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Abstract. Personal comfort models were developed to circumvent most of the constraints imposed by the 
Predicted Mean Vote (PMV) and present adaptive models, which consider the average response of a large 
population. Although there has been a lot of research into new input features for personal comfort models, 
the spatial data of the building, such as windows, doors, furniture, walls, fans, and heating, ventilation, and 
air conditioning (HVAC) systems, (the location of its occupants with those elements), have not been 
thoroughly examined. This paper investigates the impact of the spatial parameter in predicting personal 
indoor thermal comfort using various machine learning approaches in air-conditioning offices under hot and 
humid climates. The Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbour, and 
Neural Network were trained using a field study dataset that was done in nineteen office spaces yielding 
628 samples from 42 occupants. The dataset is divided randomly into training and testing datasets, with a 
ratio of 80% and 20%. This study examines how well machine learning predicts personal thermal comfort 
with spatial data compared to without spatial data; where the spatial parameters have shown a significant 
influence on model prediction accuracies, Mean Absolute Error (MAE), and Root Mean Squared Error 
(RMSE). The result shows the average MAE is decreased by 10.6% with the Random Forest (RF) getting 
the most MAE reduction by 23.8%. Meanwhile, the average RMSE is reduced by 11.8% with the RF giving 
the most RMSE cutback by 30.6%. Consequently, the spatial effect analysis also determines which area of 
the room has cold or heat clusters area that affects thermal comfort that contributes to the design of 
sustainable buildings.

1 Introduction 

Over the past few decades, the world has seen a sharp 
increase in the amount of electricity used for air 
conditioners in buildings, especially in the Association 
of Southeast Asian Nations (ASEAN) reaching over 80 
TWh in 2020 [1]. The International Energy Agency 
(IEA) forecasts that the ASEAN will see increased air 
conditioner ownership due to the region's ongoing 
economic expansion and population growth. The 
transformation of tropical lands also contributes to the 
increase in indoor time when surface temperatures rise. 
Building design and operation are primarily driven by 
two factors, energy efficiency and thermal comfort [2]. 
Setting better efficiency cooling criteria by governments 
is a crucial and relatively easy step. However, efforts to 
conserve energy should not sacrifice the occupant's 
comfort. 
Thermal comfort is a crucial factor in occupant 
productivity, health, and well-being [3,4]. It has been 
demonstrated that a rise in indoor temperature can make 
occupants feel less attentive, which lowers cognitive 
function [5]. Based on the American Society of Heating, 
Refrigerating, and Air-Conditioning Engineers 
(ASHRAE) [6] thermal comfort is a mental state that 
expresses contentment with the thermal environment 
and is quantified using subjective evaluation. Because 

of this, occupants must be contented with their 
temperature surroundings if they want to work 
comfortably. 
 The most common model that predicts thermal 
comfort is the predicted mean vote (PMV) and adaptive 
thermal comfort model. The PMV model developed by 
P. O. Fänger [7] is the most widely used indicator in the 
field of thermal comfort. It is based on experimental data 
collected in a steady-state climatic chamber with heat 
balance ideas. Fanger's concept creates a group thermal 
model but not a model for individual thermal comfort. 
A comfortable PMV index is one with 95% happy 
responders. The thermal sensation vote is an integer 
with an ASHRAE scale from −3 to +3. model. PMV 
model relies on personal factors such as clothing 
insulation, and metabolic rate, and environmental 
factors such as indoor temperature, humidity, radiant 
temperature, and air velocity. Another common model 
that was used in thermal comfort is the adaptive model. 
The adaptive model was created because of several 
studies showing that people actively interact with their 
surroundings. The model takes into consideration 
numerous psychological, physiological, and 
behavioural components as individuals regulate their 
temperature environment using various tactics including 
moveable windows, clothing, heaters, fans, and so forth. 
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Adaptive models are frequently applied in environments 
with natural ventilation. 

The ability of the PMVs to give accurate results 
based on diverse factors and analyse individual 
variations in occupants' thermal preferences is one of its 
weaknesses. As a result, the machine learning (ML) 
approach has been used to investigate the prediction of 
personal thermal comfort due to its significant capacity 
for self-study, rapid computation, and sophisticated 
problem-solving. To predict personal thermal comfort 
more accurately, several features are examined, to 
unmask and quantify the differences between different 
individuals in an environment. This enables a better 
understanding of specific comfort needs and 
requirements. 

Although there has been a lot of research into new 
input features for personal comfort models, the spatial 
data of the building, such as its windows, doors, 
furniture, walls, fans, and HVAC systems, as well as the 
location of its occupants with those elements, have not 
been thoroughly examined.  

2 Literature Review  

An essential component of building thermal 
management is the prediction of thermal comfort and 
subsequent environmental adjustment. Over the years, 
several thermal comfort prediction models have been 
created, some of which include machine learning in the 
prediction process. The support vector machine (SVM) 
approach, for instance, was applied by the researchers 
[8] to the RP-884 thermal comfort database to develop a 
unique model with self-learning and self-correction 
capabilities. The properties of the SVM algorithm and 
the sample distribution characteristics of the RP-884 
were used in the study to estimate the applicability 
range. The model might considerably reduce the 
previous models' errors. Comparing the new model to 
the PMV model, the sum of squares for residuals (SSE) 
was reduced by 96.4%, while the fitting degree (Rnew) 
increased by 83.7%.  

[9] adopted four common classification algorithms 
including logistic regression, k-nearest neighbour, 
support vector machine, and random forest. Given the 
data collected in the case study, the random forest 
classifier produces the highest classification accuracy. 
[10] described an artificial neural network (ANN) with a 
momentum function technique to efficiently tackle the 
problem of indoor thermal comfort prediction. To 
enhance classification performance and decrease mean 
square error (MSE), the innovative swarm algorithm 
(CSO) was used, which automatically produces the most 
effective architectural model of ANN. 
 However, current machine learning-based personal 
comfort models, like conventional thermal comfort 
research, concentrated on occupants' physiological and 
psychological differences without considering the 
spatial impact. Some research examined spatial 
differences in the machine learning based personal 
prediction model, such as incorporating desk-specific 
air velocity measurements to get the district ambient 
environment [11] and spatial impact in summer and 

winter settings [12]. The other differences produced by 
different spatial locations and spatial arrangement 
designs were not considered. Herein, significant spatial 
parameters should be addressed in the development of 
machine learning-based personal comfort models, 
particularly in hot and humid climates such as ASEAN 
nations, where the influence on prediction accuracy 
considering these aspects should be thoroughly 
examined. This study aimed to investigate the spatial 
effects on indoor personal thermal comfort by 
employing machine learning algorithms in an air-
conditioned workplace under a hot and humid climate. 

3 Methodology 

The framework and processes that were implemented 
are depicted in Fig. 1; to create a thermal comfort model 
based using machine learning. 

 

 

Fig. 1. The framework and processes of machine learning 
based, building thermal comfort model. 

3.1 Dataset 

The machine learning model is built using a dataset from 
[13]. This dataset has collected 628 samples from field 
thermal comfort studies in 5 buildings. It was gathered 
from public institutions, Universiti Teknologi Malaysia 
in Kuala Lumpur (UTMKL) and Universiti Teknologi 
MARA in Shah Alam (UiTM) which are built around 
densely populated urban zones in Malaysia. The dataset 
includes air temperature (Ta), globe temperature (Tg), 
relative humidity (RH), and air velocity (va), as well as 
subjective questionnaire answers. This experiment used 
TSV as a prediction output. 

3.2 Data Input 

The data that was selected for the input of this 
experiment can be grouped into 2 models. 
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3.2.1 Model 1 

 Model 1 consists of the 6 inputs of Fanger’s model 
[7] consist of air temperature (Ta), relative humidity 
(RH), air velocity (va), mean radiant temperature (MRT), 
clothing insulation (clo), and metabolic rate (Met). 

3.2.2 Model 2 

 Model 2 consists of the 6 inputs of Fanger’s model 
with the distance of air-conditioned (ACD) and windows 
(WD) relative to the occupant in meters. Fig. 2 show the 
distance of ACD and WD that was calculated relative to 
the occupant. 

 

Fig. 2. The distance of ACD and WD is calculated relative to 
the occupant. 

3.3 Machine Learning Algorithm 

The machine learning algorithm used is decision tree 
(DT), random forest (RF), support vector machine 
(SVM), K-nearest neighbour (KNN), and neural network 
(NN). The setting that was used in all these algorithms 
is as follows. DT is set with the Gini criterion, best 
splitter with the 2 minimum samples split, and 1 
minimum samples leaf. SVM is set with a linear kernel. 
KNN on the other hand, uses 3 neighbours with uniform 
weight and 30 leaf size. NN is set with 100 hidden layers, 
with rectified linear unit function for activation, and 
Adam optimizer. NN also uses 500 max iterations. 
Finally, RF is set with 500 trees, with entropy criterion. 

3.4 Performance Metric 

Accuracy, mean absolute error (MAE), and root 
mean square error (RMSE) were chosen as measures to 
evaluate the different ML models. A ML model's 
accuracy shows the algorithm's performance in 
recognising correlations and trends between variables in 
a dataset based on the input, or training data. MAE is the 
difference in size between an observation's predicted 
value and its actual value. Meanwhile, RMSE measures 
the model's absolute fit to the data, or how close the 
observed data points are to the model's anticipated 
values. 

4 Results and Discussion 

 In total, 628 data are used to establish the personal 
thermal comfort prediction model in two models, which 
are model 1 and model 2. Table 1 shows the results of 
the ML prediction performance comparison between 
model 1, model 2, and PMV.  
 Based on Table 1, the spatial parameters give a 
significant contribution towards increasing the accuracy 
and reducing the MAE and RMSE. This is because 
spatial parameter takes to account the distance between 
air-conditioned and the distance between windows with 
indoor occupants. The average accuracy is increased by 
4% when using the spatial parameter, with the RF giving 
the highest accuracy, an increase of 11.9%. 
 

Table 1. The results of the ML prediction performance 
comparison between model 1, model 2, and PMV. 

Model Algorithm 
Accuracy 

(%) MAE RMSE 

Model 
1 

DT 46.8 0.762 1.094 

SVM 49.2 0.69 1.035 

NN 47.6 0.825 1.098 

RF 48.4 0.706 1.087 

KNN 41.2 0.865 1.165 

Model 
2 

DT 47.6 0.716 1.027 

SVM 50 0.634 0.959 

NN 50.8 0.634 0.967 

RF 60.3 0.468 0.781 

KNN 44.5 0.817 1.085 

PMV - - 0.946 1.208 

 

 

Fig. 3. The results of the MAE comparison between model 1, 
model 2, and PMV. 
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Fig. 4. The results of the RMSE comparison between model 
1, model 2, and PMV. 

 Fig. 3 and Fig. 4 show the comparison of the MAE 
and RMSE of PMV with five ML algorithms that use 
model 1 and model 2 respectively. Based on this figure, 
when comparing model 1 and model 2, the average MAE 
is decreased by 10.64% with the RF giving the most 
MAE reduction by 23.8%. Furthermore, the average 
RMSE is reduced by 11.76% with the RF producing the 
most RMSE cutback by 30.6%. 
 When RF is using model 2 which is using spatial 
parameters, it is MAE performance compared with 
PMV, shows a significant reduction of 47.8%. The 
RMSE is also reduced by 42.7%. 
 Overall, model 2 produced good results when used 
with ML algorithms, reducing MAE and RSME error 
compared to ML methods that solely used 6 inputs of 
Fanger’s model. The random forest using the model 2, 
performs best, obtaining 60% accuracy, MAE of 0.46, 
and RMSE of 0.78. Based on the result obtained, this 
observation is consistent with [12], where the 
researchers noted that the spatial features have a 
considerable impact on model prediction performance. 

5 Conclusion and Future Works 

 This paper has assessed spatial effects on indoor 
personal thermal comfort by employing machine 
learning algorithms in the air-conditioned workplace. 
The spatial parameters revealed have a significant 
influence on model prediction accuracies, MAE, and 
RMSE. Although the accuracy increased slightly, the 
error performance metrics such as MAE and RMSE 
showed a considerable reduction when compared to ML 
performance using model 1. Compared with the PMV, it 
shows significant results of 47.8% for the MAE and 
42.7% for the RMSE. 

There are a few limitations of this research work 
mainly the dataset's limited size, the variations of 
people, variations of experimental locations and this 
paper only focuses on the spatial parameter of the 
distance of window and AC. Hence, for future work, the 
dataset from additional people in multiple experimental 
rooms in varied weather and season conditions needs to 
be acquired. Other than that, the spatial parameter can 
be expand further. This spatial effect analysis also needs 
to identify which section of the indoor has a cold or heat 
cluster area that affects people's thermal comfort. This 
study can help to contribute to the design of sustainable 
buildings. 
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Fundamental Research [Vot 22H26] and The Japanese 
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