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Prediction of Indoor Air Quality using Long Short-Term Memory 
with Adaptive Gated Recurrent Unit 

 

Abstract. There is significant evidence that the COVID-19 virus may be spread by inhaling aerosols 
leading to risk of infections across indoor environments. Having said that, it is clear that the formulation of 
indoor air quality (IAQ) needs to be carefully examined. In general, IAQ can be controlled by proper 
ventilation system across buildings. Nevertheless, different buildings require different mechanistic 
approaches and it may not be an effective solution for the buildings. Thus, statistical approaches have great 
potential to evaluate the IAQ in real occupied buildings. Numerous machine learning (ML) techniques were 
introduced to forecast the indoor environmental risk across buildings. However, there is inadequate data 
available on how well these ML techniques perform in indoor environments. Recurrent neural network 
(RNN) is a ML technique that deals with sequential data or time series data. However, the RNN model 
gradient tends to explode and vanish, leading to inaccurate prediction outcomes. Therefore, this study 
presents the development of a time based prediction model, Long Short-Term Memory (LSTM) with 
adaptive gated recurrent units for the prediction of IAQ. Using an advanced LSTM model, the study focuses 
on the performance of the prediction accuracy and the loss during training and validation. Also, the 
developed model will be assessed with other RNN models for data validation and comparisons. A set of 
particulate matter (PM2.5) dataset from commercial buildings is assessed, preprocessed and clean to ensure 
quality prediction outcomes. This study demonstrates the performance of the hybrid LSTM model to 
remember past information, minimize gradient error and predict the future data precisely, ensuring a 
healthier indoor building environment. 
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1 Introduction 
The sick building syndrome describes a situation in 
which building occupants experience acute health 
and/or comfort effects that appear to be linked to time 
spent in a particular building, but where no specific 
illness or cause can be identified. The complaints may 
be localized in a particular room or zone, or may be 
spread throughout the building. Also, indoor air quality 
(IAQ) describes how inside air can affect a person's 
health, comfort, and ability to work. It can include but 
not limited to temperature, humidity, mould, bacteria, 
poor ventilation, or exposure to other chemicals. Indoor 
air pollution has received little attention in the past 

compared with air pollution in the outdoor environment. 
Nowadays, indoor air quality has becoming world-wide 
concern especially after the pandemic of COVID-19 
where people mostly spend 90% of their time indoor. 
Therefore, IAQ is ranked as one of the top five 
environmental risks to global health and well-being [1]. 
 Research in the field IAQ has a long tradition in the 
environmental engineering field. However, the 
determination to design such robust forecasting model 
is technically challenging, especially when dealing with 
non-linear data. Recently due to the pandemic of 
COVID-19, research have shown significant interest in 
modelling prediction model for IAQ monitoring or 
statistical model which has been referred as data driven 
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model. The type of model used usually require the 
concept of input and output of the dataset without 
needing the mechanistic model of the buildings. The 
model is basically constructed based on the sequential 
data. 
   In this modern day, more robust recurrent neural 
network (RNN) has been introduced in order to solve the 
vanishing and exploding gradient of the conventional 
RNN. Before that, RNN processes to stop those events 
from occur are by having minimum clip at the gradient 
of RNN during the process of backpropagation. But, still 
this idea of solution did not able to memorize long term 
of the time series sequential data. This is where the Long 
Short-Term Memory (LSTM) comes in. The model is 
one of the variants of the RNN model. LSTM has solid 
abilities to memories short and long-term series of 
historical data. To date, there are still few of published 
research that deploy LSTM approach in the 
environmental engineering problem, especially indoor 
air quality. Therefore, it is necessary to use LSTM in 
order to predict short and long term of IAQ historical 
data. This study examines the ability of LSTM to 
enhance the data driven method in order to predict better 
accurate forecast and reduce loss during the deep 
learning training. 
 This paper organized as follows, in Section 2, 
discussed the LSTM network architecture, Gated 
Recurrent Unit (GRU) model and datasets of the IAQ. 
Further, the section includes the deep learning 
evaluation metrics to calculate the model performances. 
Results and discussions of the application of the LSTM 
and GRU model studies are presented in Section 3. 
Followed by Section 4, deduces the summary of the 
research. Last but not least, the challenges of the 
research and future direction of the research are 
addresses in this manuscript. 

2 Methodology

2.1 LSTM Network Architecture

  
A vanilla and efficient model for IAQ prediction is 
introduced in this research. The IAQ parameters from a 
commercial building in Kuala Lumpur, United State 
(US) Embassy is used as an input dataset. The total 
available dataset was used for training and testing using 
LSTM and GRU prediction model. LSTM is a variant of 
RNN which deal with vanishing and gradient problem. 
The highlight feature of LSTM model is it has layer 
which is called memory cells. The model also consists 
of input layer and output layers. Each memory cell has 
three input gates which control and maintain the 
memory state (St). The gates are the forget gate (ft), input 
gate (it) and output gate (ot). The overview of the LSTM 
model architecture shown in Fig.1. 
         LSTM layer also consists of hidden state, which is 
known as the output state. At every timestep t, it 
contains the output of the LSTM. Other than hidden 
state, the cell state also part of the LSTM layer. The 
purpose of the cell state is to store the present 
information of time step t that the layer learned in the 

previous time steps. Every time step, cell state will 
decide either to keep or remove the information that 
state learned. The cell state controls and updates the 
information by using the three gates mentioned earlier. 
Also, at every time step, the information xt is comes 
from the output of the previous time step, output ht. 
Based on the references [2-5] the gates in the cell state 
have their own responsible. The purpose of the three 
gates is mentioned in the Table 1. 
 

Table 1. Purpose of gates in LSTM cell state. 
 

Gate Role

Forget Decides which information need to be 
removed from the current cell state

Input Decides which information need to feed to 
the current cell state

Output Decides which information will be used in 
the current cell state

 
 Overall architecture of the LSTM model is based on 
the hyperparameters defined in the Table 2, to forecast 
the time steps by one step and update the new 
information at next memory cell.  

 
Table. 2.  Hyperparameter tuning  

 
Hyperparameters Setting 

Input layer 50 nodes 
Activation function tanh 

Optimizer Stochastic gradient 
descent 

Learning rate 0.01 
Epochs 50 

Batch size 32 
Dropout rate 0.2 

 
 
 The network architecture is tuned according to the 
Tensorflow packages available. In order to train the 
proposed network with the IAQ parameters, the overall 
mechanism of LSTM is shown in the Fig.1 according 
the [3]. The fully connected layers are then connected to 
the proposed model.   
 
  

 
 
 
 
 
 
 
 
 

 
Fig. 1. The overall of LSTM cell state architecture. 
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2.2 Gated Recurrent Unit Model

After 17 years of the presence of vanilla and improved 
version of LSTM [3,5,6,18], another variant of RNN 
was developed. Gated Recurrent Unit (GRU) was 
introduced to simplify the computational power of 
LSTM while improving the output from the RNN 
model. At the same time, GRU preserves the LSTM 
performance while optimising the network layout. The 
GRU network structure, which can address the 
prediction issue of long interval long delay time series, 
only has two gate structures compared to the LSTM 
network structure's four. The update gate is used to 
regulate how much information from one moment is 
incorporated into the current moment. The reset gate is 
used to regulate how much of the information from the 
previous moment is ignored.  

 
 

 
Fig. 2. GRU overall architecture. 

 
  
 The output of the reset gate rt at time t. Meanwhile 
the output of the update gate at time t and ht is zt. ht-1 is 
the output at time t respectively. The input at time t is xt 

and  is the activation function at each gate. The 
computation for GRU is referred in equation (1). 
 

               rt = σ(Wr [ht-1, xt ])    (1)

                  

 

2.3 Hybrid LSTM with GRU model

The LSTM model has been proven in terms of their 
capacity to remember long term and short-term 
predictions. GRU on the other hand, has significant 
computational power due to the simplified gates 
architecture while preserving reliable performances. 
Combining these two models into one powerful model, 
will realize a powerful sequential forecasting 
performance, deep learning approach using the LSTM-
GRU. This is where a hybrid LSTM with GRU comes 
in, to improvise the performance of the IAQ prediction 
model. Training data will be fed into the LSTM model 
first, then continue to be fed into the GRU model. 
Finally, the data will go through the output layer which 
contains the dense layer. The overall flow of the LSTM 
with GRU model is presented in the figure below. 

 In the LSTM with GRU model, the LSTM has two 
layers, each layer has 50 hidden units with tanh 
activation function. Then the training data will be fed 
into dropout layer before it is pass to the second layer of 
LSTM. Dropout layer is set at 20 percent so that it can 
regularize the output of data from the previous layer. 
The overall parameter tuning can be referred to Table 2.  
This process intents to prevent complex computation 
during the training process [8,9]. 
 The GRU section also has two layers for training. 
Similar to the previous LSTM layer, it also contains 50 
hidden units and a dropout layer for each GRU layer. 
Finally, the data will be passed to the dense layer for the 
deep learning neural network learning process. This is 
where the process of the learning and tuning of the 
overall model dimension occurs. The output of the 
training model will be validated and test data in order to 
evaluate the performance of the LSTM with GRU 
model. 
 

 
  
Fig. 3. LSTM with GRU model. 
 

2.4 Prediction model evaluation metrics

Evaluation metric is one of the crucial stages of building 
a good prediction model. The purpose of an evaluation 
metric is to benchmark the desired prediction model 
efficiency. Based on the evaluation metric, one can 
deduce the performance of any prediction model 
[10,13]. Therefore, to demonstrate the performance of 
the IAQ prediction model in this research, root mean 
square error formulation in equation (2) is assessed. 
  
 

(2)

 
 

 In the equation (2) the data point of the dataset is 
defined as n, the predicted PM2.5 is represented by y’. 
Meanwhile y is the observed PM2.5 at the time i, y is the 
mean of the actual of PM2.5 at the US embassy.  In this 
research, Python Keras library and Tensorflow were 
used as the platform for the prediction model 
computation and development. 
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2.5 Indoor air quality data description and 
analysis

The dataset used in this research comprises of the 
database from the United State Embassy and Consulate 
building in Kuala Lumpur. The set of data collection 
consists of the particulate matter 2.5 micron (PM2.5). In 
general, PM2.5 which is referred as fine particles are one 
of the high risk to the deterioration of respiratory system 
[16]. Plus, PM 2.5 are harmful because of their size 
which allow them to pass to the lung and even blood 
circulation directly. Back then in 2008 in Beijing, US 
Embassy began air quality monitoring in their premises 
in order to make sure their citizen receive accurate 
information related to the air surrounding air quality 
[12]. 
 In 2015 the United State Environment Protection 
Agencies (EPA) dealt and agreement to step up the scale 
of the PM2.5 monitoring at US embassies where the 
local PM2.5 data were not available [8]. Therefore, US 
Department of State is working together to monitor and 
control the indoor air qualities in U.S embassies around 
the world. In Kuala Lumpur, the consulates effectively 
links the information of the IAQ to the EPA AirNow 
International website [8]. 
 All the daily and hourly averaged PM2.5 from the 
website mentioned previously is scrapped and 
downloaded through June until November 2022. The 
website, AirNowTech checks the lowest, highest and the 
performance of the PM2.5 reading (Analysis of fine 
particle pollution data measured at 29 US diplomatic 
posts worldwide).  The dataset also provides a column 
for the Air Quality Indices (AQI), indicating the air 
quality catogeries (“Good” and “Moderate”). The daily 
PM2.5 concentration in the dataset were calculated 
using formula provided [8]. It is stated that the between 
18 to 24 hours should have valid data in the 
measurement. On the other hand, for hourly data 
measurement (1-h average), it uses the same 
measurement validation. And the formula calculated for 
1-h average, it used the EPA NowCast theory [8]. The 
data consists of 3,236 of hourly sampling for the past 
five months. 2,589 data were examined as training and 
647 data used as validation respectively. 
 

3 Results and Discussions
The simulation of the IAQ prediction model was done 
using Keras, Tensorflow and Numpy packages in the 
Python library. In order to have a good prediction 
training process, data standardization is implemented to 
leverage the overall data into a simpler feature range. By 
having this process, one can transform the scale of the 
real-world data into a scale of zero to one. By having 
this method, the learning algorithm performs better 
when the actual numerical data is scale to range of value 
which have the most precision. 

In this study, the input of the architecture was 
initialized using 2588 data sampling and it was 
simulated using 647 validation data using a set of time 
step (25 percent of the final time series), and it was 
continued by repeating the remaining network learning 
of the LSTM model and LSTM with GRU model. The 
simulation of the validation results are illustrated in Fig. 
4 for LSTM model and in Fig. 5 for LSTM with GRU  
model with orange line colours.  

Quantitatively, the results of the validations 
predictions are presented in the Fig. 6 and Fig. 7 with 
orange line colours. From Fig. 7, the LSTM with GRU 
model shows considerable precision in term of the 
average of the pattern flows. 

The RMSE was computed in order to evaluate the 
performance of the actual PM2.5 concentration at the 
embassy building. These two assessed performances 
were computed from the actual PM2.5 value. The results 
presented in Table 3 show the LSTM model RMSE is 
0.31862, while the LSTM with GRU model shows 
RMSE 0.20345. Also, the computational process time 
during both models training did not give any differences 
during the experimental simulation. In deduction, the 
LSTM with GRU model outperformed the LSTM model 
with lower RMSE value. 
 
 

 
Table. 3.  Evaluation metric 

 
Model LSTM LSTM with GRU 
RMSE 0.31862 0.20345 

 
 

  

 
Fig. 4. LSTM model for PM2.5 concentration at Kuala Lumpur US Embassy building. 
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Fig. 5. LSTM with GRU model for PM2.5 concentration at Kuala Lumpur US Embassy building. 

 

 
 Fig. 6. LSTM validation and prediction results for PM2.5 concentration at Kuala Lumpur US Embassy building. 

 

  
 Fig. 7. LSTM with GRU validation and prediction results for PM2.5 concentration at Kuala Lumpur US Embassy building. 
 

4 Conclusion
This paper was arranged to develop a hybrid and 
improvised version of LSTM for IAQ prediction using 
vanilla LSTM and hybrid LSTM with GRU model. The 
research has investigated the idea of RNN and its 
variances. The hybrid of LSTM with GRU not only 
outperforms the conventional LSTM, but also combines 
both RNN variants to improvise loss function of the time  
 
 

series prediction algorithm. With the evolution of ML 
architectures, the hybrid version of LSTM with GRU is  
potentially to be deployed in indoor space 
environmental problems.  
 For upcoming study, engaging multivariate input 
features can be included in order to find the relationship 
impact of poor IAQ based on the prediction 
performance. Furthermore, the escalation of the RNN 
variants in order to have promising performance with 
significant lower computation power will be more 
challenging in the process of development of building 
and environmental forecasting cases. 
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