributed to its larger exposed core area to the analyte, which enhances the interaction 
of the evanescent wave with the analyte. Overall, the simulated optical waveguide sensor designs 
provide valuable insights into increasing the potential of optical waveguide sensors for microplastics 
detection in water. 
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