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Abstract. Landslides, which can cause fatalities, property damage, and economic disruption, are some of 
the most catastrophic natural disasters in hilly areas. Researchers have created landslide susceptibility maps 
to forecast rainfall-induced landslides, particularly in hill site developments. A physically based model is 
more familiar in rainfall-induced landslide analysis, which consists of hydrological and infinite slope-
stability models. This paper discusses the susceptibility of rainfall-induced landslides through four 
approaches: shallow landslide stability model, stability index mapping, transient rainfall infiltration, grid-
based regional slope-stability model, and Yon-Sey slope model. The basic concepts, applications and 
limitations of each model are highlighted. SINMAP and SHALTAB do not consider the infiltration and 
groundwater flow temporally compared to TRIGRS and YS models. Nonetheless, TRIGRS solely considers 
1-dimensional infiltration versus time without spatially compromising groundwater flow. Besides, YS-Slope 
considers regional and temporal distributions of fluctuations in groundwater variations, which can predict 
shallow and deep-seated failure. Further exploration needs to be carried out due to the limitations of applying 
these four models, which are applicable to simple landslide processes in relatively homogenous and suitable 
geomorphology and geology conditions.  

 Introduction 
Landslides not only cause failure to slopes but also result 
in significant property damage and occasionally result in 
fatalities [1-5]. It is essential to identify landslide-prone 
locations to save lives and prevent severe consequences, 
particularly for national economies. Therefore, landslide 
assessments are crucial, especially in the preliminary step 
in the planning or design stage of the appropriate risk 
mitigation measures.  

Global climate change causes an increase in the 
number of landslides due to changes in rainfall intensity, 
frequency and infiltration depth [6, 7]. Most researchers 
claim that the frequency of occurrences of intense 
precipitation will increase in the future, more often due to 
climate change [8–13]. As stated by Frattini et al. [14] and 
Lee et al. [15], one of the main triggering factors of 
landslide disasters is the concentration of heavy rainfall in 
a short period. At the same time, other researchers agreed 
that severe or excessive rainfall is a significant cause of 
the cataclysm [16–22]. 

The evaluation of rainfall-induced landslides involves 
the utilisation of models that assess rainfall infiltration 
and slope stability. This study's input data encompasses 
factors like topographical features, rainfall, slope material 
properties, and numerical techniques. These data are 
collected and analysed using the geometry developed and 
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presented in the Geographic Information System (GIS). In 
slope stability analysis, the depth of the wetting front, 
which considers the initial moisture conditions, is 
calculated using hydrological characteristics of the soil 
bed, rainfall data and infiltration analysis. 

In a comprehensive landslide assessment, many 
factors should be considered, including topography, soil 
properties, vegetation and precipitation [23]. The strong 
capability of Geographic Information Systems (GIS) in 
spatially distributed data processing has become popular 
in the last decades [24–30]. The spatial distribution of 
terrain parameters is crucial in assessing landslides with 
GIS-based analyses. 

Researchers have used different landslide 
susceptibility techniques to compute the landslide 
susceptibility values. Most of them believe that landslide 
susceptibility maps are a great tool for planners and 
engineers in determining optimal locations for new 
development and future slope management and 
development planning [31–38]. 
 The physically based approach is one of the popular 
methods used in the past few decades incorporating a GIS-
based to assess landslide events. The physical-based 
approach's fundamental is structured from an infinite 
slope model with considerable topography, soil 
properties, hydrology, and ve.getation cover to 
comprehend and forecast landslide occurrence spatial and 
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temporal patterns. This study selects SINMAP, 
SHALSTAB, TRIGRS and YS-slope and further 
discusses their application and limitations in landslide 
susceptibility research. 

 Theoretical models 

 Infinite slope stability model 

The slope stability was analysed using the infinite slope 
failure model to calculate the factor of safety (FoS). The 
present model provides a comparative analysis of the 
resisting and driving forces acting on a plane that is 
parallel to the surface of a soil slope, which can be 
expressed in the Equation below, 
 

FoS=
resisting component (shear strength,s)

driving component (shear stress, τ)
 (1) 

 
At the moment of failure, the gravitational force 

creates shear stress, � (measured in Nm-2), that is balanced 
by the combined strength of the soil's cohesion, � and the 
frictional resistance resulting from the normal stress 
applied on the failure plane: 

 
 τ=c +(σ-ua)·tanϕ (2) 

Where,  
 

σ Normal stress (Nm-2) 
ua Pore-air pressure (Nm-2) 
� Internal friction angle of soil (degrees)  

 
Figure 1 shows the infinite slope in a typical slide 

element in saturated conditions. Based on Fredlund et al. 
[39], the factor of safety (FoS) can be calculated using a 
modified Mohr-Coulomb failure criterion as 

 

FoS=
c'+σ tan ϕ'+(ua-uw) tan ϕb

W sin β cos β
 

   
(3) 

where  
 

�′ Effective cohesion (Nm-2) 
� Normal stress (Nm-2) 
�� Pore-water pressure (Nm-2) 
�′ Effective internal friction angle of soil  

(degrees) 
�� Angle due to increase in the matric suction       

(degrees) 
� Slope angle (degrees) 

 
The value of �� proposed by Vanapalli et al., (1996) [40]: 
 

 tan ϕb = tan ϕ' +
S-Sr

100-Sr
 (4) 

where 
�� degree of residual saturation  

 
While assuming that ϕb = ϕ' and the pore-air pressure is at 
atmospheric, Equation (3) can be rewritten as 
 

 FoS=
c'+(σ-uw) tan ϕ'

W sin β cos β
 

(5) 

 
 Based on Equation (5), other contributing factors, 

such as soil properties and slope geometry, are related to 
the safety factor. Changes greatly influence the factor of 
safety in negative pore-water pressure caused by rainfall 
infiltration. Besides, Arairo et al. [41] have claimed that 
instead of changes in pore pressure variation, slope 
stability is also dependent on unsaturated conditions 
where the contribution of capillary forces to slope stability 
is significant. As mentioned earlier, the relationships 
reveal how crucial the studies in suction distribution and 
rainfall patterns are in association with the slope 
instability issue. 

 
Fig. 1. Typical infinite soil element [42] 

 Rainfall-Induced landslides   

The study of slope instability triggered by rainfall is 
gaining attention worldwide, particularly in countries that 
receive abundant rainfall throughout the year. Wang and 
Sassa [43] and Gerscovich et al. [44] concluded that 
rainfall-induced landslides happened whenever pore-
water pressure and seepage force increased in soil slope 
leading to reduce effective stress and soil strength during 
periods of heavy rainfall. Xie et al. [45] study shows these 
failures are typically classified as shallow failures, with 
depths ranging from 0.5 to 2 meters. The leading cause of 
shallow landslides in many countries is slope saturation 
initiated by rainfall infiltration [46, 47]. Chen [48] has 
summarised that there are two types of failure 
mechanisms: either by continuously generating positive 
pore-water pressure to initiate rainfall-induced landslides 
or due to soil slope matric suction absorption causing 
shear strength reduction. 

Besides, infiltration substantially influences the 
occurrence of landslides triggered by rainfall, as it 
governs the distribution of the pore-water pressure profile. 
The integration of Darcy's law and mass conservation 
principles is utilised to elucidate the process of infiltration 
and the distribution of pore-water pressure. Numerical 
simulations of infiltration effects are based on this 
theoretical framework. Basically, water that moves 
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vertically is governed by one-dimensional soil water flow 
in homogeneous soil. The infiltration rate, � at the soil 
surface is proposed using Darcy's law as 

  
 
 q=-K �

∂ψ
∂z

-1� (6) 

Numerous models of local infiltration such as the Horton 
Empirical Equation, Philip's model, and Green-Ampt 
Model are based on vertical homogeneous soil and 
various conditions to compute infiltration capacities, as 
shown in Equations (6– 8), respectively. 

 
 fc=ff+ �f0-ff� exp(-αt)       

 
 
 fc=

1
2

St-1/2+A (7) 

 
 

fc=Ks �1-
ψaυ(θs-θi)

F
� 

(8) 

 
Even though many infiltration models have been 

developed, Morbidelli et al. [49] have discovered that 
calculating infiltration at various scales and slope effects 
is problematic due to other natural spatial heterogeneity 
of soil hydraulic characteristics and surface conditions.  

 Landslide susceptibility map 

Landslide susceptibility mapping is the process of 
determining the likelihood that landslides will occur in a 
particular area. Various factors, including slope, 
elevation, slope aspect, distance to rivers and faults, and 
land use, are utilised to develop predictive models for 
identifying regions prone to landslides. These 
susceptibility maps have the potential to serve as 
important tools in the disciplines of landslide control, 
disaster planning, and environmental management.  

The development of statistical approaches and 
Geographic Information System (GIS) tools for compiling 
landslide susceptibility or hazard maps has advanced 
significantly over the past decade. Recent research has 
shown that soft computing and data mining techniques, 
such as artificial neural networks and support vector 
machines, effectively predict landslide susceptibility. 
These algorithms have shown great potential in accurately 
identifying areas prone to landslides. In addition, 
physically based models consider spatial variation of soil 
parameters, making them more advanced and accurate for 
assessing slope stability. Furthermore, physically based 
models can incorporate temporal and spatial 
characteristics, allowing for a deeper comprehension of 
landslide susceptibility. 

Overall, physically based models offer a robust and 
comprehensive methodology for mapping landslide 
susceptibility, making them essential tools for managing 
landslide possibility. This study aims to carry out a 
detailed analysis of four commonly used physically based 
models in landslide susceptibility research. The models 
under consideration are the Shallow Landslide Stability 
Model (SHALTAB), Stability Index Mapping 
(SINMAP), Transient Rainfall Infiltration and Grid-

Based Regional Slope-Stability Model (TRIGRS), and 
Yon-Sey Slope Model (YS-Slope). This analysis will 
focus on the application and limitations of these models 
in investigating landslide susceptibility. 

 Stability index mapping, SINMAP 

Pack et al., [50], developed the SINMAP model to 
enhance Colombia's existing terrain stability mapping 
technique. This method enhances the methodologies used 
for stability mapping by integrating grid-based Digital 
Elevation Models (DEM) into a Geographic Information 
System (GIS) platform using built-in free extension tools. 
This improvement makes the analysis more manageable, 
more convenient and worldwide accessible. In the present 
model, several parameters comprised of slope degree, 
slope aspect, elevation, flow direction, slope angle, and 
catchment area are obtained from the DEM. 
 On the other hand, the remaining parameters, 
particularly geotechnical data, must be set manually or the 
authors' suggested default values can be utilised. In 
addition, this model integrates uniform probability 
distributions that encompass uncertainty parameters 
within specified lower and higher bounds. 
 The stability index (SI) calculated in the SINMAP 
model indicates the probability of stability at a given 
location. This calculation assumes that the parameters are 
uniformly distributed within the grid cell. The value 
varies from zero, indicating the highest level of instability, 
to 1, representing the lowest level of instability. Tables 1 
and 2 present a comprehensive compilation of parameters 
and their dimensionless SI value, organised according to 
stability classes.  
 It calculates the factor of safety in a simplified way to 
achieve equivalence in dry and wet density conditions 
according to the research conducted by Hammond et al. 
[51]: 

 

SI =
Cr+C+cos2θ�ρsg(D-Dw)+�ρsg-ρwg�Dw�tanϕ

Dρsg sinθ cosθ
 

(9) 

where  
 

�� Root cohesion (Nm-2) 
�� Bulk density of soil (kg/m3) 
�� Density of water (kg/m3) 
� Vertical soil depth (m) 
�� Height of the water table (m) 

 
Based on the hydrological perspective, SINMAP 

refers to the topography-based hydrological model, 
TOPMODEL [50] and considered three assumptions 
indicated in Table 1. Assumptions (i) and (ii) in Table 1 
indicate that the lateral discharge is given by � = �� and 
relative wetness based on the assumption (iii) can be 
written as  

 
 �� = ��� �

��
�����

, 1� (10) 
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Table 1. Assumptions in TOPMODEL [50] 

 
The stability index can be represented by adding the 

wetness index from Equation (10) to the dimensionless 
factor of safety expressed as 

 

SI=
C+cosθ �1-min � Ra

Tsinθ ,1� r� tanϕ
sin θ

 
(11) 

 
where 

 
 � =

(�� + ��)
(���g)  

(12) 

 
� is dimensionless because of the perpendicular soil 
thickness and � = ��/��. The variables � and � are 
derived from the DEM while �, ���� and � values are 
provided by the user. The SINMAP model distinguishes 
between six distinct classes (Table 2.).  

 
Table 2. Six stability conditions in the SINMAP model. 

 

 Shallow landslide stability model 
(SHALSTAB) 

Montgomery and Dietrich created a physically-based 
shallow landslide stability model (SHALSTAB) in 1994 
[48]. Assuming under steady-state conditions, the model 
performs distributed assessment based on the combination 
of infinite-slope stability analysis and a hydrological 
model called TOPOG [48]. This model is designed to 
compute the relative wetness, denoted as w, which 
describes the parallel flow of water along a sloping plane 
in steady-state saturation: 

 

� =
�
�

�
� ����

 (13) 

 
where  

 
� Extreme rainfall that prompts landslides (mh-1) 
� Soil's transmissivity (m2h-1) 
� Drainage area (m2) 
� Width of contour length 

 
The SHALSTAB model can predict critical rainfall 

that causes slope failure in the research area by combining 
the hydrological and geomechanical components. The 
following is the main Equation to compute the essential 
rainfall for each grid cell.  

 

log
Q
T

=
sin β
a

b�
�

c
ρwgz cos2 β tan ϕ

+
ρs
ρw

�1+
tan β
tan ϕ

�� , 

 
(14) 

 
Where 
 

G Gravity acceleration ((m/s2)) 
� Thickness of soil (m) 

 
The predictive index value is quantified in millimeters 

per day of significant rainfall. The small values suggest 
that small intensity and short-duration rainfall may cause 
shallow landslides, while high rates imply that more 
significant rainfall is required to cause slope failure.  

This model makes it possible to determine the stability 
of topographic elements by incorporating the geotechnical 
component based on the Mohr-Coulomb failure law 
shown in Equation (15) and Equation (13) as described in 
Equation (16) [52]: 

 
ρsgz sin β cos β= c'+ �ρs-ρw

h
z

� gz cos2 β tan ϕ , (15) 

a
b

=
T
Q

sinβ �
ρs
ρw

�1-
tan β
tan ϕ

� +
c'

ρwgz cos2 β tan ϕ
� (16) 

 
where 

 
g Gravity acceleration ((m/s2)) 
� Thickness of soil (m) 

 
Whenever � �⁄  exceeds the value on the right-side 

equation, instabilities are projected to occur whereas, the 
smaller value � �⁄   indicates stable topographic elements. 
The reinforcement provided by roots enhances the soil's 
cohesive properties. 

 Transient Rainfall Infiltration and Grid-Based 
Regional Slope-Stability Model (TRIGRS)  

TRIGRS uses the Fortran programming language to 
calculate transient changes in pore pressure and 
subsequent changes in the factor of safety caused by 
rainfall infiltration. This model generates maps of 
susceptibility to shallow translational landslides triggered 
by pluviometric events due to its output [53]. Baum et al. 
[54] have developed this model and updated it to version 
2.0 by expanding the model to cater vertical infiltration 
(flow model in one-dimension) in homogenous isotropic 
material during a storm. The model consists of analysing 
one-dimensional flow through unsaturated soils  and for 
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assessing slope stability [47]. In addition, the model 
acquired a GIS framework, in which the input data like 
elevation, slope aspect, slope inclination, soil properties, 
soil depth, groundwater level, and rainfall data is 
converted into grid-based structure, in which specific 
information is assigned to individual cells [21, 47]. 

Iverson [55] described the phenomenon of one-
dimensional flow through the unsaturated soil form of 
Richard’s equation by using coordinate transformation to 
consider the effect of a sloping ground surface, as 
mentioned in the equation below. 

 
��
��

=
�

��
��(�) �

1
cos2β

��
��

− 1�� 
(17) 

 
Where: 

 
� Pressure head of pore-water (m) 
� Time 
� Depth (m) 
� Volumetric water content  
K(�) Pore pressure head 

 
The pore pressure in the Z direction depends on 

saturated permeability and hydraulic conductivity. This 
model also considers an infinite slope model to calculate 
the factor of safety (FS) for each cell as generally defined 
by Equation 17 as follows: 

 

FS=
tan ϕ'

tan β
+

c'-�(�,t)γw tan ϕ'

γs� sin β cos β
 

(18) 

 
 

 

 Yonsey Slope Model (YS-Slope)  

Yonsey Slope Model (YS-Slope) developed by Kim et al. 
[23] is based on a GIS-based Physical landslide prediction 
model. This approach considers the progression of the 
wetting front through rainfall infiltration, groundwater 
recharge, and subsequent flow. The YS-Slope model was 
developed using the methodological process consisting of 
internal and (Fig. 2). This model consists of hydrological 
parameters of unsaturated soil, such as soil water 
characteristic curve (SWCC) and field matric suction, as 
well as geotechnical properties, which refer to the 
physical characteristics of soil that determine its strength, 
such as internal friction angle and cohesion value.  

Three primary situations can be distinguished in 
describing landslides brought on by rainfall. These 
situations are shallow failure, which happens along the 
wetting front, failure at the bottom of the aquifer, and 
deep-seated failure which is influenced by both the 
wetting front and groundwater recharge. 

The classification of rainfall-induced landslides 
encompasses three prominent conditions. They are 
shallow failure along the wetting front, failure at the 
bottom of the groundwater table, and deep-seated failure 
resulting from the first two conditions. To assess landslide 
factors triggered by rainfall, this study has utilised the 
infinite slope failure model, the physical limit equilibrium 
technique. Furthermore, the model incorporates the 
impact of heightened soil strength and load, as well as the 
interception loss caused by plants, by making 
modifications to the infinite slope stability equation as in 
the following equation: 

 

FS=
�c'+cr

' �+��γs-γw�(Zw+Dw)+γt·(D-Zw+Dw)+qo�cos2β·tanϕ'

�γs·(Zw+Dw)+γt·(D-Zw+Dw)+qo�·sinβ·cosβ
 

(19) 

 

Fig. 2. Infinite slope stability analysis by Kim et al., [23]. 
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Fig. 3. Infinite slope stability analysis by Kim et al., [23]. 
 

Where, 
 

��
�   Shear strength by root reinforcement  

��   Load from forest tree  
�� Total unit weight of soils 
�� Wetting front depth  
�� Groundwater table from the bedrock  
� Thickness of dry soil  

 
The presence of forest trees contributes to the 
augmentation of driving and resistance forces, whilst root 
reinforcement increases resistance in slope stability. Mein 
and Larson [50]  have adopted the modified Green-Ampt 
model to analyse rainfall infiltration and estimate wetting 
front depth as follows 

 
�� = I · �� + � �� �1 +

��Δ�
�

�
��

��

 
(20) 

 
 

�� =
�� ∙ �� ∙ Δ�

�� ∙ (�� − ��) (21) 

 
 
 
 
 
 

��� =
��

Δ�

=
I · �� + ∫ �� �1 +

��Δ�
� ���

��

Δ�
 

    
 
(22) 

 

 
The equation (20) represents rainfall infiltration, �� 

and is estimated using the trial and error method with a 
cumulative infiltration variable. The relationship between 
rainfall infiltration and runoff is calculated by considering 
the ponding time, �� [50]. The depth of the wetting front, 
denoted as ���, within the vadose zone can be 
empirically defined as the ratio of the rainfall-infiltration, 
�� and the deficit water content, Δ�. 

The trial-and-error approach was utilised to ascertain 
the ponding duration and cumulative infiltration by 
employing Equations (20) and (21) as each parameter is 
interdependent on these factors, it becomes important to 
consider all of them. Cumulative infiltration, which is 
subsequently utilised to compute the duration of ponding 
is determined by comparing the computed cumulative 
infiltration using Equations (21) with the cumulative 
infiltration assumed.  

The total infiltration and the shortfall water content are 
used to determine the wetting front's depth. The 
aforementioned methodology is used for every individual 
grid point inside the geographical information system 
(GIS) geometry to ascertain the regional wetness state of 
the designated study area. The depth of the wetting front 
significantly affects slip surface strength and overburden 
pressure of initial debris flow simulation. Additionally, it 
is considered when calculating the erosion depth

Table 3: Summaries of four models 

Model SINMAP SHALSTAB TRIGRS YS-SLOPE 
Type of landslide Shallow translational 

failure 
Shallow translational 

failure 
Shallow translational 

failure 
Shallow and deep-

seated failure 
Soil condition saturated saturated unsaturated Unsaturated 

Hydrological model steady state steady state transient rainfall hydrometeorological 
Infiltration Not considered Not considered pore pressure response Infiltration depth 

Subsurface flow 
condition 

uniform uniform Not considered Homogeneous, Varies 
with time and below 

the groundwater table. 
Trigger slope 

stability 
probability of FS critical steady‑state 

rainfall 
Limit equilibrium slope 

stability model 
Limit equilibrium slope 

stability model 
Output Stability Index (SI) steady-state recharge Factor of Safety (FS) Factor of Safety (FS) 
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The researchers utilised a modified version of the 
Green and Ampt model to assess the infiltration of rainfall 
and subsequent recharge of groundwater, considering the 
characteristics of the unsaturated soil. The hydrological 
model is based on three assumptions: (1) assumes that 
both the aquifer and soils are homogeneous in nature; (2) 
acknowledges that recharge rates vary both 
geographically and temporally; (3) model assumes that 
groundwater flows occur only beneath the ground surface.  

The calculation of groundwater flow was performed 
by integrating a raster model based on Geographic 
Information Systems (GIS) with Darcy's equation. The 
input variable for the calculation of recharge was the 
infiltration of rainfall. The Green-Ampt model, after 
being updated, was employed to analyse rainfall 
infiltration. It was recommended as a suitable model for 
studying infiltration in homogeneous soils with a 
consistent water content when subjected to ponded 
circumstances. The Green-Ampt model was adapted to 
better suit the modelling of infiltration. A groundwater 
flow analysis was performed on discrete units with 
homogeneous soil properties. The fluxes were computed 
to achieve equilibrium between the quantities of water 
entering and exiting the unit volume, by Darcy's law. 

 Result and discussion 
Among these models, SHALSTAB and SINMAP have a 
similarity in conception framework that incorporates 
geotechnical, hydrological, and geomorphic input 
parameters. Although the constitution of these two models 
is similar, SHALSTAB is classified under a deterministic 
approach, while SINMAP is probabilistic. Besides, 
SHALSTAB calculates critical precipitation for slope 
failure, while SINMAP, TRIGS, and YS-slope determine 
the factor of safety.  According to Bueechi et al. [57], 
the use of arbitrary parameters in the SINMAP model 
strongly restricts the model results. Hence, it is advisable 
to utilise the outcomes solely as a broad measure of 
vulnerability rather than as a factor of safety. 
Pradhan and Kim [58] conducted a comparative analysis 
of the application of the SHALSTAB and SINMAP 
models for slope assessment in Deokjeok, Korea. The 
results of their analysis revealed that the susceptibility 
maps generated by the SHALSTAB model exhibited a 
significantly higher prediction accuracy of 82.4%. In 
contrast, the SINMAP model demonstrated a 
comparatively lower prediction accuracy of 62.58%. The 
researchers concluded that the SHALSTAB model 
exhibited more accuracy in forecasting regions 
susceptible to landslides in weathered granite soils. 
Furthermore, they observed and found that the landslides 
concentrated in areas identified as highly unstable.  
 Michel et al. [59]  compared SHALSTAB and 
SINMAP by assessing their effectiveness in delineating 
areas prone to landslides throughout the Cunha River 
basin in Brazil. The outcomes derived from the simulation 
of both models demonstrated satisfactory accuracy in 
predicting landslides within this basin. All observed 
landslide scars exhibited a consistent correspondence with 

the unstable classes identified by the SHALSTAB and 
SINMAP models.  
 In the context of a comparison analysis, it was shown 
that the optimal values of SuI/ErI derived from maps 
constructed using the SHALSTAB and SINMAP 
methodologies were 3.08 and 3.11, respectively. 
Regarding identifying landslide scars into the unstable 
classes, SHALSTAB demonstrated better performance 
than SINMAP in reclassifying the stability map. 
According to the SHALSTAB classification, a mere 6% 
of the basin's overall area was deemed unstable, whereas 
SINMAP categorised a significantly higher proportion of 
30%.  
 They concluded that the SHALSTAB model 
demonstrates a higher capability in identifying specific 
regions that are susceptible to shallow landslides 
compared to the SINMAP model when it comes to 
landslide prediction within the Cunha River basin. 
Besides, Kim et al., [23] mentioned in their study although 
both SHALSTAB and SINMAP take into consideration 
shallow landslide due to groundwater flow convergence 
and TRIGRS model depends on pore water pressure 
analysis, these three models cannot investigate the critical 
condition of groundwater flow due to rainfall infiltration 
that affects slope stability. 
 Although all four models are similar in their 
development, it should be noted that SINMAP and 
SHALTAB do not consider unsaturated 
circumstances compared to TRIGRS and YS slope. While 
the TRIGRS model only considers temporal infiltration in 
a one-dimensional condition, the YS slope model 
incorporates groundwater variation in both spatial and 
temporal distribution. Therefore, the YS slope model can 
predict failures occurring at both shallow and deep-seated 
levels. Table 3 presents a summary of the four models. 

 Conclusion 
In conclusion, developing landslide susceptibility maps 
requires various techniques that have different abilities. 
The feasibility of conducting a study relies on the 
accessibility of an extensive database and the particular 
goals of the research. These maps are useful resources for 
urban planners and engineers as they work towards 
managing and preventing landslides from happening in 
the future. 
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