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J ABSTRACT One of the essential systems in autonomous vehicles for ensuring a secure circumstance 
for drivers and passengers is the Advanced Driver Assistance System (ADAS). Adaptive Cruise Control, 
Automatic Braking/Steer Away, Lane-Keeping System, Blind Spot Assist, Lane Departure Warning System, 
and Lane Detection are examples of ADAS. Lane detection displays information specific to the geometrical 
features of lane line structures to the vehicle's intelligent system to show the position of lane markings. 
This article reviews the methods employed for lane detection in an autonomous vehicle. A systematic 
literature review (SLR) has been carried out to analyze the most delicate approach to detecting the road lane 
for the benefit of the automation industry. One hundred and two publications from well-known databases 
were chosen for this review. The trend was discovered after thoroughly examining the selected articles on 
the method implemented for detecting the road lane from 2018 until 2021. The selected literature used 
various methods, with the input dataset being one of two types: self-collected or acquired from an online 
public dataset. In the meantime, the methodologies include geometric modeling and traditional methods, 
while AI includes deep learning and machine learning. The use of deep learning has been increasingly 
researched throughout the last four years. Some studies used stand-alone deep learning implementations for 
lane detection problems. Meanwhile, some research focuses on merging deep learning with other machine 
learning techniques and classical methodologies. Recent advancements imply that attention mechanism has 
become a popular combined strategy with deep learning methods. The use of deep algorithms in conjunction 
with other techniques showed promising outcomes. This research aims to provide a complete overview of the 
literature on lane detection methods, highlighting which approaches are currently being researched and the 
performance of existing state-of-the-art techniques. Also, the paper covered the equipment used to collect 
the dataset for the training process and the dataset used for network training, validation, and testing. This 
review yields a valuable foundation on lane detection techniques, challenges, and opportunities and supports 
new research works in this automation field. For further study, it is suggested to put more effort into accuracy 
improvement, increased speed performance, and more challenging work on various extreme conditions in 
detecting the road lane.

: INDEX TERMS Lane detection, autonomous vehicle, systematic literature review, geometric modelling, 
deep learning, machine learning.
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I. INTRODUCTION
According to a World Health Organization (WHO) report 
published in June 2022, approximately 1.3 million people die 
yearly from road traffic accidents [1]. As a human driver, 
it is hard to remain in the correct lane and to keep the 
following proper gap with the front vehicle, as the driver 
needs to focus on the road for an extended time. Moreover, 
humans are prone to driver fatigue, sleepiness, inattention, 
and drowsiness. Besides that, using technologies in vehicles 
such as smartphones, entertainment, and navigation systems 
may interrupt the driver and compromise safety while driving. 
Therefore, the costs of road traffic accidents to society are 
expensive in terms of human injury and economic loss. The 
development of passive and active safety systems for auto­
mobiles has resulted from the abovementioned concern. Seat 
belts and airbags are examples of passive safety systems [1].

These were developed to decrease the risk of injury to the 
driver and passenger from the impact of accidents. These sys­
tems have become the standard safety gear for vehicles but are 
only utilized after accidents occur, but it would be far better 
if the casualties were entirely prevented. As a result, active 
safety technologies are becoming a talking point among 
automakers and researchers [2]. The evolution of autonomous 
cars started in Europe around 1986. At this time, several 
car manufacturers and research institutes initiated a series 
of innovative vehicle safety projects and research to obtain 
practical solutions for urban traffic problems. For instance, 
the European Union introduced the Generic Intelligent Driver 
Support (GIDS) project under the Dedicated Road Infras­
tructure for Vehicle Safety in Europe (DRIVE) [3]. This 
massive Intelligent Vehicle project aims to assist the driver's 
identification and estimation of traffic danger and, in turn, 
assign a system to deal with specific hazards. The essential 
goal of the development system in an autonomous vehicle is 
to assist drivers in identifying driving risks and ensuring extra 
safety and comfort for the driver and passengers in the car.

The Advanced Driver Assistance System (ADAS) is one of 
the essential systems in autonomous vehicles for making the 
driving environment safer for drivers and passengers. ADAS 
aims to reduce driver error by helping to avoid vehicle colli­
sions, increase traffic efficiency, and enhance transportation 
development. Adaptive Cruise Control [4], Automatic Brak­
ing/Steer Away [5], Lane-Keeping System [6], Blind Spot 
Assist [4], Lane Departure Warning System [7], and Lane 
Detection [8] are several examples of the ADAS module.

The lane is a traffic sign that divides a road in the traffic 
system and guarantees that automobiles are driven safely 
and effectively. Lane detection is a technique for automati­
cally detecting road markers to ensure that cars stay in their 
assigned lane and do not collide with the vehicle in other 
lanes. It has played a part in autonomous driving. As a result, 
accurate lane detection allows the autonomous vehicle to 
make multiple decisions and judgments about its location and 
state and to ensure safe driving [9]. However, lane detection 
algorithms are difficult to use because of the wide variety of 
lane markers, the complex and changing road conditions and

environment, and the lane’s inherent slenderness [10]. Hence, 
significant research has developed reliable lane detection 
algorithms [11].

To solve this problem, various hand-crafted methods, 
including geometric modeling and traditional approaches, 
have been used to detect lane markers. Most conventional 
detection strategies adhere to pipelines, which typically 
consist of image pre-processing, feature extraction, lane 
model fitting, and line tracking. The purpose of image 
pre-processing is to reduce the quantity of noise in the image. 
Next, the features of lanes are utilized in the feature extraction 
process, extracting areas that are lanes. After that, the lane 
model is fitted and tracked via various selected methods. Sev­
eral previously applied techniques for feature extraction, such 
as Inverse Perspective Mapping (IPM)/Perspective Trans­
form, filtering technique, edge detection-based technique, 
image district extraction, morphological operators, neighbor­
hood searching-based feature points, grayscale, threshold­
ing, clustering, heterogeneous operators, and sliding window. 
These techniques help reduce noise and make it easier to 
extract lanes. Next, the lane model is typically fitted with a 
line segment detector (LSD) and fitting-based methods like 
B-spline, quadratic, polynomial, hyperbolic, and the least 
square methodology. After that, the Kalman filter, lane clas­
sification, and the parabola equation are the three most fre­
quently utilized in tracking road lane detection. In addition, 
tracking is used as the post-processing step to compensate for 
fluctuations in the illumination [11]. Therefore, tracking also 
helps with incorrect occlusion detection induced by inade­
quate lane markers [12]. However, the traditional methods 
involve a process that is more difficult and hand-crafted, 
resulting in a significantly longer processing time.

The recognition of lane markings has grown significantly 
more accessible, faster, and more effective in recent years, 
given the proliferation of Artificial Intelligence (AI) tech­
nologies. In addition, there is no longer a need to employ 
hand-crafted procedures. AI is the simulation of human 
intelligence processes by computers, most notably computer 
systems. Machine Learning (ML) and Deep Learning (DL) 
are the two primary categories that may be used to clas­
sify most of the AI approaches used in lane detection. The 
DL approach has become more popular than ML due to its 
effective performance in either classification or detection, 
utilizing image frames as input to the network algorithm. 
This is the primary reason for the rise in popularity of the 
DL method. Bayesian Classifier, Haar Cascades, Extreme 
Learning Machine (ELM), Support Vector Machine (SVM), 
and Artificial Neural Network (ANN) are some examples of 
the ML algorithms that are utilized in this field.

Meanwhile, the use of the DL technique as a stand-alone 
approach was suggested by some researchers, while many 
others advised integrating this method with another approach. 
The goal of the integration of this network is to improve the 
effectiveness of the network in challenging conditions when 
it comes to identifying the lane mark. Other than that, DL is 
combined with geometric modeling. DL merged with ML and
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DL combined with DL are all examples of the integration 
of another method. Aside from that, in recent times, a new 
integration idea for this method has been offered, and it 
involves merging DL with an attention mechanism. This is 
the latest state-of-the-art technique that has been proposed, 
and there is room for further investigation.

A new study addresses this need by thoroughly examining 
the implementation of various techniques in lane detection. 
Thus, this paper lays a solid foundation for lane detection 
methodologies, challenges, and opportunities and lays the 
groundwork for more research on automation. Furthermore, 
this study provides an overview of what has been done 
in the last four years of literature published related to the 
method used to detect the road lane. In addition, the study 
focused on answering specific issues about the collecting 
data equipment, lane detection learning algorithms/network 
topologies, and the dataset used for lane detection systems. 
This research shows the difficulties in implementing learning 
algorithms and determining future research areas. It also 
serves as a resource for researchers and professionals in the 
lane detection sector, assisting them in the latest approaches 
or developing new lane detection frameworks for accuracy 
enhancement and performance under various scenarios.

The rest of the article is arranged as follows: The research 
questions, review protocol consisting of search sources, 
search terms, inclusion and exclusion criteria, and litera­
ture collection are all described in Section II. The literature 
that was chosen and analyzed statistically is presented in 
Section III. Section IV summarises the literature to address 
each question, constructively evaluates the outcomes, and 
highlights key points. Finally, Section V concludes the study 
with some suggestions for further research.

II. SYSTEMATIC LITERATURE REVIEW
The writing for this paper consists of planned, conducted, and 
observed processes. First, the planning phase has clarified 
the research questions and review protocol containing the 
publications sources, keywords search, and selection criteria. 
The next stage is conducting a phase related to analyzing, 
extracting, and synthesizing the literature collection. The last 
step, the observed stage, contains the review results that 
address the research questions and the objectives described.

A. RESEARCH QUESTIONS
This review's main objective is to determine the trend of the 
method implemented for lane detection in the autonomous 
vehicles field and the achievement of the current latest tech­
niques. Other than that, to look into the valuable foundation 
on the methods, challenges, and opportunities. Thus, pro­
viding state-of-the-art knowledge to support new research 
works in this computer vision and automation field. Hence, 
the three research questions (RQs) described have been stated 
as follows:

1) What techniques have been implemented for lane 
detection in an autonomous vehicle?

2) What equipment is being used to collect the dataset?

FIGURE 1. Search queries for each of the databases. The databases 
include Scopus, Web of Science, IEEE Xplore, and Springer Link.

3) What dataset was applied for the network training, 
validation, and testing?

The focused approach has been adopted while scanning 
the literature. First, each article was reviewed to see if it 
answered the earlier questions. The information acquired was 
then presented comprehensively to accomplish the vision of 
this article.

B. REVIEW PROTOCOL
The following are the literature search sources, search terms, 
and inclusion and exclusion selection criteria. Also, the tech­
nique of literature collection used for this SLR:

1) SEARCH SOURCES
Scopus, IEEE Xplore, Web of Science, and Springer Link 
were chosen as the databases from which the data was 
extracted.

2) SEARCH TERMS
’Lane detection’ and ’autonomous vehicle’ are two prominent 
search terms used to investigate the topic. The terms ’lane 
detection’ can be searched using different words. The ’OR’ 
operator was used to choose and combined the most rele­
vant and regularly used applicable phrases. For example, the 
search phrases ’lane detection,’ ’lane tracking,’ and ’lane seg­
mentation’ were discovered. The ’AND’ operator combined 
individual search strings into a search query. Figure 1 shows 
the complete search query for each of the databases. The 
databases include Scopus, Web of Science, IEEE Xplore, and 
Springer Link.

3) INCLUSION
The study covered all primary publications published in 
English that used the approach for lane detection, tracking, 
segmentation, or any other task related to detecting the road 
lane. There were no constraints on subject categories or time 
frames for abroad search spectrum. The selected articles were 
published for four years, from 2018 to 2021. In addition,
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Journal papers, conference proceedings, and book sections on 
the subject were included in the research.

4) EXCLUSION
Articles written in languages other than English were not 
considered. Therefore, the exclusion criteria included short 
papers, such as abstracts or expanded abstracts, and sur­
vey/review papers.

C. LITERATURE COLLECTION
The literature search was carried out by providing the search 
strings for each database, as shown in Figure 2. These 
search keywords resulted in a total of 435 publications being 
returned. Next, each database’s search results were evaluated 
using predetermined inclusion/exclusion criteria. The initial 
screening excluded review articles and non-English journals. 
After that, each manuscript was assessed based on its title, 
abstract, and a short read of the content to determine if it 
should be accepted or rejected. The number of articles was 
reduced to 158 after this filtration. Next, after removing 
duplicate papers, 114 publications were included in the full- 
text review. For reasons such as publications that are not 
available as full text and similar to the previous articles by the 
same author, just a small number of enhancements are also 
excluded. Then, 102 studies were chosen to be included in 
this SLR. As discussed above, the steps to obtain the publica­
tions related to this SLR have been presented PRISMA. The 
Preferred Reporting Items for Systematic Review and Meta­
analysis (PRISMA) [13] are shown in Figure 2.

III. RESULTS
Table 1 lists the chosen publications, the year of publica­
tion, the source title, and the number of citations. About 
102 publications have been listed in Table 1 with the state of 
references. The lists included journals, conferences, and book 
chapters. Figure 3 depicts the publishing distribution from
2018 to 2021. Every year, a growing tendency in the literature 
is visible in the yearly distribution displayed in Figure 3. 
For example, in 2018, about 16 papers were published, and 
25 articles were published in 2019. Meanwhile, 29 and 
32 papers were published in 2020 and 2021. Next, from 2018 
to 2021, 48 articles were published in conference proceed­
ings, 44 in journals, and ten as book chapters, as shown 
in Figure 4. For example, in 2018, 11 conferences, three 
journals, and two book chapters were published.

Meanwhile, for the coming year, 2019, 16 conferences, 
eight journals, and only one book chapter on-road lane 
detection have been published. Next, 14 conference papers, 
12 journals, and three book chapters have been published 
for 2020. Finally, the number of conferences published 
in 2021 is down from the previous year, when just seven 
articles were released. In the meantime, journal publications 
have climbed to 21, with four book chapters scheduled for 
release in 2021. Table 2 shows the distribution of papers 
in journals. Sensors journal ranks first with five publica­
tions, followed by the Journal of Ambient Intelligence and

Humanized Computing, International Journal of Advanced 
Robotic Systems, Journal of Electrical Engineering and 
Technology, Multimedia Tools and Applications, and IEEE 
Access ranks second with two publications per article.

Table 3 indicates the publications of lane detection in 
conferences. The tables show that the Advances in Intel­
ligent Systems and Computing conference ranks first with 
five publications, followed by ACM International Conference 
Proceeding Series, 2nd International Conference for Emerg­
ing Technology, INCET 2021, Chinese Control Conference, 
CCC, IET Conference Publications, and 2018 6th Interna­
tional Conference on Control Engineering and Information 
Technology, CEIT 2018 which ranks second with two publi­
cations per conference.

Table 4 shows the publications of lane detection in book 
chapters. There are ten book chapters which are Advanced 
Structured Materials, Lecture Notes on Data Engineering and 
Communications Technologies, Transactions on Computer 
Systems and Networks, Image and Graphics, Lectures Notes 
in Network and Systems, Computational Intelligence in Data 
Science, Databases and Information Systems, Lecture Notes 
in Computational Vision and Biomechanics, Image and Video 
Technology and Computational Science and Technology.

IV. DISCUSSION
To answer the RQs, each publication was thoroughly exam­
ined with the necessary data extracted. It consists of the 
primary approach and the type of dataset used in the study, 
whether self-collected or acquired from an online dataset. 
Each publication focuses on the dataset’s collection and 
preparation for network training and testing. The findings for 
each RQ in their respective sections are as follows:

A. WHAT METHODS HAVE BEEN APPLIED FOR LANE 
DETECTION IN AUTONOMOUS VEHICLES?
This section explores several related studies on detecting 
road lane markers. The strategies for lane detection can be 
categorized into two methods based on past research: Geo­
metric modeling/traditional approaches for lane detection and 
ii) Artificial Intelligence-based techniques. These are out­
lined in further detail below:

1) GEOMETRIC MODELLING/TRADITIONAL METHODS
The pipelines used by most traditional detection algorithms 
comprise image preprocessing, feature extraction, lane model 
fitting, and line tracking. Image preprocessing aims to remove 
some of the noise from the image. Feature extraction employs 
lanes’ features to extract lane-like areas. The lane model is 
then fitted and tracked using a variety of methods. Feature 
detection is an essential lane detection algorithm that affects 
performance [10]. As a result, the preprocessing image phase 
is required in many traditional methodologies for determining 
the quality of features for lane detection tasks. The construc­
tion of an area of interest (ROI), image augmentation for 
extracting lane information, and removing non-lane details 
are all part of image processing. The ROI extraction method

3732 VOLUME 11, 2023



N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review lEEEAxess'

FIGURE 2. Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Diagram. The research identified 
through four database searching was 435 publications.

efficiently reduces redundant information in the image pre­
processing section by selecting the lower portion of the 
image [11]. Several studies have created ROIs using vanish­
ing point detection techniques [11], [14]. Furthermore, ROI 
creation minimizes image noise, although it is not resistant to 
shadows or automobiles [11]. Extracting specific features to 
detect lanes in the features extraction process, such as color, 
edge, geometric, and so on [10]. Several techniques, such as 
Inverse perspective mapping (IPM)/Perspective Transform, 
filtering technique, edge detection-based technique, image 
district extraction, morphological operators, neighborhood 
searching-based feature points, grayscale, thresholding, and 
clustering.

In addition, heterogenous operators and sliding windows 
also have been used in the past to reduce the effect of noise 
and to extract lanes conveniently.

The lane model is then fitted with the line segment detector 
(LSD) and fitting-based methodologies, including B-spline, 
quadratic, polynomial, parabola, hyperbola, and least square. 
Bresenham line voting space (BLVS), vanishing point, wave­
form, geometric modeling, harmony search (HS) algorithm, 
contrast limited adaptive histogram equalization (CLAHE), 
random sample consensus (RANSAC), graph-based, seed 
fill algorithm, histogram analysis, model predictive control 
(MPC), a region-based iterative seed method, ant colony opti­
mization, scene understanding physics-enhanced real-time 
(SUPER) method, nested fusion, and linear regression were 
used. The Lucas-Kanade approach, Kanade-Lucas-Tomasi 
(KLT), and Lucas-Kanade optical flow have matched the 
lane model. Meanwhile, the most extensively used algo­
rithms for tracking road lane detection are the Kalman filter, 
lane categorization, and parabola equation. Tracking is often 
employed as a post-processing step to compensate for lighting 
fluctuations [11]. As a result, tracking aids in incorrectly 
detecting occlusion due to faulty lane markers [12].

Table 5 shows the details of the feature extraction, line 
model fitting, and lane line tracking approaches used in the 
geometric modeling-based lane detection method. First, fea­
ture extraction methods include several techniques such as 
perspective transform, thresholding, filtering, edge detector, 
image district extraction, grayscale, clustering, neighborhood 
searching-based feature points, sliding window, morphologi­
cal operations, and heterogeneous operators.

Next, Line Model Fitting contains several approaches such 
as LSD, fitting, BLVS, vanishing point, waveform, geo­
metric analysis, HS algorithm, CLAHE, RANSAC, graph- 
based, seed fill algorithm, KLT, Histogram analysis, MPC, 
a region-based iterative seed method, ant colony optimiza­
tion, SUPER algorithm, nested fusion, Lucas-Kanade optical 
flow, and linear regression. Meanwhile, three techniques have 
been applied for line tracking approaches the Kalman filter, 
lane classification, and parabola equation. Geometric mod­
eling/traditional lane detection approaches are used in much 
literature, such as by D. Kavitha & S. Ravikumar [16].

The input image is first transformed into a greyscale image 
from a color image. The noise is eliminated, and edge detail 
enhancement is performed for the image preprocessing pro­
cedure phase. After converting to greyscale, the author used 
the adaptive median filter (AMF) to reduce/remove noise 
and then used the Laplacian-based technique for contrast 
enhancement. After the preprocessing stage of the task is 
completed, the edges in the image are recognized using the 
Canny operator for the feature extraction stage. The Hough 
transform is used to fit the line model after the edges have 
been detected. The Hough transform is commonly used to 
extract characteristics affecting the geometry of an input 
image. The lane is then detected using the hyperbola fitting 
technique. Ghanem et al. [12] also proposed a geometric 
modeling-based method for detecting road lanes, including 
image processing, feature extraction, line fitting model, and
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lane line tracking pipelines. First, the Region of Interest (ROI) 
is used in the image processing stage to remove another 
object unrelated to the lane markers. In the feature extraction 
step, edges are extracted from the image using the Canny 
approach, which is robust against noise. Second, the Hough

N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review

Transform is used to extract the line segments. After that, the 
input is filtered using the standard deviation (SD) filter. This 
textural filter aids in the provision of local intensity variation 
information. When the texture is smoother, the SD filter’s 
response is smaller. As a result, the SD filter is employed in
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FIGURE 3. Distribution publications for the year 2018-2021. The trend for the statistics of the published papers is increasing every 
year. The graph show that the lane detection study is still relevant for the upcoming year.

FIGURE 4. The number of publications over the year from 2018-2021. The number of publications for journal articles and book 
chapters has been increasing over the year. Meanwhile, the conference publications are fluctuating in these four year.
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TABLE 1. Chosen Publications, Source Title, and The Number of Citations.

No. Ref. Year Source Title Cited By
1 [15] 2021 Neurocomputing -

2 [16] 2021 Journal of Ambient Intelligence and Humanized Computing 11

3 [17] 2021 2nd International Conference for Emerging Technology, INCET 2021 -

4 [18] 2021 Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021 -

5 [19] 2021 Sensors 2

6 [20] 2021 Sensors 3

7 [21] 2021 Journal of Electrical Engineering and Technology -

8 [22] 2021 Advanced Structured Materials 18

9 [10] 2021 Journal of Advanced Transportation -

10 [23] 2021 IEEE Access -

11 [24] 2021 Journal of Supercomputing -

12 [25] 2021 International Journal of Systems Assurance Engineering and Management 1

13 [26] 2021 Soft Computing 1

14 [27] 2021 International Journal of Advanced Robotic Systems -

15 [28] 2021 IEEE Transactions on Intelligent Vehicles 4

16 [29] 2021 International Journal of Advanced Robotic Systems -

17 [30] 2021 Lecture Notes on Data Engineering and Communications Technologies 1

18 [31] 2021 Journal of Electrical Engineering and Technology -

19 [12] 2021 Complex & Intelligent Systems 17

20 [9] 2021 Cognitive Computation -

21 [32] 2021 Proceedings of International Conference on Machine Intelligence and Data Science Applications -

22 [33] 2021 Transactions on Computer Systems and Networks -

23 [34] 2021 Multimedia Tools and Applications -

24 [35] 2021 Multimedia Tools and Applications 1

25 [36] 2021 Science China Technological Sciences 1

26 [37] 2021 Computing 1

27 [38] 2021 Applications of Advanced Computing in Systems, Proceedings of International Conference on Advances 
in Systems, Control and Computing

-

28 [39] 2021 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing 1

29 [40] 2021 International Conference on Intelligent Computing -

30 [41] 2021 Journal of Ambient Intelligence and Humanized Computing -

31 [42] 2021 Image and Graphics -

32 [43] 2021 The 10th International Conference on Computer Engineering and Networks -

33 [11] 2020 IEEE Transactions on Intelligent Transportation Systems -

34 [44] 2020 16th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2020 -

35 [45] 2020 Journal of Ambient Intelligence and Humanized Computing 4

36 [46] 2020 Proceedings - IEEE 18th International Conference on Dependable, Autonomic and Secure Computing -

37 [25] 2020 Proceedings o f2020 IEEE International Conference on Advances in Electrical Engineering and Computer 
Applications, AEECA 2020

-

38 [47] 2020 IEEE International Conference on Electro Information Technology -

39 [48] 2020 Computers and Electrical Engineering 19

40 [49] 2020 ACM International Conference Proceeding Series -

41 [50] 2020 Signal Processing: Image Communication -

42 [51] 2020 Applied Sciences 4
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TABLE 1. (Continued.) Chosen Publications, Source Title, and The Number of Citations.

43 [52] 2020 International Journal of Automotive Technology 12

44 [53] 2020 International Journal of Semantic Computing 1

45 [54] 2020 International Journal of Image and Data Fusion -

46 [55] 2020 Proceedings - International Conference on Pattern Recognition 2

47 [56] 2020 Advances in Intelligent Systems and Computing 1

48 [57] 2020 Recent Advances in Computer Science and Communications 11

49 [58] 2020 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics)

19

50 [59] 2020 Asian Conference on Pattern Recognition -

51 [60] 2020 IEEE Access 4

52 [61] 2020 Lecture Notes in Networks and Systems 5

53 [62] 2020 IEEE Transactions on Vehicular Technology 102

54 [63] 2020 Advances in Intelligent Systems and Computing 1

55 [64] 2020 Advances in Intelligent Systems and Computing -

56 [65] 2020 International Conference on Green Technology and Sustainable Development (GTSD) -

57 [66] 2020 Evolutionary Intelligence -

58 [67] 2020 Journal of Intelligent & Robotic Systems -

59 [68] 2020 Computational Intelligence in Data Science -

60 [69] 2020 Databases and Information Systems -

61 [70] 2020 Iberian Robotics conference 1

62 [71] 2019 IEEE International Conference on Robotics and Biomimetic, ROBIO 2019 7

63 [72] 2019 Journal of Visual Communication and Image Representation 5

64 [73] 2019 Proceedings - 2019 Chinese Automation Congress, CAC 2019 -

65 [74] 2019 2019 IEEE International Conference on Electrical, Control and Instrumentation Engineering, ICECIE 
2019

1

66 [75] 2019 International Conference on Control, Automation and Systems 6

67 [76] 2019 Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 5

68 [77] 2019 Proceedings of the 3rd World Conference on Smart Trends in Systems, Security, Sustainability, WorldS4 
2019

2

69 [78] 2019 Chinese Control Conference, CCC 3

70 [79] 2019 Proceedings of 2019 International Conference on System Science and Engineering, ICSSE 2019 20

71 [80] 2019 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 33

72 [81] 2019 ACM International Conference Proceeding Series 2

73 [82] 2019 SAE Technical Papers -

74 [83] 2019 Sensors 13

75 [84] 2019 IEMECON 2019 - 9th Annual Information Technology, Electromechanical Engineering and 
Microelectronics Conference

-

76 [85] 2019 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences -

77 [86] 2019 Computing in Science and Engineering 2

78 [87] 2019 Machine Vision and Applications 18

79 [88] 2019 18th International Conference on Advances in ICT for Emerging Regions, ICTer 2018 - Proceedings 2

80 [89] 2019 AmE 2019: Automotive meets Electronics 2019 10th GMM Conference 1

81 [90] 2019 IET Conference Publications 9

82 [91] 2019 International Journal of Web and Grid Services -

83 [92] 2019 Journal of Institute of Control, Robotics and Systems -

84 [93] 2019 Advances in Intelligent Systems and Computing 1

85 [94] 2019 Lecture Notes in Computational Vision and Biomechanics -

86 [95] 2019 International Symposium on Signal Processing and Intelligent Recognition Systems 2
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TABLE 1. (Continued.) Chosen Publications, Source Title, and The Number of Citations.

87 [96] 2018 2018 New Generation o f CAS, NGCAS 2018 3
88 [97] 2018 Sensors 20
89 [98] 2018 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and 

Technologies, 3ICT 2018
21

90 [99] 2018 IEEE Intelligent Vehicles Symposium, Proceedings 1

91 [100] 2018 2018 6th International Conference on Control Engineering and Information Technology, CEIT 2018 -
92 [101] 2018 IET Intelligent Transport Systems 42
93 [102] 2018 Swarm and Evolutionary Computation 37

94 [103] 2018 Asia Life Sciences 14
95 [104] 2018 IFAC-PapersOnLine 2

96 [105] 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET) -
97 [106] 2018 Chinese Control Conference, CCC 7
98 [107] 2018 2018 6th International Conference on Control Engineering and Information Technology, CEIT 2018 5
99 [108] 2018 IFIP International Conference on Artificial Intelligence Applications and Innovations 17

100 [22] 2018 International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing 3
101 [109] 2018 Image and Video Technology 8

102 [110] 2018 Computational Science and Technology -

this research to show the degree of pixel value variability in 
a region. This SD filter computes the SD of the pixels in the 
vicinity of the pixel of interest. In addition to the SD filter, 
the Gaussian filter can remove noise. This study uses least- 
square fitting to fit the line model. Meanwhile, the Kalman 
filter is used to accomplish the lane tracking procedure in this 
research since it helps to converge to actual values faster than 
other methods.

After that, Gong et al. [34] used the double threshold 
approach to preprocess the self-collected road image and 
get the ROI. The region of interest, which includes lane 
line information, is intercepted to reduce background inter­
ference on the road and improve the algorithm's real-time 
performance. The grey value of the image is then processed 
utilizing image enhancement employing exponential function 
transformation. After a nonlinear grey change, the low grey 
value background area becomes darker, while the lane line 
area becomes lighter in color. As a result, the contour of the 
high-grey-valued area becomes more visible, and the contrast 
improves. The method effectively increases the difference 
between the lane line region and the background information, 
lowering the threshold selection difficulty. The image grey 
value adjustment and image smoothing were carried out only 
in the significant region of the road to tackle the problems of 
lane detection taking a long time and having poor noise resis­
tance. The modified Canny operator was then used to extract 
the lane line edge. When the Otsu threshold was chosen, the 
Kalman filter technique was used to anticipate the ideal point 
in the following image series using optimized autoregressive 
data processing features. The OTSU technique is an approach 
for determining the image binarization segmentation thresh­
old proposed by Japanese expert OTSU. The high and low 
thresholds are supposed to be known. According to the OTSU

basic principle, the image is separated into three sections: 
the background part, the suspected foreground fraction, and 
the foreground part. Following that, a practical multi-layer 
evaluation function was constructed to implement the online 
adjustment of lane lines using the straight-line fitted by the 
Hough Transform. Kasmi et al. [44] is another paper that 
proposed the traditional technique. Initially selecting the best 
Region of In terest, the author used the conventional method 
for detecting the road lane.

Following choosing the most informative ROI, the 
RANSAC approach detects the segment within the ROI. 
Finally, to track the road lane, the Kalman filter is used. 
Next, Akbari et al. [19] used the geometric modeling tech­
nique, which uses the ROI for preprocessing and the Canny 
operator to extract the edge feature, and the Hough trans­
form to filter out unwanted edges and lead to straight lines. 
The vanishing point then filters out the image's irrelev ant 
straight-line segments. As a result, the B-spline clustering 
and IPDA filter is also utilized in this literature to detect the 
road lane efficiently. These methods are quick and easy to 
use but require manual parameters. Furthermore, while they 
can function well in routine situations, they cannot adjust 
to changing conditions such as lighting and occlusion [10]. 
Furthermore, while conventional lane detection methods are 
frequently quick and straightforward and can meet real-time 
requirements, the road environment is constantly changing 
due to weather, light, and cars. The findings are not qualified 
with high accuracy [15].

2) ARTIFICIAL INTELLIGENCE
Artificial intelligence (AI) is the idea of computers, specif­
ically computer systems, imitating human intelligence 
processes. Expert systems, natural language processing,
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TABLE 2. Publications of Lane Detection Through Journal.

No. Journal Title No. o f Publications
1 Sensors 5

2 Journal o f Ambient Intelligence and Humanized Computing 2

3 International Journal o f Advanced Robotic Systems 2

4 Journal o f Electrical Engineering and Technology 2

5 Multimedia Tools and Applications 2

6 IEEE Access 2

7 Journal o f Supercomputing 1

8 International Journal o f Systems Assurance Engineering and Management 1

9 Soft Computing 1

10 Neurocomputing 1

11 IEEE Transactions on Intelligent Vehicles 1

12 Asia Life Sciences 1

13 Swarm and Evolutionary Computation 1

14 Complex & Intelligent Systems 1

15 Cognitive Computation 1

16 Journal o f Advanced Transportation 1

17 Science China Technological Sciences 1

18 Computing 1

19 IEEE Transactions on Intelligent Transportation Systems 1

20 Computers and Electrical Engineering 1

21 Signal Processing: Image Communication 1

22 Applied Sciences 1

23 International Journal o f Automotive Technology 1

24 International Journal o f Image and Data Fusion 1

25 Recent Advances in Computer Science and Communications 1

26 Journal o f Institute o f Control, Robotics and Systems 1

27 IEEE Transactions on Vehicular Technology 1

28 Evolutionary Intelligence 1

29 Journal o f Intelligent & Robotic Systems 1

30 Journal o f Visual Communication and Image Representation 1

31 Journal o f Automobile Engineering 1

32 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 1

33 Computing in Science and Engineering 1

34 Machine Vision and Applications 1

35 International Journal o f Web and Grid Services 1

speech recognition, and machine vision are examples of 
AI applications. AI systems generally absorb enormous 
volumes of labeled training data, analyze it for correla­
tions and patterns, and use them to forecast future states. 
For example, machine learning and deep learning are the 
AI algorithms that detect lanes. Unfortunately, most tradi­
tional lane detection systems suffer from either processing 
time that does not meet real-time needs or inefficiency in

a complex environment that also fails to meet the total avail­
ability restriction of such a core function [45]. The two 
branches of AI-based methodology described in this paper are 
machine learning and deep learning-based techniques. How­
ever, deep learning has become more popular than machine 
learning due to its excellent performance in either classifica­
tion or detection using image frames as input to the network 
technique.
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TABLE 3. Publications of Lane Detection Through Conference.

No. Conference Title No. o f Publications
1 Advances in Intelligent Systems and Computing 5

2 ACM International Conference Proceeding Series 2

3 2nd International Conference for Emerging Technology, INCET 2021 2

4 Chinese Control Conference, CCC 2

5 IET Conference Publications 2

6 2018 6th International Conference on Control Engineering and Information Technology, CEIT 2018 2

7 Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021 1

8 16th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2020 1

9 Proceedings - IEEE 18th International Conference on Dependable, Autonomic and Secure Computing 1

10 Proceedings o f 2020 IEEE International Conference on Advances in Electrical Engineering and Computer 
Applications, AEECA 2020

1

11 IEEE International Conference on Electro Information Technology 1

12 International Conference on Intelligent Computing 1

13 International Journal o f Semantic Computing 1

14 Proceedings - International Conference on Pattern Recognition 1

15 The 10th International Conference on Computer Engineering and Networks 1

16 Asian Conference on Pattern Recognition 1

17 International Conference on Green Technology and Sustainable Development (GTSD) 1

18 Iberian Robotics conference 1

19 IEEE International Conference on Robotics and Biomimetic, ROBIO 2019 1

20 Proceedings - 2019 Chinese Automation Congress, CAC 2019 1

21 2019 IEEE International Conference on Electrical, Control and Instrumentation Engineering, ICECIE 2019 1

22 International Conference on Control, Automation and Systems 1

23 Proceedings of the 3rd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4 
2019

1

24 Proceedings of International Conference on Advances in Systems, Control and Computing 1

25 Proceedings of 2019 International Conference on System Science and Engineering, ICSSE 2019 1

26 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1

27 IEEE Intelligent Vehicles Symposium, Proceedings 1

28 IEMECON 2019 - 9th Annual Information Technology, Electromechanical Engineering and 
Microelectronics Conference

1

29 18th International Conference on Advances in ICT for Emerging Regions, ICTer 2018 - Proceedings 1

30 AmE 2019: Automotive meets Electronics 2019 10th GMM Conference 1

31 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing 1

32 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and 
Technologies, 3ICT 2018

1

33 International Symposium on Signal Processing and Intelligent Recognition Systems 1

34 2018 New Generation o f Circuits & Systems CAS Conference, NGCAS 2018 1

35 Proceedings of International Conference on Machine Intelligence and Data Science Applications 1

36 International Federation of Automatic Control-PapersOnLine 1

37 IEEE International Conference on Computer and Communication Engineering Technology (CCET) 1

38 IFIP International Conference on Artificial Intelligence Applications and Innovations 1

39 International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing 1

40 SAE Technical Papers 1

41 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics)

1
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TABLE 4. Publications of Lane Detection Through Book Chapter.

No. Book Chapter Title No. o f Publications
1 Advanced Structured Materials 1

2 Lecture Notes on Data Engineering and Communications Technologies 1

3 Transactions on Computer Systems and Networks 1

4 Image and Graphics 1

5 Lecture Notes in Networks and Systems 1

6 Computational Intelligence in Data Science 1

7 Databases and Information Systems 1

8 Lecture Notes in Computational Vision and Biomechanics 1

9 Image and Video Technology 1

10 Computational Science and Technology 1

a: MACHINE LEARNING (ML)
Machine learning is a method that combines data 
and algorithms to mimic the way humans learn and 
increase its accuracy over time. For example, several lane 
detection experiments in autonomous vehicles have been 
conducted. Bayesian Classifier, Haar Cascades, Extreme 
Learning Machine, Support Vector Machine, and Artificial 
Neural Network are machine learning techniques employed 
in this field.

Dhanashirur [95] proposes a lane detecting framework 
based on machine learning. In this work, the dataset is initially 
preprocessed using adaptive thresholding, the Otsu approach 
to estimating ROI in an image. The Cascaded Dempster 
Schafer Combination Rule is then used to create a form of 
Bayesian learning. Finally, outliers are removed from the 
post-process data using morphological procedures such as 
erosion and dilation consecutively using a tiny kernel.

Afterward, Feng and Werner Wiesbeek [89] advocated 
combining machine learning and deep learning. The author 
handles the lane detection problem by first developing a 
semantic segmentation-based technique using a 5-layer Seg- 
Net segmentation neural network, divided into the encoder 
and decoder networks. However, based on the segmenta­
tion results, there are segmentation uncertainties: areas not 
belonging to the lane will be segmented into the lane in spe­
cific single cycles shortly, and vice versa. As a result, Bayes’ 
theorem can improve the segmentation's stability. The Radial 
Basis Function (RBF)-kernel and Support Vector Machine are 
also tested to create a robust model for detecting the road lane.

The detection of sharply curved lanes remains a complex 
problem. As a result, Fakhfakh [45] suggested a unique 
curved lanes characterization and estimation algorithm based 
on a Bayesian framework for estimating multi-hyperbola 
parameters to recognize curved lanes under challenging set­
tings. First, the trajectory over each section is modeled by 
a hyperbola, whose parameters are computed using the sug­
gested hierarchical Bayesian model. Next, the input image is 
preprocessed to extract contours, characterizing the extracted 
lanes by fitting them to the chosen analytical model. Finally,

a Bayesian approach is proposed to accurately define the 
curving lane over the entire image by estimating the hyper­
parameters of the N hyperboles.

b: DEEP LEARNING (DL)
Due to the advancement of deep learning, numerous strategies 
have been presented to increase the performance of lane 
detecting tasks using this approach compared to previous 
methods [15]. Recent improvements in DL architectures have 
considerably impacted the refinement of derived features for 
lane detection tasks. Neural networks have handled tradi­
tional ROI generation, filtering, and tracking approaches [11]. 
The Convolutional Neural Network (CNN) is used in the 
majority of deep learning methods [57], [111]. As CNN has 
grown in popularity, new concepts and systems have been 
offered [10].

Furthermore, with its remarkable feature extraction capa­
bilities, Convolutional Neural Network (CNN) has been 
widely employed in computer vision since AlexNet [112]. 
As a result, many excellent neural networks have been pro­
posed. Because of its simplicity and modular nature, it has 
been widely utilized as a backbone network. ResNet varia­
tions, such as ResNet [113] and ResNeXt [114], have been 
released recently. Lane detection is another application of 
these networks [11]. Other methods for detecting lanes in 
continuous frames include CNN, Recurrent Neural Network 
(RNN), and Long Short-Term Memory (LSTM) [22]. Also, 
the Deep Learning method’s Fully Convolutional Network 
(FCN) [6] is commonly used for semantic segmentation, 
and it has been swiftly adopted in numerous ways [115], 
[116], as well as lane detection approaches [117], [118]. 
An encoder-decoder structure [119], as well as an end-to- 
end architecture, are two network model structures that are 
frequently employed in many computer vision tasks [15], 
[120], [121]. Semantic segmentation approaches [122], [124] 
are also applied to identify the background and lane pixels. 
Then, to get lane location [10], instance segmentation meth­
ods [125] are utilized.
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TABLE 5. Feature Extraction, Line Model Fitting and Line Tracking Techniques for Geometric Modelling-Based Method in Lane Detection.

Feature Extraction 
Inverse perspective mapping (TPM) / Perspective transform

Thresholding
>  Symmetrical local threshold (SLT)
>  Segmentation threshold
>  Adaptive threshold
>  Otsu’s threshold 

Quadratic threshold

Filtering
> Gaussian filter
> Average filter
> Median filter
> Fuzzy noise reduction filter (FNRF)
> Binary filter
> Histogram filter
> Steerable filter
> Integrated Probabilistic Data Association (IPDA)
> Standard deviation filter

Colour filter adjustment 
Edge Detector

>  Canny edge detector
>  Sobel edge detector
>  Adaptive edge detector 

Filter kernels edge detector 
Image district extraction

Grayscale

Clustering
>  Density-based spatial clustering o f applications with 

noise (DBSCAN)
>  Attentive voting-based clustering 

K-Means clustering
Neighbourhood searching-based feature points

Sliding window 

Morphological operations 

Heterogeneous operators

Line Model Fitting Line Tracking
Line segment detector (LSD) Kalman filter

Fitting Lane classification
>  B-spline curve fitting
>  Quadratic fitting
>  Polynomial fitting
>  Parabola fitting
>  Hyperbola fitting 

Least square fitting
Bresenham line voting space (BLVS) Parabola equation

Vanishing point

Waveform

Geometric analysis

Harmony search (HS) algorithm

Contrast limited adaptive histogram equalization 
(CLAHE)
Random sample consensus (RANSAC)

Graph-based

Seed fill algorithm

Kanade-lucas-tomasi (KLT)

Histogram analysis

Model predictive control (MPC)

A region-based iterative seed method

Ant colony optimization

Scene understanding physics-enhanced real-time 
(SUPER) algorithm 
Nested fusion

Lucas-Kanade optical flow

Linear regression

In recognizing the road lane, the DL adaptation approach 
can be used in various ways. Several researchers advised 
employing the DL methodology independently, and others 
suggested integrating it with another method. Incorporating 
this network increases the network’s efficiency in detecting 
the lane mark under challenging settings. DL +  geometric 
modeling, DL + ML, and DL +  DL are examples of methods 
that can be combined with another. Aside from that, com­
bining DL with an attention mechanism has recently been

presented as a novel means of integrating this technology. 
This is a new proposed state-of-the-art technique that other 
researchers can investigate further.

i) CONVENTIONAL DEEP LEARNING
Several works of literature built a lane detection system using 
this article’s stand-alone deep learning-based technique. For 
example, Wu et al. [29] proposed a convolutional neural 
network-based method for recognizing lanes in driving video
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images. The expectation line represents an autonomous vehi­
cle’s driving behavior in greater detail. Using the long short­
term memory-based approach, the predicted line is then used 
to estimate the vehicle’s future trajectory. Due to prior infor­
mation, autonomous cars may drive smoothly by combining a 
convolutional neural network with long short-term memory- 
based techniques (convLSTM).

Similarly, Sun et al. [71] use atrous convolution and spatial 
pyramid pooling techniques to construct a new network- 
based deep learning method for lane detection. LaneNet 
is used to build the network, consisting of one encoder 
and two decoders. The Embedding Decoder and the Binary 
Decoder are the names of the two decoders. The author 
uses a sequential mix of the Atrous ResNet-101 and the 
Spatial Pyramid Pooling (SPP) networks to replace LaneNet’s 
original encoder. Meanwhile, the Embedding Decoder and 
Binary Decoder architecture are similar, except for the num­
ber of output dimensions. The suggested lane detection sys­
tem in [77] is based on the Drive Works LaneNet pipeline, 
which uses camera images. This paper presents an integrated 
framework for autonomous driving based on the NVidia deep 
neural network multi-class object identification framework, 
the lane detection framework, and the free space detection 
framework. This framework can also be used for localiza­
tion based on map matching, mapping, and path planning 
in autonomous driving solutions. Finally, in [80], Philion 
proposes a revolutionary, utterly convolutional lane detection 
model that learns to decode lane structures instead of depend­
ing on post-processing to infer structure.

Meanwhile, Dawam and Feng proposed a computer vision- 
based road surface marking identification system in [46], 
serving as an additional layer of data for AVs to choose 
from. The authors used YOLOv3 in the cloud to train the 
detector to recognize 25 different road surface markings using 
over 25,000 images. The experiment results show that the 
detection accuracy and speed are reasonably good.

Traditional approaches based on handcrafted characteris­
tics are less reliable and computationally expensive due to the 
lack of distinguishing features and several road occlusions. 
Muthalagu et al. [35] proposed stand-alone deep learning 
to deal with this by learning both the lane markings seg­
mentation and the localization and geometry of each lane 
in the form of critical points using a compact and efficient 
multi-stage Convolutional Neural Network (CNN) architec­
ture. The proposed methodology combines a lane mask pro­
posal network with a lane key-point determination network 
to correctly estimate the key points representing the vehicle 
lanes’ left and correct lane markings. Finally, Dewangan 
et al. [37] suggested a semantic segmentation architecture 
encoder-decoder network. A hybrid model based on UNet and 
ResNet has been adopted in this direction. First, the image 
was down-sampled, and the required features were identified 
using ResNet-50 as a segmentation model. Then, UNet was 
used to up-sample and decode the segments of the images 
using the detected features.

ii) DEEP LEARNING + GEOMETRIC MODELLING
Several researchers combine a deep learning-based method­
ology with geometric modeling methods to increase the effi­
ciency of detecting the road lane. While training on manually 
labeled data, deep neural networks have demonstrated their 
potential to reach competing accuracy and time complexity. 
However, the lack of segmentation masks for host lanes in 
adverse road environments limits the applicability of fully 
supervised algorithms to such a situation. To address this 
issue, Yousri et al. [23] propose combining classical computer 
vision techniques and deep learning approaches to establish a 
reliable benchmarking framework for lane recognition tasks 
in complicated and dynamic road scenarios.

To begin, researchers tested an automatic segmentation 
method based on a series of traditional computer vision 
approaches. This technique generates appropriate weak labels 
by precisely segmenting the semantic region of the host 
lane in the complex urban images of the nuScenes dataset 
utilized in this framework. To begin with, the checkerboard- 
based calibration technique is used to correct distortion. 
Then, using the vertical mean distribution (VMD) approach, 
an adaptive region of interest (AROI) is chosen. Finally, the 
author employs the progressive probabilistic Hough trans­
form (PPHT) to locate the lane region and calculate the van­
ishing point. To limit the undesirable consequences of such 
off-lane information, filtering must be done by masking areas 
of the images. As a result, the author segments the road using 
an adaptive algorithm based on a horizon line. The Canny 
approach is then used to deal with the arbitrary lane shapes 
discovered in the photos. Because the lane lines are parallel, 
straight, and of varying colors, image processing techniques 
retain and enhance these characteristics. Then, color space 
conversion and morphological processes ensure precise lane 
segmentation. The morphological top-hat procedure is com­
monly employed to separate the image’s brighter portions 
from their darker surroundings. In the photos, bright pixels 
depict lane lines.

As a result, top-hat operation aids incorrect lane iden­
tification in unforeseen lightning variations by denoising 
and enhancing contrast. After using the perspective trans­
form, line fitting is required to complete the segmentation 
stage to identify the lane region and improve lane features. 
Next, a sliding window search is used to iterate over dif­
ferent line shapes for more flexible fitting when dealing 
with arbitrary forms. Finally, the images are unwrapped to 
the standard view using the inverse perspective transform, 
and ground truth labels are constructed using single-channel 
conversion. SegNet, Modified SegNet, U-Net, ResNet, and 
ResUNet++ are five state-of-the-art FCN-based architec­
tures trained and benchmarked using the data. The work’s 
contributions include the first time ResUNet++ was intro­
duced on the lane detection task, where it outperformed 
the other tested models, and the introduction of a robust 
lane detection using an ensemble-based approach, as well as 
testing the models by looking at the ensemble prediction of
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the top three models in shadowy scenes and obscuring road 
scenarios.

Traditional computer vision (CV) techniques are often 
time-consuming, require more processing resources, and 
employ complex algorithms to analyze the lane images’ 
detailed properties. This research [24] proposes a deep con­
volutional neural network (CNN) architecture that avoids the 
complexities of existing CV techniques to address this issue. 
As a result, CNN is considered a viable method for lane 
marking prediction, although improved performance neces­
sitates hyper-parameter modification. An S-Shaped Binary 
Butterfly Optimization Algorithm (SBBOA) is used in this 
paper to improve the initial parameter setting of the CNN. 
This method chooses the relative CNN parameters for precise 
lane marking. The suggested SBBOA optimized CNN frame­
work extracts the lane’s pixel attributes before using the CNN 
architecture to predict the lane. In this study, each lane line 
is considered as a specific circumstance. The SBBOA-CNN 
classifier determines which pixel belongs to which lane and 
turns that knowledge into a parameter description.

Next, Kanagaraj et al. [25] show how to improve the 
efficiency of autonomous vehicles by using Convolutional 
Neural Networks with Spatial Transformer Networks and 
real-time lane detection. First, the pipeline converts a real­
time image to grayscale and smoothes the edges with a Gaus­
sian Blur to reduce noise. Applying a Canny function to aid 
edge detection is the next step in the process. The edges in 
the image are obtained after performing the Canny process 
by measuring the gradients of adjacent pixels. A significant 
change in gradients can identify an edge. Because the lanes 
will be found in the bottom half of the image, a region of 
interest is constructed that corresponds to that portion of the 
image. A Hough transformation is used to obtain the image’s 
lane lines in the next stage. A single long lane line separates 
the left and right lanes. This is accomplished by filtering the 
lines based on their slope to determine which lines belong to 
which range and disregarding the others. The left and right 
lanes for the region of interest are found this way. The next 
step is to overlap the lane lines with the original image to 
combine the images. The camera calibration matrices and 
distortion coefficients are computed before performing a dis­
tortion correction to raw images and creating a threshold 
binary image using color transform and gradients. After that 
a perspective transformation creates a bird’s-eye view of 
the image. Even when lane lines in an image are parallel, 
perspective causes it to appear to converge from a distance.

It is easy to remove the curvature of lane lines from this 
perspective. The convolution is then used with a sliding win­
dow to maximize the number of heated pixels in each window. 
The Spatial Transformer Network (STN) then interpolates 
images using a learnable transformation that removes spatial 
invariance. The STN block enhances the classifier’s accuracy 
when used in a convolutional neural network. Due to input 
changes, convolutional neural networks might suffer from a 
lack of robustness. Scale, viewpoint, and backdrop clutter are 
examples of these variances. The STN aids in the reduction of

these difficulties brought on by input variability. Because of 
its versatility, an STN can be introduced into any model area. 
They can also be trained using only one backpropagation 
algorithm.

Zhan and Chen [73] suggested a lane line detection tech­
nique based on image processing and deep learning based 
on the FPGA development platform to accomplish the fast 
lane line detection effect of structured roadways, with speeds 
up to 104 FPS. First, the camera captures road data, which 
is then transferred to the FPGA as image data via the AXI 
protocol. This part aims to convert data into RGB24 format, 
including data format conversion and transmission interface 
conversion. The image from the camera is first subjected to 
data preprocessing, which provides for data format conver­
sion and transfer interface conversion. In addition, an image 
processing approach that includes threshold segmentation, 
inverse perspective transformation, and lane line quadratic 
curve fitting is used to detect lane lines. The final output 
detection results are the curvature radius of the present lane, 
the lane’s bending direction, the path and distance of the 
vehicle deviating from the lane center, and so on. At the same 
time, the lane line coordinates are provided to enable the lane 
line type identification module to intercept the identification 
area dynamically. As a result, this study uses the deep learning 
(CNN) method to detect lane markers and display the output 
image.

The authors of [101] present a new lane marking detection 
system based on lane structure analysis and convolutional 
neural networks (CNNs). The pavement that serves as the 
background for the lane markers is first removed in a prepro­
cessing stage. Following that, a region of interest is created 
using a set of local waveforms from local images, and a CNN 
classifier is used to find lane marking candidates. Finally, the 
lane geometry analysis stage determines whether the item is 
a lane marking. A map relative localization method based on 
road lane matching [49] is developed. When GNSS data is 
neither exact nor unavailable, the technique provides lane- 
level location accuracy for autonomous vehicle driving. As a 
lane detector, the DarkSCNN neural network was deployed. 
The inverse perspective transform processes the detection and 
fits it to the polynomial.

Meanwhile, the Modified Iterative Closest Point algorithm 
compares two-point clouds: one created using HD-map data 
and the other using camera data. Furthermore, in [79], images 
from a front-view camera are captured and fed into a seman­
tic segmentation network to extract features for detecting 
road lane markings. The network is first built using the 
U-Net architecture, a convolutional neural network designed 
for biomedical image segmentation. The Hough Transform 
method is then used to determine the segmentation network’s 
output lines. Unfortunately, Hough Transform also produces 
a lot of lines from segmented images. As a result, the K-means 
Clustering technique is investigated to compute and identify 
the best line for each road lane marking.

Then, using a combination of semantic segmentation and 
optical flow estimation networks, Lu et al. [20] proposed
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a fast and reliable lane detecting approach. The study was 
divided into lane segmentation, lane discrimination, and 
mapping. First, a robust semantic segmentation network 
was developed for keyframe segmentation, and a fast and 
slim optical flow estimation network was employed to track 
non-key frames in lane segmentation. The density-based spa­
tial clustering of applications with noise (DBSCAN) was 
used to identify lanes in the second part. Finally, a mapping 
approach for translating lane pixels from the pixel coordinate 
system to the camera coordinate system and modeling lane 
curves in the camera coordinate system is proposed, provid­
ing feedback for autonomous driving.

First, the preprocessing of input frames in [75] involves 
removing most of the sky region and performing the auto­
mobile dashboard. The frame is then scaled to a resolution 
of 360 x 480. This frame is then input into the lane marking 
segmentation network, which segments out the visible lane 
marking pixels before using graph-based algorithms to detect 
instances of segmented lane markings.

The instance segmented output is subjected to perspective 
transformation (bird’s eye view), followed by an attentive 
voting-based clustering approach and polynomial curve fit­
ting, which yields the final result. Finally, the author created 
a lane segmentation network with stride convolutions and 
stride deconvolutions with relu activation in hidden units 
using the deep learning method, a CNN-based methodol­
ogy. The research [108] developed a Spatio-temporal, deep 
learning-based lane boundary recognition approach that can 
detect lane boundaries accurately in real-time under complex 
weather circumstances and traffic scenarios. The algorithm 
is divided into three parts: first, perform the inverse perspec­
tive transform and lane boundary position estimation using 
lane boundaries’ spatial and temporal constraints; second, 
classify the boundary type and regress the lane boundary 
position using convolutional neural networks (CNN). Finally, 
the author optimizes the CNN output and uses Catmull-Rom 
(CR) spline fitting to conduct lane fitting.

Then, in [65], a comprehensive method for detecting lanes 
and impediments on the road is proposed. A combination of 
deep learning and a traditional image processing framework 
was developed for detecting lanes. When the DL approach 
and the conventional method are combined, data collection 
time and effort are reduced while performance is maintained. 
The author first proposed the LiteSeg network architecture. 
The acquired RGB image is the network’s input, and the 
output is a lane segmentation map with two classes: lane 
and non-lane. MobileNetV2 is the backbone network with 
a depth-wise and inverted residual structure. However, the 
LiteSeg network, which uses the MobileNetV2 backbone, 
cannot detect all lanes correctly. Because the acquired data 
contain a lot of noise and fragmentation, the author offers 
a Hough transform-based lane detection method to fix the 
problem. In addition, the author creates a lane model using 
a quadratic polynomial to deal with curvy lanes. After that, 
the resulting candidate segments are fitted into the lane 
model using Polynomial curve fitting. The road ROI is then

determined using the obtained outermost lanes. After that, the 
defined ROI will be forwarded to the depth processing task to 
be processed further.

Finally, the literature in [105] introduced the model 
pipeline, which consists of three modules: binary semantic 
segmentation, clustering, and curve fitting. The semantic 
segmentation module analyzes pixels in an image to see if 
they belong to a lane line or the background. The clustering 
module clusters the lane points to form different lane line 
instances. When the instance segmentation is completed the 
perspective, transformation converts the image into a bird’s- 
eye view. Finally, a curve fitting technique precisely identi­
fies each lane line. To ensure excellent temporal efficiency, 
the author uses MobileNet as the backbone of CNN in the 
semantic segmentation module. Furthermore, MobileNet is a 
valuable model for mobile and embedded vision applications 
since it uses depth-wise separable convolution. In addition, 
the author clusters points that correspond to various lane lines 
using the K-Means clustering algorithm.

iii) DEEP LEARNING + MACHINE LEARNING
A machine learning-based strategy is also chosen to integrate 
with DL to boost the efficiency of lane detection tasks and 
combine DL with the old method. Lane detection utilizing 
road features-based algorithms and color feature-based algo­
rithms, according to Zhang et al. [50], cannot achieve satis­
factory performance due to several constraints. For example, 
the number of lanes is frequently not set, and techniques 
for detecting lanes are sometimes erroneous. Furthermore, 
Hough transform-based algorithms interpret straight lines 
as lanes, leading to street lamps being mistaken for lanes. 
Similarly, adverse weather, such as rain, will impact lane 
detecting. Likewise, inadequate lighting and a night setting 
will produce poor results. However, there are yet no practical 
solutions for dealing with such issues. As a result, standard 
approaches are ineffective in detecting lanes in complex traf­
fic situations. In addition, lane detection should be done in 
real-time. Most algorithms, however, fail miserably at this 
goal. As a result, by modeling the sophisticated traffic situa­
tion, this literature provides a quality-guided lane recognition 
algorithm that can successfully manage various lanes. The 
author first uses chessboard images for camera calibration 
to determine the correspondence between the real-world and 
image coordinate systems. They then use prior knowledge 
and picture quality scores to capture image regions of interest 
that only include lane information. After that, they create a 
two-stage CNN architecture for lane detection that uses a 
binary lane mask for lane matching. The author then created 
a multimodel feature fusion approach for training an SVM to 
classify image regions. From the lane and non-lane areas, the 
author created a 137-D multimodel feature by combining a 
128-D histogram of gradient (HOG) and a 9-D color moment. 
They then train an SVM to classify various locations. Next, 
they use a sliding window approach to build a set of additional 
regions from the image and SVM to select lane regions for 
testing. Finally, using image segmentation, they train an SVM
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to split the image into lane-information sections and non-lane 
information regions.

Afterward, Feng et al. [89] combine DL and ML for lane 
detection. Deep learning (5-Layer SegNet)-based approach 
is used first to detect the lane. However, as the segmentation 
results show, there are segmentation uncertainties as to which 
areas not belonging to the lane will be divided into the lane 
in specific single cycles and vice versa. Therefore, Bayes’ 
theorem is used to make the segmentation more stable. As a 
result, an RBF-kernel SVM (Support Vector Machine) is also 
tested.

iv) TWO SERIAL DEEP LEARNING
Traditional techniques have yielded significant results but 
have limitations: (1) lane awareness is challenged by varying 
weather conditions and illumination. Furthermore, previous 
methods lack a unifying framework for describing various 
scenes and (2) the inefficiency of using photos owing to 
potential label noise. J. Liu [72] introduced a lane detec­
tion framework for autonomous vehicles based on learn­
ing a comprehensive reference quality-aware discriminative 
gradient deep model, which uses two types of deep net­
works. To detect the presence of a lane, the author first cre­
ates a gradient-guided deep convolutional network because 
the gradient value of the lane edge is greater than that of 
other regions. Then use the entire reference image quality 
assessment (FR-IQA) method to find more discriminative 
gradient signals while also utilizing geometric characteristics. 
Following that, a recurrent neural layer reflects the spatial 
distribution of identified lanes using difficult-to-define visual 
cues. Finally, the noisy features are abandoned using the 
sparsity penalty, and only a small percentage of the tagged 
images are used in this paper. Next, Zou et al. [126] propose 
a deep hybrid architecture that combines the convolutional 
neural network (CNN) with the recurrent neural network for 
lane detection using the same strategy (RNN). A CNN block 
abstracts information from each frame. The CNN features 
of several continuous frames with time-series properties are 
subsequently sent into the RNN block for feature learning and 
lane prediction.

Pihlank and Riid [69] introduced a novel neural network- 
based method that integrates autoencoder structural compo­
nents, residual neural networks, and densely linked neural 
networks. The proposed architecture consists of three identi­
cally structured connected neural networks that combine the 
architectures of symmetrical AE (with dimension reducing 
encoder and expanding decoder), ResNet, and DenseNet, 
with feature map concatenation providing shortcut connec­
tions between encoder and decoder layers. Z. M. Chng et al. 
presented two state-of-the-art algorithms, SCNN + RONELD 
and ENet-SAD + RONELD, in [55]. Furthermore, as this 
research indicates, convolutional neural networks (CNNs) 
are used to train deep learning models in recent state-of-the- 
art lane detecting algorithms. While these models perform 
admirably on train and test inputs, they perform poorly on 
unknown datasets from various contexts. This study proposes

a real-time resilient neural network improvement for active 
lane detection (RONELD), using deep learning probability 
map outputs to identify, track, and optimize active lanes. They 
adaptively extract lane points from probability map outputs, 
detect curved and straight lines, and then use weighted least- 
squares linear regression on straight lanes to correct fractured 
lane edges caused by edge map fragmentation in real images. 
Finally, by tracking previous frames, the author hypothesizes 
genuine active lanes. Finally, Pizzati et al. [58] proposed 
an end-to-end system based on two cascaded neural net­
works that run in real-time for lane boundary identification, 
clustering, and classification. They train a CNN for lane 
boundary instance segmentation as a first step. Then, they 
extract a description for each observed lane boundary and 
run it through a second CNN. Instead of lane markings, CNN 
has been trained to recognize lane boundaries. Then, instead 
of semantic segmentation, they use instance segmentation on 
lane boundaries. Mask R-CNN, for example, is a cutting- 
edge network segmentation technique. ERFNet was also 
chosen as their baseline model. As a result, this paper uses 
another CNN to classify each lane boundary, linking the 
identified boundaries with the ground truth. Furthermore, the 
architecture for this work is based on H-Net.

v) DEEP LEARNING WITH ATTENTION MECHANISM
In the past, state-of-the-art lane detecting algorithms have 
outperformed traditional methods in complex scenarios, but 
they also have limitations. For instance, only a certain num­
ber of lanes can be spotted, and the cost of detection time 
is sometimes prohibitive. Human vision’s attention mecha­
nism and methods make network learning more concerning. 
Zhang et al. [9] presented a real-time lane recognition system 
based on an attention strategy to address this issue. The 
proposed network comprises an encoder module that extracts 
lanes’ features and two decoder modules, a binary decoder 
and an embeddable decoder, that forecast lanes’ instance 
feature maps. The author employs biologically inspired atten­
tion in the encoder to extract features holding a wealth of 
information about the target area. A correlation between 
the characteristics produced through convolutions and those 
extracted by attention is developed to learn the contextual 
information. The contextual information is combined with 
features from up-sampling in the decoder to compensate for 
the lost detailed information. The binary decoder assigns each 
pixel to two categories: lane or backdrop. The distinct lanes 
are obtained by using an embeddable decoder. The binary 
decoder’s outputs are then used as one of the inputs to the 
embeddable decoder, which directs the production of exact 
pixel points on the lanes.

Li et al. developed a unique Lane-DeepLab model for high- 
definition maps [15]. Two new features are included in the 
suggested method: 1) It optimizes the encoder structure by 
adding an attention module to the ASPP module; 2) It uses 
the SEB to merge high-level and low-level semantic informa­
tion to obtain more great features. Furthermore, in compli­
cated scenarios with changeable weather, the proposed model
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employs the attention mechanism and contextual seman­
tics to fuse information to determine the lane line for the 
environment.

Munir et al. [11] combine the deep learning-based algo­
rithm with the attention mechanism to detect the road 
lane. Lane detection with a dynamic vision sensor (LDNet) 
is suggested in this paper, which is constructed as an 
encoder-decoder with an atrous spatial pyramid pooling block 
followed by an attention-guided decoder for predicting and 
decreasing false predictions in lane detection tasks. There is 
no need for a post-processing step with this decoder. The 
authors suggested LDNet, a novel encoder-decoder architec­
ture for detecting lane marking using detailed event cam­
era images. LDNet simplifies full-resolution detections by 
extracting higher-dimensional features from an image. The 
authors also added an ASPP block to the network’s core, 
which increases the feature map’s appropriate field size with­
out increasing the number of training parameters. Addition­
ally, adopting an attention-guided decoder increases feature 
localization in the feature map, obviating post-processing 
requirements.

Furthermore, lane detection is essential in advanced driver 
assistance and autonomous driving systems. However, lane 
detection is affected by various conditions, including some 
problematic traffic scenarios. The ability to detect multiple 
lanes is also critical. R. Zhang et al. [10] presented RS-Lane, 
a lane recognition method based on instance segmentation, 
to address these issues. This approach is built on LaneNet 
and takes advantage of ResNeSt’s Split Attention to increase 
feature representation on slender and sparse annotations such 
as lane markings. Self-Attention Distillation is used in this 
paper to improve the network’s feature representation capa­
bilities without adding inference time. The input photos can 
be correctly processed in the preprocessing module, making 
it easier to extract features later. The driving image and 
associated annotation are translated to a standard format used 
by the model. The annotated data are utilized for training the 
network to achieve lane segmentation in the model training 
step. Denoising and fitting are used in the post-processing 
stage to obtain the final results from the model’s output. 
The network employs the encoder-decoder framework to 
conduct semantic and instance segmentation simultaneously, 
as proposed by LaneNet. The encoder’s backbone is ResNeSt, 
which presents a Split-Attention mechanism. As a result, the 
authors add two more DAS lines to the network to improve its 
feature extraction capabilities. SAD allows a network to learn 
from itself without external data. The lower layers can learn 
the higher feature representation by mimicking the attention 
maps of the higher layers. Because the lower layers’ ability to 
represent features increases, the higher layers, and the entire 
network benefit.

As a result, the decoder executes a deconvolution oper­
ation to decode the encoder’s feature maps and performs 
upsampling and classification. The decoder has five lev­
els that correspond to the encoder’s layers one-to-one. The 
author used Unet’s skip-connect approach to concatenate the

encoder and decoder outputs to make the most of the global 
context information. There are two branches in the decoder’s 
final layer: binary branch and embedding branch. This study 
generates the binary branch and embedding branch outputs 
using two convolutional layers with a 1 x 1 kernel. The 
binary branch produces semantic segmentation. The embed­
ding branch makes a three-channel map, meaning each pixel 
has a 3D embedding vector. The segmentation map output is 
utilized as a mask, and the mask is applied to the embedding 
map to generate only the lane pixels embedding the map. 
The author then applies mean-shift clustering to produce 
clusters for each lane and the actual outcome of instance 
segmentation. As a result, the lane model is fitted using cubic 
spline interpolation.

B. WHAT EQUIPMENT IS BEING USED TO COLLECT THE 
DATASET FOR THE TRAINING PROCESS?
The input data is the most critical aspect for detecting the 
road lane. Moreover, dataset preparation is essential for the AI 
approach, especially during training. As a result of the great 
dataset preparation in the network model, autonomous cars 
can manage behavior and make judgments. After reviewing 
the journal, paper conferences, and a few book chapters, 
numerous works of literature contained self-collection of data 
and were also done online. In addition, some researchers 
compile their dataset for AI training only, then compare it 
to a publicly available benchmark dataset. On the other hand, 
several researchers only use self-collect data for training and 
validation. Meanwhile, several researchers have relied only 
on the public dataset for training and validation. In road 
lane marking, radio detection and ranging (radar), a cam­
era, a global positioning system (GPS), and light detection 
and range (LiDAR) have all been used for the self-collect 
dataset [23]. Other than that, there are also data from the 
online simulator collected in various works of literature.

This subsection will describe the details of equipment 
implementation for self-collect data in lane detecting. 
In 2018, 13 published articles used cameras, and one pub­
lished paper used a simulator for data collection. Next, 
in 2019,15 published papers used cameras, and one published 
paper used a simulator and radar for data collection, respec­
tively. Furthermore, in 2020, about 12 published articles used 
the camera to collect the dataset. Meanwhile, one paper pub­
lished utilized lidar, OpenStreetMap, and HD map to collect 
datasets, respectively. Finally, by 2021, about 13 articles used 
a camera, and one paper used an HD map to acquire the data 
set.

1) CAMERA
To begin, the camera can be used to extract road markings. 
As a result, various cameras have been used, including 
webcams, Wi-Fi sports camera sensors, Kinect cameras, 
smartphone cameras, monocular cameras, and stereo vision 
cameras. Monocular cameras are a cost-effective choice; 
however, they don’t provide depth information. On the other 
hand, stereo vision cameras allow for the inference of depth
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information and hence the reconstruction ofthree-dimensional 
scenarios for increased functionality, such as collision detec­
tion [19]. Furthermore, the reliability and ability of cameras 
to record every circumstance of the road environment in 
any direction have recently been enhanced [23]. Therefore, 
vision sensors are also becoming more effective and less 
expensive due to current deep learning algorithms [37]. How­
ever, despite the prevalence of camera sensors, deep learning 
algorithms offer a high degree of generalization and learn the 
crucial elements of the driving environment across multiple 
layers.

According to the literature, most researchers utilize a cam­
era to detect lane markings. The literature recommended 
using the camera to self-collect data: Khan et al. [110] used 
the camera to acquire data. The road image was recorded 
with a single camera sensor to detect the road marking on the 
vehicle’s front side. As a result, a smartphone camera was 
placed on the front windshield of the experimental car. The 
datasets used in this study were from videos captured with a 
Samsung Galaxy Alpha smartphone (SM-G850F). The image 
was captured at 30 frames per second mode without video 
stabilization and had a 1920 x 1080 (.mp4) pixels resolution. 
The total number of videos applied in the experiment is 15, 
with 22,500 photos retrieved from them. The images were 
taken under various imaging situations, including lighting, 
traffic, and climate. The host vehicle was driven according to 
the two-second safety guideline during data collection. Main­
taining a safe following distance is critical when driving a car, 
and autonomous driving requires that distance to be estab­
lished. As a result, the two-second safety guideline criterion 
is utilized to verify a safer following distance at any speed. 
According to the rule, any vehicle in front of the driver’s 
car should be kept at least two seconds behind the driver’s 
vehicle. Therefore, about 22500 images of roads were taken at 
various times of the day and night, with varying lighting and 
occlusions such as shadows, intricate backgrounds, traffic, 
light rain, rains, and snow. Images with an after-rain effect 
can also be obtained. The dataset was taken with a camera 
installed on the dashboard, and the data gathering took place 
in Selangor and Kuala Lumpur. The remaining images in the 
dataset (light rain, rain, after rain, snow) were collected from 
the internet. They were recorded throughout the day and night 
under various lighting conditions obstructions and consisted 
of reflection effect complicated background.

Next, Liu et al. [53] deliberately chose roads with shadows, 
tire skid tracks, and noise. Around Lafayette, Indiana, the 
author filmed local roads and Interstate Highway 65. Each 
video clip is about 15 seconds long, allowing the images 
captured to focus on the desired road features. The video was 
segmented once the data was collected, and the images were 
extracted every six frames. In the end, 23,088 useful photo 
bits were gathered. Bhupathi and Hasan Ferdowsi [47] also 
use a camera to capture videos. Utilizing the multiple sliding 
window method, the accuracy of lane detection is assessed on 
four video sequences. The camera’s position should be fixed 
and usually expected to be in the vehicle’s center. Next, a

Toyota Prius autonomous driving research prototype vehicle 
with Nvidia Drive PX 2 and a Sekonix GMSL Camera was 
used by Kemsaram and Das [77]. In a car, A GMSL connector 
connects a Sekonix GMSL Camera to a Drive PX 2. Drive a 
vehicle that has the PX 2 in the trunk. The Sekonix GMSL 
camera is mounted near the rear-view mirror, behind the 
front windshield. The data set includes multi-frame images 
sampled from the driving video.

The video has a frame rate of a vertical resolution of 
720 pixels and a width resolution of 1280 pixels with 
30 frames per second. Next, the images are dissected and eval­
uated. However, the quality of several pictures is poor due to 
the lighting and brightness. This emphasizes the significance 
of lane prediction. Therefore, the training image sample rate 
is quite significant. The continuous visuals may be highly 
similar if the pace is high, rendering the model meaningless. 
As a result, just one image out of ten is chosen for the training 
dataset. Therefore, the training data set should increase the 
lane detection model’s identification performance. In addi­
tion, the training set should include more images of the 
curving lane. To begin, more images with curving lanes are 
extracted from the video. Then, the images with the least 
pixels are chosen. These images are also altered to create new 
ones.

The authors then employed a random sample of Zibo 
city road datasets consisting of three road scenarios: shadow 
occlusion, lane line wear, and bright illumination [34]. The 
visual data set in every road situation is collected in the video, 
which contains about 800 images of typical road scene graphs 
selected from the collected footage. In addition, 2400 graphs 
are used in computer simulation investigations. The frame 
had a resolution size of 512 x 682 pixels. As a result of 
the camera specifications, all of the original images in the 
experiment are greyed out. To reduce the vehicle’s hindrance 
on the camera view.

[100] uses a camera positioned 21.5cm above the center 
of the rear axle and 27cm in front. The test data is acquired 
while the automobile is driven manually to follow the track’s 
lane. Although the data is captured at 60 frames per second 
(fps) using the test platform’s onboard camera, the evalu­
ations are performed offline to ensure a fair comparison. 
Finally, in [106], the author employed video sequences with 
1225 frames with a resolution of 640 x 480 pixels of com­
plex metropolitan streets, which incorporate difficult traffic 
situations such as diverse pavement types, passing cars, faded 
writings, and numerous shallows. In addition, after rain, the 
author collected a new dataset to test the robustness in various 
climates. There are 1706 frames in total in these databases.

A Mobileye camera vision sensor was placed ahead 
of the window shield in [127], and it had a vari­
able updating rate of 50 to 130 milliseconds. The yaw 
rate sensor, which was mounted near the vehicle’s cen­
ter of gravity and updated every ten milliseconds, was 
used. Each wheel had its speed sensor updated simul­
taneously with the yaw rate sensor. A Micro AutoBox 
DS1501 additionally controlled the car from dSPACE Inc.,
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FIGURE 5. Self-driving car 'Tu Lian' with the camera mounted in the 
vehicle for data collection. POINT GREY BFLY-PGE-23S6C-C camera sensor 
was mounted in the 'Tu Lian' for data collection.

which used the controller area network (CAN) bus to 
log data from each sensor. The dataset was collected 
by Lee and Moon [99] using the self-driving automobile 
’Tu Lian,’ as shown in Figure 5. POINT GREY BFLY-PGE- 
23S6C-C camera sensor was mounted in the ‘Tu Lian’ for 
data collection. The focal length of the mounted camera is 
2246 millimeters, and the camera was calibrated first.

The in-vehicle camera collects information about the road 
environment Xiao et al. [109]. The road views are acquired 
using a Basler pia1900-32 gm/gc industrial camera, and 
the system is based on monocular vision. This lens has an 
8 mm focal length. The maximum frame rate for a picture is 
32 frames per second. The image has a 1,920 x 1,080-pixel 
resolution. The images are transferred from the camera to 
the computer through a Gigabit Ethernet interface. The road 
video data was collected in Erdos, Inner Mongolia, to ver­
ify the proposed algorithm’s effectiveness and robustness. 
These data include tree shadows, pedestrians, vehicle tres­
pass, extreme shadow and light, curves, etc.

Next, Zhan and Chen [73] used a camera to acquire the 
data, which they then fed into an FPGA as image data using 
the AXI protocol. Next, the detection outcome for the real 
dataset collected from the author’s autonomous vehicle was 
published in [15]. The visual images were chosen from a 
video with a 3 km duration consisting of road lines, road 
signs, zebra lines, and double solid lines. The proposed 
approaches are then tested using a dataset of 314 Estonian 
orthoframe photos highways with a resolution of 4096 x 
4096 pixels. In literature [69], an image segment training 
and validation dataset is built using 249 of the 314 prepro­
cessed images. There are 36497 image segments in this train­
ing/validation dataset, each with a size of 224 x 224 pixels. 
Next, the images [93] were obtained from open roadways 
and were 960 x 540 pixels in size. To recognize lane fea­
tures from actual road images, 6000 images were collected, 
comprising 2000 images each for straight, curved, and lane 
change sections. In addition, in [87], the author used a dataset 
of sceneries from the roadways located at KAIST in Daejeon, 
South Korea. VSTC-V200G camera installed on a car is used 
to collect the dataset. The video comprises 640 x 360 pixels 
of resolution at 20 frames per second with 4335 images.

Several works of literature use a different camera sen­
sor than a standard camera. For example, Lu et al. [20] 
self-collected the data set to validate the presented lane

detection model. The self-collected data set came from a 
cheap and average webcam with noticeable occlusion, blur­
ring, and poor illumination in its images. The author gathered 
over 6000 images, which included varied real-world traffic 
situations. The dataset for the lane detection challenge is 
collected using the Kinect camera and the webcam camera. 
The author of [65] used a Kinect camera installed in a 1:7 
RC car to evaluate the system’s performance in a tiny driving 
environment. The dataset contains 1000 labeled images and 
numerous complex examples to test the algorithm on.

The Wi-Fi sports camera sensor is used in [16] to 
track the entire route taken by the AV. This Wi-Fi-enabled 
camera sensor transmits actual video to a smartphone for 
monitoring. The collected footage is sent to smartphones 
and cloud storage servers for additional processing through 
a radio transmitter. A computer vision-based algorithm per­
forms the analysis. The real-time data collection aids with 
vehicle security and lane detection. Furthermore, the system 
can improve the functionality of this task by utilizing a Wi-Fi 
sports type of camera. The employed camera sensor contains 
a 2 inches screen size and a resolution of the optical sen­
sor of approximately about 12 megapixels. The zoom range 
on this camera is reasonably priced, and it supports High 
Definition (HD) video. Furthermore, this camera is simple 
to set up and use. It can also be connected to a smartphone 
to track the car. However, for non-volatility, availability, and 
accessibility, this technique sends the data to cloud storage. 
Finally, a computer vision technique is applied to process the 
collected data to identify lanes.

On the other hand, lane detection can be performed using 
infrared sensors. It is vital to capture live traffic data to detect 
the road lane, which is why the Wi-Fi sports camera is used. 
Many video frames are involved because the data is in the 
form of video, and each video frame must be processed before 
the vehicle may be warned.

Next, Moon et al. [102] collected the video images for 
the tests with a resolution of 640 x 360 since numerous 
video clips contain 24 or 29 frames per second (fps). As a 
result, the execution time for each frame must be less than 
1/24 s (14 41.7 milliseconds) or 1/29 second (1434.5 ms). 
In addition, the images of various road circumstances, such as 
evening conditions, many noises present, and situations in a 
tunnel, are used in this work. Finally, in [74], road images are 
collected with an iPhone at a frame rate of 30fps and 1334 x 
750 resolution, with the camera sensor installed on the rear 
mirror. The area in front of the vehicle is depicted in this 
image, including trees, a road, cars, pedestrians, and a side 
view.

2) LIDAR
There are two primary benefits of using the camera. First, 
this sensor delivers extensive surroundings and is currently 
the cheapest and most dependable modality for automotive 
applications. However, this sensor is sensitive to light levels, 
necessitating a filtering step. LiDAR sensors can be used to 
solve this problem. For example, regardless of the lighting
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circumstances, it is practicable to detect whether a LiDAR 
beam has intercepted asphalt or road painting [128]. This is 
especially useful when dealing with shadows and darkness, 
which cameras have trouble handling. Furthermore, LiDAR 
provides a centimeter-accurate three-dimensional picture of 
the world. LiDAR, on the other hand, it’s more costly than 
cameras. Nonetheless, advancements in optical technology 
and rising demand will lower the price of LiDAR.

3) SIMULATOR
Little research in lane detection uses simulators to collect 
data for training and validation. For example, L. Tran and 
M. Le [129] used a dataset of around 4000 training images 
to train a segmentation model for 20 hours, with 2000 images 
annotated. The information comes from the CARLA simula­
tor. Besides that, the training dataset for Unity3D simulation 
is then collected by M. C. Olgun et al. [107]. A setting was 
built that resembled the author’s real-life roads. An AI con­
troller language in an automobile allows it to appropriately 
follow waypoints between lanes in a given scenario. Frames 
representing the car’s maneuver are saved in a jpg file; mean­
while, image routes, speed, and steering information are kept 
in CSV format. This dataset’s loss value is more consistent 
than the manually collected dataset. The lane tracking train­
ing dataset contains 12531 authentic images supplemented 
with 20000 images. Next, in [51], the author employed a 
pioneer robot vehicle to mimic two different track settings. 
The program finds the lane using this visual input from the 
Gazebo simulator. Based on lane identification findings and 
Matlab output, it calculates the vehicle’s angular and linear 
velocity.

4) RADAR
A high-resolution automotive radar prototype is utilized to 
collect data in [12], [13], and [89]. The modulation mode of 
this radar sensor is FMCW (Frequency Modulated Contin­
uous Wave). The baseband signal can calculate range, rela­
tive radial velocity, object angle, and reflection magnitude. 
The signal processing chain begins with a 2-dimensional 
FFT (Fast Fourier Transform), CFAR (Constant False Alarm 
Rate), peak detection, and the maximum likelihood angle esti­
mation technique. The axis of the estimated azimuth angle is 
evenly spaced. The detecting sites’ positions and the object’s 
range will fit into a fan-shaped grid-like pattern.

5) HD MAP
The dataset for lane recognition from HD maps is self­
collected in several research. As a navigation back­
end, all commercial autonomous vehicles use accurate 
high-definition maps with lane markings. However, the 
majority of high-definition maps are currently produced man­
ually. The generation of high-definition maps for autonomous 
driving using auto-assisted multi-category lane recogni­
tion [15]. The HD map is defined as a map that consists 
of the precise coordinates of road lanes in the Universal 
Transverse Mercator (UTM) coordinate system, as described

in [49]. Other elements such as road signs and traffic lights 
are included, but only road lanes are used in this publication. 
When a new camera frame is received, the author queries all 
lanes from the HD map within a given radius of the most 
recent position estimation. This study, for example, used a 
distance of 20 meters. Because lane line detection takes time, 
the author should employ the stance when the camera is 
triggered. The road lane matching module uses information 
from the front camera to detect lanes and a slice of an HD 
map near the most recent localization estimate as input. The 
module determines the best modification for aligning camera 
lanes to the HD map with the slightest error. The algorithm 
utilized is the Iterative Closest Point algorithm.

6) OPENSTREETMAP
OSM datasets have been employed in intelligent transporta­
tion systems for various purposes, including road-level local­
ization [130] and lane-level determination [131]. Road 
detection utilizing images obtained from a camera relies on 
road priors and contextual information. First, the road back­
bone is built using an OSM map based on the number of 
lanes and lane width. The image is then projected with this 
road geometry, considering the uncertainty associated with 
the ego-vehicle stance. Finally, before the detection of a lane, 
the result is used.

The study in [132] uses OSM data before creating a more 
precise map. After that, the authors provide OSM data and 
proprioceptive sensor fusion architecture. In the meantime, 
a similar approach derived from OSM was used to identify 
ego-lane marking in LiDAR point clouds [44]. Nodes, Ways, 
and Relations [44] are the three crucial components of OSM 
data. Nodes are the geometrical elements that represent GPS 
positions. For example, the roadways network is defined by 
byways, a detailed list of nodes. As a result, each way (road) 
is made up of segments [130]. In other words, being a part of a 
segment is similar to being a part of an OSM Way. As a result, 
the map matching problem should be recast as matching a 
GPS point to a segment. As a result, the author employs the 
map-matching technique described in [130] to select the best 
path (road). However, as discussed in this literature, the OSM 
data lacks precise information.

C. WHAT WAS THE DATASET USED FOR THE NETWORK 
TRAINING, VALIDATION, AND TESTING?
TuSimple [75], KITTI, Caltech, Cityscapes, ApolloScape, 
and CULane datasets are online road scene datasets or bench­
marks that provide training data for various uses. In this 
section, several popular public datasets will be discussed. 
The network must be given a meaningful dataset to operate 
efficiently [107].

1) TUSIMPLE DATASET
The TuSimple dataset is a publicly available traffic-detection 
data set (light traffic and clear lane markings). Its label for the 
training dataset consists of continuous lane curves that start at 
the bottom of the input image and continue until the horizon
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passes over the vehicles [75]. It consists of large datasets with 
training, and the testing number is 326 and 2782 in both bad 
and excellent weather conditions, respectively [35]. They are 
recorded at various times of the day on two road lanes, three 
road lanes, and four road lanes or extra highway roadways. 
The resolution of these RGB input images is 1280 x 720 
pixels. Each image also includes the 19 frames with the 
unlabeled dataset. The annotations are JSON format, show­
ing the lanes’ x-position at different discretized y-positions. 
The literature that used the TuSimple dataset for training or 
validation has been discussed in this section. In their research, 
Y. Sun et al. [71] utilize this public lane detection dataset. The 
author generates ground truth instance segmentation maps by 
drawing lines along with the pixel coordinates of each lane. 
The lines have a thickness of 15 pixels.

In addition, different labels are assigned to various lanes. 
The author divided the dataset into three parts: a train set 
with 3268 images, a validation set with 358 images, and a 
test set with 2782 images, respectively. Next, the TuSimple 
dataset was utilized by Lu et al. [20] to validate the pro­
posed lane detection model. The dataset employed in this 
study has good visual clarity, no blur, and a low detection 
difficulty. Besides that, the TuSimple dataset is also used in 
experiments carried out in [24]. In this study, the TuSimple 
dataset contains almost 7000 video segments. Each video 
clip comprises twenty frames in total. Seventy percent of the 
videos are used for learning in the network, twenty percent 
for validation, and 105 for testing. In detail, the training, 
validation, and testing sets contain 4900, 1400, and 700 video 
clips, respectively. The sample of TuSimple datasets images 
was taken in a variety of climatic factors. Next, Pizzati et al. 
[58] used this dataset, which consisted of 6408 images with 
a resolution of 1280 x 720 images divided into training and 
testing datasets with 3626 and 2782 images, respectively. The 
TuSimple dataset is unique because it annotates complete 
lane boundaries instead of lane markings. As a result, this 
dataset is perfect for this research.

Moreover, this dataset is used as a training and test­
ing dataset in [72], with about 3600 training images and 
2700 testing images. The author stated that the TuSimple 
dataset comprises a variety of weather scenarios and is a 
massive dataset for measuring lane detection performance. 
Furthermore, this literature presented a strategy using the 
spatially convolutional neural network (SCNN) method [19]. 
Although the TuSimple dataset includes various road situ­
ations, including straight lines, curving lanes, splitting and 
merging lanes, and shadows, only straight and curvy lane 
scenarios were employed in this study.

This dataset was also utilized in the literature [35] to 
evaluate their strategy. Next, Chng et al. run lane detection 
experiments on the TuSimple test sets in [55]. According 
to the literature, this dataset is relatively simple, taken dur­
ing the daytime along highways in excellent or moderate 
weather, and contains ground truths annotated on the last 
frame of each twenty-frame clip. The author manually selects 
the lane markers demarcating the active lane for detection

and comparison in the tests for each frame with ground 
truths labeled. The TuSimple lane dataset consists of 3,626 
picture sequences. These are highway driving scenes from the 
driver’s perspective. Each sequence contains 20 uninterrupted 
frames captured over the one-second time frame. The last 
frame of each series, i.e., the 20th image, is labeled with lane 
annotations. In addition, this literature adds labels to every 
13th frame in each sequence to augment the dataset. Finally, 
[105] used the TuSimple lane dataset on the lane detection 
task to train and test deep learning-based techniques.

2) KITTI DATASET
The KITTI [133] benchmark is also popular data for road 
scenes. It contains various information regarding the road 
scene, including color pictures, stereo images, and laser point 
data. Jannik Fritsch and Tobias Kuehnl of Honda Research 
Institute Europe GmbH generated the KITTI Vision bench­
mark dataset [133]. There are 289 training and 290 test 
images in the road and lane estimate benchmark. Urban 
unmarked (UU), urban multiple marked (UMM), urban 
marked (UM), and hybridization of the three categories are 
the four categories that the pictures of road scenes fall into. 
The training dataset consists of 98 images; meanwhile, the 
testing dataset consists of 100 images. Ground truth was 
created in the KITTI dataset by manually annotating the 
images. It is offered for two types of road terrain: the road area 
(all lanes combined) and the lane (the current lane where the 
vehicle is traveling). For example, Shirke & Udayakumar [54] 
employed the KITTI dataset for region-based segmenta­
tion using an iterative seed approach for multilane iden­
tification. Aside from that, in another article, Shirke and 
Udayakumar [66] also used the KITTI vision benchmark 
dataset in their experimentation. Next, this public dataset 
KITTI also was then used to validate the algorithm’s per­
formance in [37]. Last but not least, P. Lu et al. [27] used 
the benchmark’s testing dataset to validate the suggested 
technique.

3) CALTECH LANE DATASET
This dataset [134] contains four video clips captured through­
out Pasadena, California, at distinct intervals of the day. 
The resolution of each video clip is 640 x 480 pixels and 
includes varying lighting and illumination situations, lane 
markings, sun glint, pavement types, shadows, crosswalks, 
and congested environments. In addition, this dataset also 
consists of urban streets, both straight and curved [101] was 
tested using the Caltech [134] dataset. Aside from that, the 
proposed methodology by Akbari et al. [19] was compared 
to two model-based methods using the Caltech Lane dataset. 
The author used about 1,224 labeled datasets in this literature, 
with 4,172 lanes extracted from four video clips collected 
from numerous urban roadways.

4) CITYSCAPES DATASET
Cityscapes’ high-resolution and finely labeled training 
images [135] are well-known. On the other hand, this data
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offers semantic segmentation labels but not lane informa­
tion [28]. Next, the author of [15] uses the Cityscapes dataset 
to test the network for broad semantic segmentation and 
multi-category lane line semantic segmentation tasks. The 
semantic comprehension of urban street sceneries from the 
perspective of a car is the focus of this literature. The collec­
tion contains 5000 photos with high-quality pixel-level anno­
tations with 2975 training datasets, 500 validation datasets, 
and 1525 test datasets.

5) APOLLOSCAPE DATASET
Apollo has six separating markings, four guiding markings, 
two stopping lines, 12 turning markings, and other pixel- 
level lane markings and lane characteristics [28]. With about 
19040 photos, this is a vast data collection (training sets 
are 12400, validation sets are 3320, and test sets are 3320, 
respectively). In addition, a stopping line, a zebra line, a sin­
gle solid line, a single dash line, a double solid line, and 
other semantic segmentation information can also be found 
on the road. However, some ground area near lane lines 
is easily mistaken for lane markings [28]. The following 
works used the ApolloScape dataset for training and testing. 
For instance, in [15], the author analyses the network for 
generic semantic segmentation tasks and multi-category lane 
line semantic segmentation using the ApolloScape dataset. 
As the author knows, this dataset is challenging to work with 
because it includes high-quality pixel-level ground truth of 
over 110 000 frames and lane elements such as six separating 
markings, four guiding markings, two stopping lines, and 
12 turning markings, among others. Furthermore, the author 
employs multi-class training in this experiment. ApolloScape 
offers three different datasets; however, they only used one for 
the lane detection task in this literature.

6) CULANE DATASET
The CULane dataset can be considered more challenging, 
and many datasets include normal conditions and eight com­
plex settings such as crowded, night, and online. On the 
other hand, the TuSimple dataset is more straightforward 
than CULane. Therefore, several frames in CULane lack 
lane markers (e.g., at light traffic crossroads). The studies 
in [55] were carried out on test sets of one of the most widely 
used and extensively utilized lane detection datasets [5]. The 
CULane train set is used to pre-train the models. Furthermore, 
this dataset comprises several challenging driving scenarios 
and ground truths annotated on all frames (e.g., congested 
city streets and night scenes with poor lighting). Besides, it is 
a simple dataset collected during the daytime along highways 
in excellent or moderate weather.

Most public datasets for lane detection, such as TuSimple, 
Caltech, Kitti, CULane, and Cityscapes, are currently pro­
posed for urban roadways. The TuSimple is widely used in the 
literature, as evidenced by the publications chosen. It is the 
most often used dataset among academics in lane detecting 
studies. Tusimple has been used to test many algorithms [1], 
[5], [20], [21], as it was the largest lane detection dataset

before 2018. This dataset contains 3626 training photos and 
2782 testing images on highway roads. It is intended for 
ego-road lane recognition; however, it does not distinguish 
between lane marker kinds or offers space between lanes. 
TuSimple, on the other hand, is a simple dataset collected 
during the daylight along highways in excellent or moderate 
weather, with ground facts only labeled on the last frame 
of each clip of twenty frames [18]. Caltech is the second 
most used dataset for lane detection. The Caltech Lanes 
dataset contains four video sequences (or sub-datasets) in 
urban settings, totaling 1225 images, which have been used in 
some previous research [6], [9], [13], [21], [28]. Aside from 
that, the Kitti and CuLane datasets are well-known online 
datasets for lane detecting tasks. The Kitti road has two sorts 
of annotations: road segmentation, which covers all lanes, 
and ego-lane, which designates the lane in which the car is 
presently moving. For examples of past research that used this 
dataset, see [21], [28], and [32]. CULane, on the other hand, 
features various challenging driving circumstances, including 
congested roads or highways with low lighting. As a result, 
it is rarely preferred by researchers for detecting the lane. 
[1], [8], [11], [16], [18] are some of the algorithms that 
use this dataset. Some CULane frames lack lane markers 
(for example, crossing traffic light crossings) [18].

Furthermore, there are usually three sets of dataset par­
tition for training the models: training set, validation set, 
and test set. The training set will be used to fine-tune the 
model’s parameters. Meanwhile, the validation set (which 
can be ignored if just one model is supplied) and the test set 
(which will be used to quantify the model’s accuracy) will 
be used to compare alternative models applied to that data. 
Normally, the proportions of these partitions are 70/20/10. 
The divisions of the dataset from multiple prior studies pro­
vided in this study were presented in this portion of the SLR, 
as illustrated in Table 7. The division of the dataset consists 
of a training set, validation set, and test set in percentages. 
The popular dataset, such as TuSimple, are mostly divided 
into 60% training and 40% testing set. Meanwhile, the Kitti 
dataset is divided into 50% training and 50% testing. Next, 
the NuScenes data set is divided into 90% training and 10% 
validation. Therefore, there is also a dataset used by previous 
researchers where the data distribution is not the same. For 
example, CULane dataset distributed to 60% training, 10% 
validation and 30% testing [36], 65% training, 10% valida­
tion and 25% testing [80], and 75% training and 25% testing 
set [55]. The previous CamVid, dataset has been divided into 
80% training and 20% testing [65], 60% training and 40% 
testing [119].

D. LEARNING OUTCOMES FROM THE RQs
According to the literature analysis, it is shown that in just 
four years, the development of the lane detection task from 
the traditional-based method, which requires many pipeline 
processes, to the existence of the Artificial intelligence field, 
which is an intense learning-based strategy, the study will 
be easier and more efficient. For instance, deep learning
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algorithms have a high degree of generalization and learn 
essential aspects of the driving environment. However, there 
is always space for development in speed and accuracy, par­
ticularly in adverse weather situations, when applying the 
deep learning-based approach. Thus, several works of litera­
ture have advocated the integration of this method. Therefore, 
integrating DL and attention mechanism becomes a state- 
of-the-art approach still new in this field as it just began 
to introduce in 2020. Therefore, only a few studies in the 
literature have studied lane detection using deep learning 
and the attention mechanism. The attention mechanism was 
previously utilized primarily in natural language processing 
(NLP), but it is now broadly used in computer vision, partic­
ularly in the medical field. Thus, it can be explored more in 
the automation field.

Next, the self-collected dataset can be acquired using var­
ious sensors, including cameras. It has been found that the 
camera is the most popular sensor for lane detection appli­
cations. This is because cameras have improved in reliability 
and are likely to capture any situation on the road from any 
angle. In addition, vision sensors are becoming more effective 
and cost-efficient due to recent deep learning techniques. 
Moreover, due to the widespread use and efficiency of cam­
era sensors, deep learning algorithms can learn the crucial 
features and characteristics of the driving environment across 
multiple layers in the model. Next, there are primary benefits 
of using the camera. This sensor delivers extensive informa­
tion about the surroundings and is currently the most cost- 
effective and dependable method for automotive applications.

Besides the camera, LiDAR, radar, HD map, simulator, and 
OSM are also used as equipment for data collection. It is 
due to the camera sensor being affected by light conditions, 
which necessitates a filtering process. Therefore, during the 
data collection using the camera, the driver must ensure that 
the range distance between the experiment vehicle and the 
front car is always suitable. Then, the same range distance 
for better quality input image will be obtained. Other than 
that, there are dangerous and consumes time to collect the 
dataset using a camera, especially during the rainy/monsoon 
season. Especially in Southeast Asia, there is a time when 
heavy drop rain will continue for the whole week. In addition, 
it is difficult to collect the dataset in an urban area at a specific 
time, for example, during peak hours, when there would be 
many vehicles on the road and stuck in traffic jams. However, 
cameras are less expensive than LiDAR. Meanwhile, OSM 
data is devoid of precision information.

Next, the simulator is commonly used for modeling lane 
detection and used as equipment for data collection. There 
are several advantages when using the simulator to collect the 
dataset for training, testing, and validation. One of the advan­
tages is that it is not time-consuming and non-dangerous 
because it is not involved with the physical and natural envi­
ronment. Therefore, it can create many conditions, especially 
extreme conditions such as rain, snow, fog, etc.

Other than the self-collect dataset, there are also sev­
eral available online datasets in the market. Various

repositories exist for a dataset on lane detection, such as the 
TuSimple dataset, KITTI vision benchmark dataset, CULane 
dataset, Cityscapes dataset, and Caltech dataset. This dataset 
is straightforward, has a variety of image situations, and has 
already been labeled for the training dataset. TuSimple is 
the most popular dataset since it incorporates different road 
conditions, including straight lines, curving lanes, splitting 
and merging lanes, and shadows. Not only that, but the 
TuSimple dataset also includes lane detecting images with 
lower illumination.

Furthermore, the TuSimple dataset collects data from roads 
in fair or moderate weather, with two lanes/three lanes/or 
more lanes, and a variety of traffic scenarios, including clear 
lane lines with excellent image quality, no blur, and rela­
tively simple identification challenges. Unfortunately, even 
though several ready companies with Level 5 autonomous 
cars are claimed, the available data for extreme conditions is 
still limited. The learning results from RQs 1, 2, and 3 are 
summarised in Table 6. The table contains the technique 
deployed for 102 selected publications with the dataset type 
and equipment for the self-collect dataset.

E. GENERAL DISCUSSION ON ADDRESING THE SPECIFIC 
ISSUES BASED ON COMPUTER VISION TECHNIQUE
Most geometric modeling/conventional approaches rely on 
or follow pre-processing feature extraction, lane model fit­
ting, and lane tracking to detect the lane. For lane detec­
tion tasks, image pre-processing is required to determine 
the quality of features. In addition, this approach needs 
manually alter the parameters, although this procedure is 
efficient and uncomplicated. Furthermore, previous methods 
based on handcrafted features to detect lanes are limited in 
scenarios using edge, texture, or color information, which 
requires complicated post-processing modules to perform. 
Likewise, in many complex procedures, these approaches 
function inadequately. Therefore, traditional computer vision 
(CV) techniques are time-consuming and resource-intensive 
and rely on complicated algorithms to analyze the delicate 
aspects of lane images. In addition, the number of lanes is 
frequently not fixed, and techniques for detecting lanes are 
sometimes erroneous. Straight lines, for example, are treated 
as lanes by Hough transform-based algorithms, which may 
cause street lamps to be mistaken for lanes.

Furthermore, poor weather, such as rain, will impact lane 
detection. Likewise, inadequate lighting and a night setting 
will produce poor results. However, there are yet to be 
practical solutions for dealing with such issues. As a result, 
conventional approaches are ineffective in detecting lanes 
in complex traffic situations. In addition, it must work in 
real-time. Most algorithms, however, need more of this pur­
pose. Therefore, traditional techniques have yielded signifi­
cant results. However, they have several limitations: (1) lane 
detection is challenged in varying weather conditions and 
illumination. Furthermore, previous methods need a con­
sistent framework for detecting various scenes and (2) the 
inefficiency of using images due to label noise.
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Following that, due to the advancement of deep learn­
ing, numerous solutions have been suggested to enhance the 
achievement of computer vision works in contrast to conven­
tional approaches. Despite the prevalence of camera sensors, 
deep learning algorithms offer a high degree of generalization 
and learn the essential elements of the driving environment 
across multiple layers. In contemporary state-of-the-art lane 
detection techniques, convolutional neural networks (CNNs) 
are also used to develop deep learning models. CNN is also 
created for image classification problems in deep learning- 
based technology, in which it can extract features from the 
images it receives. However, the image’s output is one­
dimensional data that can only forecast which images belong 
to which sorts of objects.

Furthermore, numerous low-level characteristics were lost 
in the pooling layers of CNN. As a result, input changes might 
cause convolution neural networks to lose robustness. Scale, 
viewpoint, and backdrop clutter are examples of these vari­
ances. Furthermore, while these models perform admirably 
on train and test inputs, they perform poorly on unknown 
datasets from various contexts. The FCN network can over­
come these issues and detect more accurate two-dimensional 
data. Even the deep learning-based technique offers numer­
ous advantages. However, they have a high computing cost, 
which can sometimes increase training loss and result in a 
vanishing gradient issue [37].

In the past, advanced detecting algorithms such as deep 
learning have outperformed traditional methods in complex 
scenarios, but they have limitations. For example, despite the 
importance of multilane detection, only a limited number of 
lanes can be detected, and the cost of detection time is fre­
quently prohibitive. Therefore, various factors influence lane 
detection tasks, including specific complex traffic scenarios.

Attention mechanisms have improved NLP and CV exten­
sively. The employment of an attention mechanism improves 
feature localization in the feature map and eliminates the 
need for post-processing. Therefore, as lanes are long and 
thin for lane detection, there are considerably fewer annotated 
lane pixels than background pixels, which is challenging for 
a model to learn. Hence, the attention processes in feature 
maps can emphasize crucial spatial information. The atten­
tion mechanism, in particular, can boost the weighted infor­
mation of lane line objectives while reducing unnecessary 
data. It adds to the complexity of network learning. However, 
as the author is aware, more research needs to be done on 
using the attention mechanism in lane detecting tasks. In this 
research area, many different forms of attention mechanisms 
can be used at the same time. As a result, the study’s future 
direction can be investigated by applying another type of 
attention mechanism that has yet to be deployed.

F. ISSUE ON TECHNIQUE RELATED TO DATA
The existing ADAS act as a driver’s aid, and many issues still 
need to be addressed or improved to achieve the objective of 
safe and enjoyable autonomous driving on real-world roads. 
In a real-world scenario, a lane recognition system should

continue to work throughout the year, regardless of whether 
it is sunny or cloudy, day or night, summer or winter, urban 
or rural, crowded or clear, and so on. The main challenge is to 
make the lane recognition approach resilient and prosperous 
under various driving conditions.

From the literature’s selection, there are several issues on 
lane detection techniques that are related to data, such as:

1) IMBALANCED DATA SET PROBLEM
Extremely imbalanced data set problem because the back­
drop class contains the majority of the lane pixels in the 
image. In addition, the amount of backdrop pixels is sig­
nificantly more than the number of lane pixels due to the 
lane’s slenderness. It may be challenging to pick up on such 
characteristics [1]. Aside from unbalanced data, the quality 
of acquired data and annotations also restricts the capacity of 
various methods [2]. As a result of the limitations imposed by 
available datasets, lane approaches developed on one dataset 
are unlikely to be applied to another. To address this issue, 
state-of-the-art transfer learning and attention mechanisms 
must be implemented. Aside from that, a more generic dataset 
that replicates real-world road conditions should be inves­
tigated for the confined dataset. Furthermore, as this sector 
develops, more data sets are projected to become avail­
able for researchers, particularly with the advent of entirely 
autonomous cars [3]. However, researchers are also hindered 
by the lack of datasets, necessitating the creation of new 
databases to allow for additional algorithm testing. The new 
databases can be created using synthetic sensor data from 
a test vehicle or by generating driving scenarios using a 
commercially available driving simulator. Similarly, more 
research is needed in the following areas.

2) VARIATION AND CHANGEABLE LANE MARKINGS
With the vast diversity of lane markers, the complex and 
changing road circumstances, and the lane markings’ inherent 
thin properties, some scenarios, such as no line, shadow 
occlusion, and harsh lighting conditions [1], provide few or 
no visual signals. Therefore, detecting the lanes from the 
image in these scenarios can be difficult. According to the 
findings, traditional approaches work in a controlled envi­
ronment and have numerous problems regarding robustness 
difficulties caused by road scene fluctuations. In addition, 
the lanes’ inconsistency, curvature, and varied lane patterns 
make detection much more difficult. Daytime has gotten a 
lot of attention in the past, but nighttime and rainy situations 
have gotten less attention. Furthermore, it is apparent from the 
literature that, in terms of speed flow conditions, they have 
previously been examined at speeds ranging from 4 km/h 
to 80 km/h, with high speed (above 80 km/h) receiving less 
attention. Occluding overtaking vehicles or other objects and 
excessive illumination make lane identification and tracking 
difficult. Although reflector lanes are specified with several 
colors, lane markings are usually yellow and white. The 
number and width of lanes vary per country. There may be 
issues with vision clarity due to the presence of shadows.
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The visibility of the lane lines was reduced due to various 
weather conditions, such as rain, fog, and snow. Visibility 
may be decreased in the evening. The performance of lane 
detection and tracking algorithms suffers due to these issues 
in lane recognition and tracking. As a result, developing a 
dependable lane detection system is a difficult task.

3) INTERFERENCE AND ILLUMINATION VARITIONS
According to [4], lane-like interferences, such as guardrails, 
railways, utility poles, pedestrian sidewalks, buildings, and 
so on, will interfere with the existing traditional method, 
such as the HT-based algorithm. As a result, it has struggled 
in various challenging settings, including lane kinds, road 
surfaces, nighttime, and other environmental factors (shadow, 
rain, etc.). When a vehicle drives at night, the intensity of 
the region illuminated by headlights, for example, is several 
orders of magnitudes higher than the backdrop. As a result, 
even though the lane markers contrast nicely with the road 
surface in human vision, portions of lanes are overexposed. 
The host car then casts its shadows on the road surface as 
it enters or exits a tunnel or drives beneath a bridge. As a 
result, the road may have complicated painted road surface 
markings, utility lines, and buildings, which can cause the 
HT-based lane recognition algorithm to provide misleading 
edges and textures. On rainy days, reflection from the wet 
road may induce glare and image overexposure, resulting 
in lane detection failure in some instances. In addition to 
lane-like interferences, lighting fluctuations make dividing 
line recognition more challenging. Under artificial light, the 
system failed to recognize road lane characteristics in bright 
or wet road conditions with significant reflection on rainy 
days. Using assumptions to delete the misleading edges far 
from the host lane during the pre-processing step may be 
one technique to lower the false-positive rate under such 
scenarios. Another option is to employ feature-based machine 
learning algorithms. This could be one of the areas research 
could be conducted. However, such approaches would only 
be able to benefit roads not included in the training set 
and tend to overfit in images and lane markers. As a 
result, classic techniques such as model predictive controller 
(mpc) have worse performance in bad weather and pose 
issues in controlling high illumination or shadows, according 
to [3].

G. UNCERTAINTIES MANAGEMENT
Working with inaccurate or incomplete information is what 
uncertainty entails. This study contains numerous sources of 
uncertainty, including data noise and an imprecise model. 
The solution systematically evaluates multiple keys until an 
excellent or good-enough set of features and methods is found 
for a given problem.

1) NOISE
Noise is the term for variation in an observation. Both the 
inputs and the outputs are affected by this unpredictabil­
ity. Genuine data, like the real world, is a tangled mess.

Therefore, maintaining skepticism about data and developing 
techniques to anticipate and battle uncertainty is crucial. The 
solution to this problem is to invest some time analyzing 
data statistics and creating visualizations to aid in identifying 
those anomalous or unusual cases: this is what data cleansing 
is all about.

2) INCOMPLETE COVERAGE OF THE DOMAIN
A random sample is a set of observations picked randomly 
from a domain with no systematic bias. A certain amount 
of bias will always exist. This arises when a model needs 
more data and knowledge, commonly occurring when there 
aren’t enough samples to train the Artificial Intelligence. 
While some bias is inherent, uncertainty grows if the sample’s 
degree of variance and bias is an unsatisfactory representation 
of the task for which the model will be utilized. For example, 
in lane detection, researchers may detect a lane in a highway 
area only if the road is in good condition and there are 
few vehicles present except during rush hour. Aside from 
that, lane detection in normal situations is far easier than in 
extreme conditions. The painted lane marking is chosen at 
random. However, it can only be used in one instance. The 
scope can include highways, cities, rural areas, and normal, 
rainy, and foggy circumstances. The sample must have an 
acceptable amount of variance and bias to represent the task 
for which the data or model will be utilized. There will 
only be some observations in any of the initial investiga­
tions. This implies that some cases will always go unnoticed. 
There will be areas of the problem domain that need to be 
covered. Two options are splitting the dataset into train and 
test sets or resampling methods like k-fold cross-validation. 
This technique can be used to deal with ambiguity in the 
dataset’s representativeness and to assess the performance of 
a modeling procedure on data that isn’t included.

H. ANALYSIS OF PERFORMANCE EVALUATION METRICS & 
ITS SIGNIFICANCE
Various performance indicators are available, but the most 
frequent are accuracy, precision, F-score, and receiver oper­
ating characteristic (ROC) curves. The accuracy rate should 
reflect the algorithm’s global output if the dataset is balanced. 
The accuracy demonstrates the accuracy of optimistic pre­
dictions. The lesser the amount of ’’false alarms,’’ the higher 
the accuracy. The recall, also known as the true positive rate 
(TPR), is the proportion of positive cases that the algorithm 
accurately detects. As a result, the better the recall, the more 
accurate the algorithm finds positive instances. The F1 score 
is the harmonic mean of Precision and Recall, and because 
they are merged into a single metric, it may be used to 
compare algorithms. The harmonic mean is employed instead 
of arithmetic since it is more sensitive to low values. As a 
result, if an algorithm is accurate and has a high recall, it has 
a decent F1 score. These parameters can be calculated as 
individual metrics for each class or overall metrics for the 
algorithm.
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I. CROSS-VALIDATION FOR EVALUATING AND 
COMPARING MODULES
Cross-validation is a technique for testing how well a sta­
tistical analysis applies to a different dataset. Typically, the 
model is trained on a known dataset. This dataset is referred 
to as the training dataset. However, the model must work on 
an unknown dataset in real-time. Cross-validation is used to 
see how well a prediction model works with an anonymous 
dataset. The model may have a high degree of accuracy 
when the original validation division does not reflect the 
entire population. However, it will be of little help in practice 
because it can only work with limited data collection. When 
it comes across data outside its scope, the system cannot 
recognize it, resulting in poor accuracy. It is verified how 
accurate the model is on many diverse subsets of data when 
cross-validation is employed in machine learning. As a result, 
it ensures that it generalizes well to data collected in the 
future. It enhances the model’s accuracy. Cross-validation 
might help avoid overfitting and underfitting. When a model 
is trained ’’too well,’’ overfitting develops. It occurs when the 
model is sophisticated and has a large number of variables in 
comparison to the number of data. In such cases, the model 
will perform admirably in training mode but may not be 
accurate when applied to a new data. It is because it is not 
a generalized model. Underfitting happens when the model 
does not fit the training data instead of overfitting. As a 
result, it is unable to generalize to new data. It’s because the 
model is simple and lacks sufficient independent variables. 
In data analysis, both overfitting and underfitting are unde­
sirable. It should always strive for a balanced approach or a 
just right paradigm. Overfitting and underfitting can both be 
avoided by cross-validation. Machine learning necessitates 
extensive data analysis. Cross-validation is a great way to 
get the machine ready for real-world circumstances. As a 
result, the system is prepared to take in new data and general­
ize it to make correct predictions. However, to the authors’ 
knowledge, previous research in the lane detection sector 
does not generally discuss or describe any cross-validation for 
evaluation. It is possible to state that it is a biased experiment 
that requires additional examination in this sector.

J. LIMITATION OF SYSTEMATIC LITERATURE REVIEW 
BASED ON RESEARCH QUESTIONS
Referring to the research questions, RQ1, RQ2 and RQ3, 
there are existing of certain limitations as listed as follows:

1) RQ1
The results from previous research demonstrate that in most 
circumstances, lane detection accuracy is about 96 percent 
under normal conditions. Heavy rain, on the other hand, 
significantly impacts the efficiency of lane marker detection. 
In addition, external factors such as weather, visual quality, 
shadows, and blazing, as well as internal factors such as lane 
marking that is too narrow, too broad, or unclear, degrade 
the performance. Moreover, it has been observed that the

system’s performance suffers due to unclear and deteriorated 
lane markers. Therefore, one of the most significant issues 
with current ADAS is the ambient and meteorological envi­
ronments substantially impacting the system’s functionality.

2) RQ2
Regarding lane marking, camera quality is crucial, and 
an adjacent vehicle may obscure the lane signs during 
overtaking. Therefore, the algorithm’s accuracy is determined 
by the camera used. Images were captured using monocular, 
stereo, and infrared cameras. From the literature, a stereo 
camera outperforms a monocular camera.

3) RQ3
Approximately 60% of the researchers have used self­
collected datasets in their research.

K. LIMITATION, FUTURE SCOPE AND CONTRIBUTIONS OF 
THE CURRENT WORK
The limitations and future scope of the current work can 
be categorized into methods, datasets, and model network 
architecture.

1) METHODS
Limitations: Most geometric modeling/conventional appro­
aches rely on or follow pre-processing feature extraction, lane 
model fitting, and lane tracking to detect the lane. For lane 
detection tasks, image pre-processing is required to deter­
mine the quality of features. In addition, this approach needs 
manually alter the parameters, although this procedure is 
efficient and uncomplicated. Furthermore, previous methods 
based on handcrafted features to detect lanes are limited in 
scenarios using edge, texture, or color information, which 
requires complicated post-processing modules to perform. 
Likewise, in many complex scenarios, these approaches func­
tion inadequately. Therefore, the traditional computer vision 
(CV) techniques are time-consuming and resource-intensive 
and rely on complicated algorithms to analyze the delicate 
aspects of lane images. In addition, the number of lanes is 
frequently not fixed, and techniques for detecting lanes are 
sometimes erroneous. Straight lines, for example, are treated 
as lanes by Hough transform-based algorithms, which may 
cause street lamps to be mistaken for lanes. Furthermore, poor 
weather, such as rain, will impact lane detection. Likewise, 
inadequate lighting and a night setting will produce poor 
results. However, there are yet no practical solutions for 
dealing with such issues. As a result, conventional approaches 
are ineffective in detecting lanes in complex traffic situations. 
In addition, it must work in real-time. Most algorithms, how­
ever, suffer from a lack of this purpose. Therefore, traditional 
techniques have yielded significant results. However, they 
have several limitations: (1) lane detection is challenged in 
varying weather conditions and illumination.

Furthermore, previous methods need a consistent frame­
work for detecting various scenes and (2) the inefficiency 
of using images due to label noise. Following that, due to
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the advancement of deep learning, numerous solutions have 
been suggested to enhance the achievement of computer 
vision works in contrast to conventional approaches. Despite 
the prevalence of camera sensors, deep learning algorithms 
offer a high degree of generalization and learn the essential 
elements of the driving environment across multiple layers. 
In the past, advanced detecting algorithms such as deep 
learning have outperformed traditional methods in complex 
scenarios, but they have limitations. For example, despite the 
importance of multilane detection, only a limited number of 
lanes can be detected, and the cost of detection time is fre­
quently prohibitive. Therefore, various factors influence lane 
detection tasks, including specific complex traffic scenarios. 
Attention mechanisms have improved NLP and CV exten­
sively. The employment of an attention mechanism improves 
feature localization in the feature map and eliminates the 
need for post-processing. Therefore, as lanes are long and 
thin for lane detection, there are considerably fewer annotated 
lane pixels than background pixels, which is challenging for 
a model to learn. Hence, the attention processes in feature 
maps can emphasize crucial spatial information. The atten­
tion mechanism, in particular, can boost the weighted infor­
mation of lane line objectives while reducing unnecessary 
data. It adds to the complexity of network learning. However, 
as the author is aware, only a little research has been done on 
using the attention mechanism in lane detecting tasks.

Future Scope: In this research area, many different forms 
of attention mechanisms can be used at the same time. As a 
result, the study’s future direction can be investigated by 
applying another type of attention mechanism that has yet to 
be deployed.

2) DATASET
Limitations 1: Extremely imbalanced data set problem 
because the backdrop class contains most of the lane pixels 
in the image. The amount of backdrop pixels is significantly 
more than the number of lane pixels due to the lane’s slen­
derness. It may take time to pick up on such characteristics. 
Aside from unbalanced data, the quality of acquired data and 
annotations also restricts the capacity of various methods [2].

Future Scope 1: State-of-the-art mechanisms such as trans­
fer learning and attention mechanisms can be implemented. 
Aside from that, a more generic dataset that replicates real- 
world road conditions can be investigated for the confined 
dataset. Furthermore, the new databases can be created using 
synthetic sensor data from a test vehicle or by generating 
driving scenarios using a commercially available driving 
simulator.

Limitations 2: Changeable lane markings and illumination 
variations. The wide diversity of lane markers, the complex 
and changing road circumstances such as no line, shadow 
occlusion, provide few or no visible lane lines, the inconsis­
tency of the lanes, the curvature of the lane, and the varied 
lane pattern make detection much more difficult. Accord­
ing to the findings, traditional approaches work in a con­
trolled environment and have numerous problems regarding

robustness difficulties caused by road scene fluctuations. 
Furthermore, occlusion from overtaking vehicles or other 
objects and excessive illumination make lane identification 
and tracking difficult. Other than that, the visibility of the lane 
lines was reduced due to weather conditions such as rain, fog, 
and snow. The performance of lane detection and tracking 
algorithms suffers due to these issues in lane recognition 
and tracking. In addition, according to [4], lane-like inter­
ferences, such as guardrails, railways, utility poles, pedes­
trian sidewalks, buildings, and so on, will interfere with the 
existing traditional method, such as the HT-based algorithm. 
As a result, it has struggled in various challenging environ­
ments, including night time and other environmental factors 
(shadow, rain, etc.).

Furthermore, the host car then casts its shadows on the road 
surface as it enters or exits a tunnel or drives beneath a bridge. 
As a result, the road may have complicated painted road 
surface markings, utility lines, and buildings, which can cause 
the HT-based lane detection algorithm to provide misleading 
edges and textures. On rainy days, reflection from the wet 
road may induce glare and image overexposure, resulting in 
lane detection failure in some instances. In addition to lane­
like interferences, lighting fluctuations make dividing line 
detection more challenging. Under artificial light, the system 
failed to recognize road lane characteristics in bright or wet 
road conditions with significant reflection on rainy days.

Future Scope 2: Employ feature-based learning models to 
control lousy weather, illumination, and shadow issues.

3) MODELS NETWORK ARCHITECTURE
Limitations: Working with inaccurate and incomplete infor­
mation is what uncertainty entails. This study contains 
numerous sources of uncertainty, including data noise and 
an imprecise model. Noise is the term for variation in an 
observation. Both the inputs and the outputs are affected by 
this unpredictability. Genuine data, like the real world, is a 
tangled mess. Besides, a random sample is a set of obser­
vations picked randomly from a domain with no systematic 
bias.

Nevertheless, a certain amount of bias will always exist. 
This arises when a model needs more data and knowledge, 
commonly occurring when there aren’t enough samples to 
train the model. While some bias is inherent, uncertainty 
grows if the sample’s degree of variance and preference is an 
unsatisfactory representation of the task for which the model 
will be utilized.

For example, in lane detection, researchers may detect a 
lane in a highway area only if the road is in good condition 
and there are few vehicles present except during peak hours. 
Aside from that, lane detection in normal situations is far 
easier than in extreme conditions. The painted lane marking 
is chosen at random. However, it can only be used in one 
instance. The scope can include highways, cities, rural areas, 
and normal, rainy, and foggy circumstances. The sample must 
have an acceptable amount of variance and bias to represent 
the task for which the data or model will be utilized. There
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TABLE 6. The Learning Results From RQs 1, 2, and 3.

Number References Technique Dataset Equipment For Self-Collect 
Dataset

1 [96] Geometric modelling Self-collect Camera

2 [97] Geometric modelling Self-collect & Caltech dataset Camera

3 [98] Geometric modelling Self-collect Camera

4 [99] Geometric modelling Self-collect Monocular camera

5 [100] Geometric modelling Self-collect Camera

6 [101] Deep learning (CNN) + geometric 
modelling

Self-collect & Caltech dataset Camera

7 [102] Geometric modelling Self-collect Camera

8 [103] Geometric modelling Self-collect Camera

9 [104] Geometric modelling Self-collect Camera

10 [105] Deep learning (semantic 
segmentation based CNN) + 
geometric modelling

Self-collect & TuSimple dataset Camera

11 [106] Geometric modelling Caltech dataset Camera

12 [107] Two Serial Deep Learning (Haar 
cascades + Faster R-CNN)

Self-collect Collecting training dataset on 
Unity3D simulator

13 [108] Deep learning (CNN) + Geometric 
modelling

Road Vehicle Dataset (RVD) & Caltech 
dataset & TuSimple dataset

-

14 [22] Geometric modelling Self-collect Camera

15 [109] Geometric modelling Self-collect Camera

16 [110] Geometric modelling Self-collect -Large Variability Road Images 
database (LVRI)

Camera

17 [71] Deep learning (Resnet) TuSimple dataset -

18 [72] Two Serial Deep Learning (FR-IQA 
gradient-guided deep networks + 
RNN)

TuSimple dataset

19 [73] Deep learning (cnn) + geometric 
modelling

Self-collect ov7725 camera

20 [74] Geometric modelling Self-collect Camera

21 [75] Deep learning (cnn) + geometric 
modelling

Self-collect Camera

22 [76] geometric modelling Self-collect & 
Caltech dataset

Camera

23 [77] Deep learning (LaneNet) Self-collect Camera

24 [78] Geometric modelling KITTI dataset Camera

25 [79] Deep learning (semantic 
segmentation based U-net (FCN)) + 
geometric modelling

Self-collect Collecting training dataset on 
CARLA simulator

26 [80] Deep learning (semantic 
segmentation based CNN)

Self-collect-
CVPR 2017 TuSimple dataset & CULane 
dataset

27 [81] Geometric modelling Self-collect Camera

28 [82] Geometric modelling Self-collect Camera

29 [83] Geometric modelling Self-collect Low-cost image sensor 
(dashcam)

30 [84] Geometric modelling Self-collect Camera

31 [85] Deep learning (image cascade 
network ICNet)

Cityscapes dataset -

32 [86] Geometric modelling The California Institute o f Technology has 
published a road dataset, as well as one 
collected by Beijing Union University 
(BUUD).

33 [87] Geometric modelling Caltech Dataset -

34 [88] Deep learning (CNN) + geometric 
modelling

-
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TABLE 6. (Continued.) The Learning Results From RQs 1, 2, and 3.

35 [89] Deep learning (SegNet) + 
Machine learning (Bayesian 
learning)

Self-collect A high resolution automotive radar 
prototype is used for data collection

36 [90] Geometric modelling Self-collect Camera

37 [91] Geometric modelling Self-collect Camera

38 [92] Deep learning (semantic 
segmentation based CNN) + 
geometric modelling

39 [93] Geometric modelling Self-collect Camera

40 [94] Two Serial Deep Learning (Haar 
cascades + Faster R-CNN)

Self-collect Camera

41 [95] Machine learning (Bayesian 
learning) + geometric modelling

Self-collect Camera

42 [44] Geometric modelling Self-collect LiDAR data and OpenStreetMap (OSM) 
data

43 [45] Machine learning (Bayesian 
learning) + Geometric modelling

ROMA dataset -

44 [46] Deep learning (YOLO v3) Self-collect Over 25,000 pictures of various road 
surface markers were acquired in mass 
from Google Images.

45 [25] Geometric modelling Self-collect Camera

46 [47] Geometric modelling Self-collect Camera

47 [48] Geometric modelling Self-collect Vision or camera data

48 [49] Deep learning (DarkSCNN) + 
Geometric modelling

Self-collect A camera and a digital map

49 [50] Deep learning (CNN) + Machine 
learning (SVM)

Self-collect & 
TuSimple dataset

-

50 [51] geometric modelling Self-collect Camera

51 [52] Geometric modelling Self-collect -

52 [53] Geometric modelling Self-collect Around Lafayette, Indiana,
authors recorded the images of Interstate
Highway 65 and also local roads.

53 [54] Geometric modelling KITTI dataset -

54 [55] Two Serial Deep Learning 
(SCNN & RONELD (robust nn 
result improvising for vigorous 
lane detection)

TuSimple dataset & CULane dataset

55 [56] Deep learning (R-CNN) Self-collect Capture live video and process it to 
extract 3D information

56 [57] Geometric modelling Self-collect Camera

57 [58] Two Serial Deep Learning 
(CNN, ERFNet & H-Net)

TuSimple dataset -

58 [59] Geometric modelling Public dataset -

59 [60] Geometric modelling Self-collect Monocular camera lens

60 [61] Geometric modelling Self-collect Monocular camera lens

61 [62] Two Serial Deep Learning (CNN 
+ RCNN + ConvLSTM)

Self-collect & TuSimple dataset A moving car was used to create this 
photographic sequence. A colour 
camera is positioned along the centre line 
of the front-view mirror inside the 
vehicle.

62 [63] Geometric modelling Self-collect Camera

63 [64] Geometric modelling + Machine 
learning (Extreme learning 
machine (ELM))

64 [65] Deep learning (LiteSeg + 
MobileNetV2) + geometric 
modelling

Self-collect & CamVid dataset Using a Kinect camera integrated in a 1:7 
RC car, collect data in a limited driving 
scenario.

65 [66] Deep learning (DCNN) + 
geometric modelling

KITTI dataset
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TABLE 6. (Continued.) The Learning Results From RQs 1, 2, and 3.

66 [67] Geometric modelling - -

67 [68] Deep learning (CNN) On the Berkley Deep Drive dataset -

68 [69] Two Serial Deep Learning 
(encoder-decoder, ResNet + 
DenseNet)

Self-collect A dataset including 314 orthoframe 
images of Estonian highways, each with 
a resolution of 4096 by 4096 pixels.

69 [70] Geometric modelling - -

70 [15] Deep learning (semantic 
segmentation-based encoder- 
decoder) + attention mechanism

Self-collect & 
ApolloScape dataset & 
Cityscapes dataset

71 [16] Geometric modelling Self-collect The WiFi sports camera sensor

72 [17] Geometric modelling -

73 [18] Geometric modelling - -

74 [19] Geometric modelling Self-collect & Caltech dataset & TuSimple 
dataset

Camera

75 [20] Deep learning (semantic 
segmentation based 
Deeplabv3plus) + geometric 
modelling

Self-collect Camera

76 [21] Deep learning (encoder-decoder) 
Encoder- VGG-16, MobileNet, 
and ShuffleNet 
Decoder-Unet

Self-collect dataset & TuSimple dataset Camera

77 [22] Geometric modelling - -

78 [10] Deep learning (instance 
segmentation based LaneNet) + 
attention mechanism

TuSimple dataset and CULane dataset

79 [11] Deep learning (encoder-decoder) 
+ attention

Det dataset

80 [23] Deep learning (FCN-UNet & 
SegNet) + geometric modelling

nuScenes dataset

81 [24] Deep learning (CNN) + 
geometric modelling

TuSimple dataset and CULane dataset

82 [25] Deep learning (Convoluted NNs 
utilizing Spatial Transformer 
Networks) + geometric 
modelling

German Traffic Sign dataset

83 [26] Machine learning (functional 
link artificial neural network 
(FLANN)+ geometric modelling

Caltech dataset & KITTI dataset & ROMA 
dataset

84 [27] Machine learning + geometric 
modelling

Self-collect The input footage utilised in this 
investigation was shot on normal North 
American highways.

85 [28] Geometric modelling The suggested system would be trained using 
dataset from the Cityscapes, Vistas, and Apollo 
datasets, and then its efficiency would be 
evaluated. Using TuSimple dataset, Caltech 
dataset, KITTI dataset, and X-3000 dataset

86 [29] Deep learning (convLSTM) Self-collect Camera

87 [30] Geometric modelling - -

88 [31] Deep learning (LaneFCNet) + 
geometric modelling

Self-collect & Cityscapes dataset Camera

89 [12] Geometric modelling Self-collect & 
Caltech dataset

Camera

90 [9] Deep learning (encoder-decoder) 
+ attention mechanism

TuSimple dataset and Caltech dataset -

91 [32] Geometric modelling - -

92 [33] Geometric modelling KITTI dataset -

93 [34] Geometric modelling Self-collect Camera

94 [35] Deep learning (multi-stage 
Convolutional Neural Network 
(CNN))

TuSimple dataset

95 [36] Geometric modelling TuSimple dataset & 
CULane dataset

VOLUME 11, 2023 3759



lEEEAress N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review

TABLE 6. (Continued.) The Learning Results From RQs 1, 2, and 3.

Self-collect

PSV dataset & TSD dataset

96 [37] Deep learning (Semantic KITTI dataset
segmentation-based encoder- 
decoder) + UNet + Resnet-50))

97 [38] Geometric modelling Self-collect

98 [39] Geometric modelling

99 [40] Two Serial Deep Learning
(Spatial CNN (SCNN) + multi 
spatial convolution block 
(MSCB)

100 [41] Deep learning (encoder-based -
Generative Adversarial Network 
(eGAN) + Geometric modelling

101 [42] Deep learning (LLNET (CNN)) TuSimple dataset

102 [43] Deep learning (FCN) -

Stereo camera 

LiDAR point cloud

TABLE 7. Dataset Partition.

References Type of Dataset Training set (%) Validation set (%) Test set (%)

[11] DET 50 16 33

[16] ApolloScapes 70 15 15

[23] NuScenes 90 10 -

[24] CULane, TuSimple, Beijing 70 20 10

[31] German Traffic Sign 70 20 10

[31] TuSimple 60 - 40

[31] Kitti 50 - 50

[31] CityScapes 85 - 15

[35] TuSimple 60 - 40

[36] TuSimple 60 - 40

[36] CULane 60 10 30

[37] Kitti 50 - 50

[23] NuScenes 90 10 -

[46] Self-collect 90 - 10

[50] TuSimple 60 - 40

[54] Kitti 50 - 50

[58] TuSimple 60 - 40

[65] CamVid 80 - 20

[66] Kitti 50 - 50

[71] TuSimple 50 5 45

[72] TuSimple 60 - 40

[80] CULane 65 10 25

[89] Self-collect 64 16 20

[55] TuSimple 60 - 40

[55] CULane 75 - 25

[119] CamVid 60 - 40

will never be all of the observations in any of the initial 
investigations. This implies that some cases will always go 
unnoticed. There will be areas of the problem domain that 
are not covered.

Future Scope: Invest some time analyzing data statistics 
and creating visualizations to aid in identifying those anoma­
lous or unusual cases. This is what data cleansing is all 
about. Therefore, splitting the dataset into train and test sets
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TABLE 8. Comparison of this slr with the already done review articles.

Done Review Articles
1) According to the study’s results, the existing approaches 

provide good accuracy for high-quality images. Still, it can 
produce unsatisfactory results under adverse environmental 
conditions such as fog, haze, noise, dust, etc.

2) The majority of existing approaches are optimal for straight 
lanes, but are ineffective for curved roadways.

3) Since most lane detection approaches are based on the basic 
Hough Transform, it can be improved to increase accuracy.

or using resampling methods like k-fold cross-validation. 
This technique can be used to deal with ambiguity in the 
dataset’s representativeness and to assess the performance 
of a modeling procedure on data that isn’t included in the 
training.

Contributions: Combining deep learning approaches with 
other techniques yields significant performances. The merg­
ing of networks and attention mechanism was proposed 
to learn more discriminative features of road lanes than 
the stand-alone deep learning approach to significantly 
increase the detection accuracy of the road lane. These meth­
ods/innovations regarding more precise lane detection are 
necessary to enable a real-time lane detection system. There­
fore, the model’s accuracy and speed should be improved in 
normal and extreme conditions.

L. COMPARISON WITH ALREADY DONE REVIEW ARTICLES
This SLR is compared with the other review articles that have 
previously been completed. As a result of the SLR, it was 
discovered that most of the currently published research falls 
into one of the categories presented and discussed in Table 8.

V. CONCLUSION AND FUTURE RECOMMENDATIONS
This review article is concluded by analyzing the outcomes 
and making recommendations for subsequent initiatives. This 
section describes all lane detection methods, self-collect 
dataset preparation equipment, the top three most popular 
online datasets, fundamental problems in this field, and the 
state-of-the-art that can be investigated for future research.

A. CONCLUSIONS
The analysis from this SLR shows that the selected literature 
used various methods and structures, with the input dataset 
being one of two types: self-collected or acquired from an 
online public dataset. In the meantime, the methodologies 
include geometric modeling and traditional methods, while 
AI includes deep learning and machine learning. CNN, FCN, 
and RNN are examples of deep networks and architectures.

lEEEAress

SLR
1) There are presently limited available data on extreme weather 

situations. Researchers also need to be improved by the absence of 
datasets, necessitating the production of new databases to enable 
additional algorithm testing. For example, using synthetic sensor 
data from a test vehicle or by producing driving scenarios with a 
commercially accessible driving simulator app, new databases can 
be built. Additionally, additional research is required in the 
following areas.

2) Little study has been conducted on applying the attention 
mechanism in lane detection tasks. In this area of study, numerous 
attention mechanisms can be employed.

3) Problems with vision clarity are due to building and tree shadows, 
extreme weather conditions such as rain, fog, and snow, and 
complex or changing road conditions such as the absence of a lane 
and an elaborate lighting environment. As a result of these 
challenges with lane recognition and tracking, the performance of 
lane detection and tracking algorithms falls. Consequently, 
designing a reliable lane detection system is a challenging 
endeavor.

The use of deep learning has been increasingly researched 
throughout the last four years. Some studies used stand-alone 
deep learning implementations for a single-lane detection 
problem or multiple-lane implementations. Other than that, 
some research focuses on merging deep learning with other 
machine learning techniques and classical methodologies to 
improve efficiency.

On the other hand, recent advancements imply that atten­
tion mechanism has become a popular strategy to combine 
with deep learning methods to increase performance. Using 
deep algorithms in conjunction with other techniques also 
showed promising outcomes. This SLR will pave the path for 
more studies to be accomplished to build more effective lane 
detection methods. In addition, more precise methods for use 
in real-world industrial settings are required. We plan to build 
on the findings of this study in the future, emphasizing cre­
ating a network with high-speed performance and efficiency 
that can be implemented in real-time.
B. FUTURE DIRECTIONS AND RECOMMENDATIONS
The following directions for future contributions to the 
discipline should be focused on based on the findings of 
this SLR:

1) For exact feature learning, accurately labeled lane data 
is required for deep network training.

2) Increases the number of publicly available online pub­
lic datasets that cover a wide range of scenes.

3) More imbalance management approaches should be 
investigated, such as computational cost, speed perfor­
mance, and algorithm/network training error.

4) Combining deep learning approaches with other tech­
niques yields significant results, which merits further 
investigation.

5) The merging of networks and attention mechanisms 
has improved performance, but additional research is 
needed.

6) They are developing approaches and technologies for 
lane detecting that are more efficient in speed and
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precision. The model’s accuracy and rate under normal 
and extreme situations should be enhanced to enable 
real-time detection.

7) The computational load is reduced. Therefore, training 
time, memory, and CPU resources should all be mini­
mized via efficient learning algorithms.

ACKNOWLEDGMENT
The authors would like thanks to Ministry of Higher 
Education (MOHE) for funding this research through Fun­
damental Research Grant Scheme, Registration Proposal 
No: FRGS/1/2022/ICT11/UTM/02/2 (Attention-Based Fully 
Convolutional Networks for Lane Detection of Different 
Driving Scenes - No Vote: R.K130000.7843.5F563).
REFERENCES

[1] C. Y. Chan, ‘‘Trends in crash detection and occupant restraint tech­
nology,” Proc. IEEE, vol. 95, no. 2, pp. 388-396, Feb. 2007, doi: 
10.1109/JPRGC.2006.888391.

[2] Z. Sun, G. Bebis, and R. Miller, ‘‘On-road vehicle detection: A review,’’ 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 694-711, 
May 2006, doi: 10.1109/TPAMI.2006.104.

[3] K. A. Brookhuis, D. De Waard, and W. H. Janssen, ‘‘Behavioural 
impacts of advanced driver assistance systems-an overview,’’ Eur. 
J. Transp. Infrastruct. Res., vol. 1, no. 3, pp. 245-253, 2001, doi: 
10.18757/ejtir.2001.1.3.3667.

[4] K. Grove, J. Atwood, P. Hill, G. Fitch, A. DiFonzo, M. Marchese, and 
M. Blanco, ‘‘Commercial motor vehicle driver performance with adaptive 
cruise control in adverse weather,’’ Proc. Manuf., vol. 3, pp. 2777-2783, 
Jan. 2015, doi: 10.1016/j.promfg.2015.07.717.

[5] U. Zakir, U. Z. A. Hamid, K. Pushkin, D. Gueraiche, and 
M. A. A. Rahman, ‘‘Current collision mitigation technologies for 
advanced driver assistance systems—A survey,’’ Perintis eJ., vol. 6, 
no. 2, pp. 78-90, 2016, doi: 10.1105/tpc.15.01050.

[6] A. H. Eichelberger and A. T. McCartt, ‘‘Toyota drivers’ experiences 
with dynamic radar cruise control, pre-collision system, and lane- 
keeping assist,’’ J. Sa f Res., vol. 56, pp. 67-73, Feb. 2016, doi: 
10.1016/j.jsr.2015.12.002.

[7] N. S. A. Rudin, Y. M. Mustafah, Z. Z. Abidin, J. Cho, and H. F. M. Zaki, 
‘‘Vision-based lane departure warning system,’’ J. Soc. Automot. Eng. 
Malaysia, vol. 2, no. 2, pp. 166-176, 2018.

[8] G. Kaur and D. Kumar, ‘‘Lane detection techniques: A review,’’ Int. J. 
Comput. Appl., vol. 112, no. 10, pp. 1-5, 2015.

[9] L. Zhang, F. Jiang, B. Kong, J. Yang, and C. Wang, ‘‘Real-time lane 
detection by using biologically inspired attention mechanism to learn con­
textual information,” Cogn. Comput., vol. 13, pp. 1333-1344, Sep. 2021, 
doi: 10.1007/s12559-021-09935-5.

[10] R. Zhang, Y. Wu, W. Gou, and J. Chen, ‘‘RS-lane: A robust lane detection 
method based on ResNeSt and self-attention distillation for challenging 
traffic situations,” J. Adv. Transp., vol. 2021, pp. 1-12, Aug. 2021.

[11] F. Munir, S. Azam, M. Jeon, B.-G. Lee, and W. Pedrycz, ‘‘LDNet: End- 
to-end lane marking detection approach using a dynamic vision sensor,’’ 
2020, arXiv:2009.08020.

[12] S. Ghanem, P. Kanungo, G. Panda, S. C. Satapathy, andR. Sharma, ‘‘Lane 
detection under artificial colored light in tunnels and on highways: An 
IoT-based framework for smart city infrastructure,” Complex Intell. Syst., 
pp. 1-12, May 2021, doi: 10.1007/s40747-021-00381-2.

[13] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, ‘‘Preferred reporting 
items for systematic reviews and meta-analyses: The PRISMA state­
ment,” BMJ, vol. 339, Jul. 2009, Art. no. b2535, doi: 10.1136/bmj.b2535.

[14] C. Lee and J. H. Moon, ‘‘Robust lane detection and tracking for real­
time applications,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 12, 
pp. 4043-4048, Dec. 2018, doi: 10.1109/TITS.2018.2791572.

[15] J. Li, F. Jiang, J. Yang, B. Kong, M. Gogate, K. Dashtipour, and 
A. Hussain, ‘‘Lane-DeepLab: Lane semantic segmentation in automatic 
driving scenarios for high-definition maps,’’ Neurocomputing, vol. 465, 
pp. 15-25, Nov. 2021, doi: 10.1016/j.neucom.2021.08.105.

[16] D. Kavitha and S. Ravikumar, ‘‘Designing an IoT based autonomous 
vehicle meant for detecting speed bumps and lanes on roads,’’ J. Ambient 
Intell. Hum. Comput., vol. 12, no. 7, pp. 7417-7426, Jul. 2021, doi: 
10.1007/s12652-020-02419-8.

[17] N. M. Gohilot, A. Tigadi, and B. Chougula, ‘‘Detection of pedes­
trian, lane and traffic signal for vision based car navigation,’’ in Proc. 
2nd Int. Conf. fo r  Emerg. Technol. (INCET), May 2021, pp. 1-6, doi: 
10.1109/INCET51464.2021.9456137.

[18] S. Swetha and P. Sivakumar, ‘‘SSLA based traffic sign and lane detection 
for autonomous cars,’’ in Proc.Int. Conf. Artif. Intell. SmartSyst. (ICAIS), 
Mar. 2021, pp. 766-771, doi: 10.1109/ICAIS50930.2021.9396046.

[19] B. Akbari, J. Thiyagalingam, R. Lee, and K. Thia, ‘‘A multilane tracking 
algorithm using IPDA with intensity feature,’’ Sensors, vol. 21, no. 2, 
p. 461, 2021.

[20] S. Lu, Z. Luo, F. Gao, M. Liu, K. Chang, and C. Piao, ‘‘A fast and robust 
lane detection method based on semantic segmentation and optical flow 
estimation,” Sensors, vol. 21, no. 2, pp. 400, 2021.

[21] S.-W. Baek, M.-J. Kim, U. Suddamalla, A. Wong, B.-H. Lee, 
and J.-H. Kim, ‘‘Real-time lane detection based on deep learning,’’ 
J. Electr. Eng. Technol., vol. 17, no. 1, pp. 655-664, Jan. 2022, doi: 
10.1007/s42835-021-00902-6.

[22] H. Park, ‘‘Implementation of lane detection algorithm for self-driving 
vehicles using tensor flow,’’ in Proc. Int. Conf. Innov. Mobile Internet 
Services Ubiquitous Comput. (Advances in Intelligent Systems and Com­
puting), vol. 773, 2019, pp. 438-447, doi: 10.1007/978-3-319-93554- 
6_42.

[23] R. Yousri, M. A. Elattar, and M. S. Darweesh, ‘‘A deep learning-based 
benchmarking framework for lane segmentation in the complex and 
dynamic road scenes,’’ IEEE Access, vol. 9, pp. 117565-117580, 2021, 
doi: 10.1109/ACCESS.2021.3106377.

[24] A. M. Alajlan and M. M. Almasri, ‘‘Automatic lane marking pre­
diction using convolutional neural network and S-shaped binary 
butterfly optimization,” J. Supercomput., vol. 78, pp. 3715-3745, 
Aug. 2021.

[25] N. Kanagaraj, D. Hicks, A. Goyal, S. Tiwari, and G. Singh, ‘‘Deep 
learning using computer vision in self driving cars for lane and traffic 
sign detection,’’ Int. J. Syst. Assurance Eng. Manage., vol. 12, no. 6, 
pp. 1011-1025, Dec. 2021, doi: 10.1007/s13198-021-01127-6.

[26] S. Ghanem, P. Kanungo, G. Panda, and P. Parwekar, ‘‘An improved 
and low-complexity neural network model for curved lane detection of 
autonomous driving system,’’ Wasser und Abfall, vol. 21, no. 4, p. 61,
2019, doi: 10.1007/s35152-019-0027-x.

[27] Q. Huang and J. Liu, ‘‘Practical limitations of lane detection algorithm 
based on Hough transform in challenging scenarios,’’ Int. J. Adv. Robot. 
Syst., vol. 18, no. 2, pp. 1-13, 2021, doi: 10.1177/17298814211008752.

[28] P. Lu, C. Cui, S. Xu, H. Peng, and F. Wang, ‘‘SUPER: A novel lane 
detection system,’’ IEEE Trans. Intell. Vehicles, vol. 6, no. 3, pp. 583-593, 
Sep. 2021, doi: 10.1109/TIV.2021.3071593.

[29] Z. Wu, K. Qiu, T. Yuan, and H. Chen, ‘‘A method to keep autonomous 
vehicles steadily drive based on lane detection,’’ Int. J. Adv. Robot. Syst., 
vol. 18, no. 2, pp. 1-11, 2021, doi: 10.1177/17298814211002974.

[30] S. Samantaray, R. Deotale, and C. L. Chowdhary, ‘‘Lane detection 
using sliding window for intelligent ground vehicle challenge,’’ in Inno­
vative Data Communication Technologies and Application. Singapore: 
Springer, 2021, pp. 871-881, doi: 10.1007/978-981-15-9651-3_70.

[31] M. Liu,X. Deng, Z. Lei, C. Jiang, andC. Piao, ‘‘Autonomous lane keeping 
system: Lane detection, tracking and control on embedded system,’’ 
J. Electr. Eng. Technol., vol. 16, no. 1, pp. 569-578, Jan. 2021, doi: 
10.1007/s42835-020-00570-y.

[32] O. Rastogi, ‘‘Color masking method for variable luminosity in videos 
with application in lane detection systems,’’ in Proc. Int. Conf. Mach. 
Intell. Data Sci. Appl., 2021, pp. 275-284, doi: 10.1007/978-981-33­
4087-9.

[33] D. K. Dewangan and S. P. Sahu, ‘‘Lane detection for intelligent vehicle 
system using image processing techniques,’’ in Data Science. Singapore: 
Springer, 2021, pp. 329-348, doi: 10.1007/978-981-16-1681-5_21.

[34] J. Gong, T. Chen, and Y. Zhang, ‘‘Complex lane detection based on 
dynamic constraint of the double threshold,’’ Multimedia Tools Appl., 
vol. 80, no. 18, pp. 27095-27113, Jul. 2021, doi: 10.1007/s11042-021- 
10978-x.

[35] R. Muthalagu, A. Bolimera, and V. Kalaichelvi, ‘‘Vehicle lane markings 
segmentation and keypoint determination using deep convolutional neural 
networks,’’ Multimedia Tools Appl., vol. 80, no. 7, pp. 11201-11215, 
Mar. 2021, doi: 10.1007/s11042-020-10248-2.

[36] K. Ren, H. Hou, S. Li, and T. Yue, ‘‘LaneDraw: Cascaded lane and 
its bifurcation detection with nested fusion,’’ Sci. China Technol. Sci., 
vol. 64, no. 6, pp. 1238-1249, Jun. 2021, doi: 10.1007/s11431-020- 
1702-2.

3762 VOLUME 11, 2023

http://dx.doi.org/10.1109/JPROC.2006.888391
http://dx.doi.org/10.1109/TPAMI.2006.104
http://dx.doi.org/10.18757/ejtir.2001.1.3.3667
http://dx.doi.org/10.1016/j.promfg.2015.07.717
http://dx.doi.org/10.1105/tpc.15.01050
http://dx.doi.org/10.1016/j.jsr.2015.12.002
http://dx.doi.org/10.1007/s12559-021-09935-5
http://dx.doi.org/10.1007/s40747-021-00381-2
http://dx.doi.org/10.1136/bmj.b2535
http://dx.doi.org/10.1109/TITS.2018.2791572
http://dx.doi.org/10.1016/j.neucom.2021.08.105
http://dx.doi.org/10.1007/s12652-020-02419-8
http://dx.doi.org/10.1109/INCET51464.2021.9456137
http://dx.doi.org/10.1109/ICAIS50930.2021.9396046
http://dx.doi.org/10.1007/s42835-021-00902-6
http://dx.doi.org/10.1007/978-3-319-93554-6_42
http://dx.doi.org/10.1007/978-3-319-93554-6_42
http://dx.doi.org/10.1109/ACCESS.2021.3106377
http://dx.doi.org/10.1007/s13198-021-01127-6
http://dx.doi.org/10.1007/s35152-019-0027-x
http://dx.doi.org/10.1177/17298814211008752
http://dx.doi.org/10.1109/TIV.2021.3071593
http://dx.doi.org/10.1177/17298814211002974
http://dx.doi.org/10.1007/978-981-15-9651-3_70
http://dx.doi.org/10.1007/s42835-020-00570-y
http://dx.doi.org/10.1007/978-981-33-4087-9
http://dx.doi.org/10.1007/978-981-33-4087-9
http://dx.doi.org/10.1007/978-981-16-1681-5_21
http://dx.doi.org/10.1007/s11042-021-10978-x
http://dx.doi.org/10.1007/s11042-021-10978-x
http://dx.doi.org/10.1007/s11042-020-10248-2
http://dx.doi.org/10.1007/s11431-020-1702-2
http://dx.doi.org/10.1007/s11431-020-1702-2


N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review lEEE/lccess

[37] D. K. Dewangan, S. P. Sahu, B. Sairam, and A. Agrawal, ‘‘VLD- 
Net: Vision-based lane region detection network for intelligent vehicle 
system using semantic segmentation,” Computing, vol. 103, no. 12, 
pp. 2867-2892, Dec. 2021, doi: 10.1007/s00607-021-00974-2.

[38] L. Review and L. L. Bachrach, ‘‘Lane and obstacle detection system 
based on single camera-based stereo vision system,’’ in Proc. Int. Conf. 
Adv. Syst. Control Comput., 2021, pp. 259-266, doi: 10.1007/978-981­
33-4862-2.

[39] A. N. Ahmed, S. Eckelmann, A. Anwar, T. Trautmann, and P. Hellinckx, 
‘‘Lane marking detection using LiDAR sensor,’’ in Proc. Int. Conf. P2P, 
Parallel, Grid, CloudInternet Comput., in Lecture Notes in Networks and 
Systems, 2021, pp. 301-310, doi: 10.1007/978-3-030-61105-7_30.

[40] Y. Wu, F. Liu, W. Jiang, and X. Yang, ‘‘Multi spatial convolution block 
for lane lines semantic segmentation,” in Proc. Int. Conf. Intell. Comput., 
in Lecture Notes in Computer Science, vol. 12837, 2021, pp. 31-41.

[41] C. Y. Lee, J. G. Shon, and J. S. Park, ‘‘An edge detection-based eGAN 
model for connectivity in ambient intelligence environments,’’ J. Ambient 
Intell. Hum. Comput., vol. 13, no. 10, pp. 4591-4600, Oct. 2022, doi: 
10.1007/s12652-021-03261-2.

[42] L. Zhang, B. Kong, and C. Wang, ‘‘LLNet: A lightweight lane line 
detection network,’’ in Proc. Int. Conf. Image Graph., 2021, pp. 355-369, 
doi: 10.1007/978-3-030-87355-4_30.

[43] Y. Qin, J. Peng, H. Zhang, and J. Nong, ‘‘Lane recognition system for 
machine vision,’’ in Proc. 10th Int. Conf. Comput. Eng. Netw., 2020, 
pp. 388-398, doi: 10.1007/978-981-15-8462-6_44.

[44] A. Kasmi, J. Laconte, R. Aufrere, R. Theodose, D. Denis, and 
R. Chapuis, ‘‘An information driven approach for ego-lane detec­
tion using lidar and OpenStreetMap,’’ in Proc. 16th Int. Conf. Con­
trol, Autom., Robot. Vis. (ICARCV), Dec. 2020, pp. 522-528, doi: 
10.1109/ICARCV50220.2020.9305388.

[45] M. Fakhfakh, L. Chaari, and N. Fakhfakh, ‘‘Bayesian curved lane estima­
tion for autonomous driving,’’ J. Ambient Intell. Hum. Comput., vol. 11, 
no. 10, pp. 4133-4143, Oct. 2020, doi: 10.1007/s12652-020-01688-7.

[46] E. S. Dawam and X. Feng, ‘‘Smart city lane detection for 
autonomous vehicle,’’ in Proc. IEEE Int. Conf Dependable, Autonomic 
Secure Comput., Int. Conf Pervasive Intell. Comput., Int. Conf 
Cloud Big Data Comput., Int. Conf Cyber Sci. Technol. Congr. 
(DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 334-338, doi: 
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00065.

[47] K. C. Bhupathi and H. Ferdowsi, ‘‘An augmented sliding window tech­
nique to improve detection of curved lanes in autonomous vehicles,’’ in 
Proc. IEEE Int. Conf. Electro Inf. Technol. (EIT), Jul. 2020, pp. 522-527, 
doi: 10.1109/EIT48999.2020.9208278.

[48] R. Muthalagu, A. Bolimera, and V. Kalaichelvi, ‘‘Lane detection tech­
nique based on perspective transformation and histogram analysis for 
self-driving cars,’’ Comput. Electr. Eng., vol. 85, pp. 1-16, Jul. 2020, doi: 
10.1080/15551020902995363.

[49] A. Evlampev, I. Shapovalov, and S. Gafurov, ‘‘Map relative localization 
based on road lane matching with iterative closest point algorithm,’’ in 
Proc. 3rd Int. Conf. Artif. Intell. Pattern Recognit., 2020, pp. 232-236, 
doi: 10.1145/3430199.3430229.

[50] G. Zhang, C. Yan, and J. Wang, ‘‘Quality-guided lane detec­
tion by deeply modeling sophisticated traffic context,’’ Signal Pro­
cess., Image Commun., vol. 84, May 2020, Art. no. 115811, doi: 
10.1016/j.image.2020.115811.

[51] B. Dorj, S. Hossain, and D.-J. Lee, ‘‘Highly curved lane detection algo­
rithms based on Kalman filter,’’ Appl. Sci., vol. 10, no. 7, pp. 1-22, 2020, 
doi: 10.3390/app10072372.

[52] J. Hu, S. Xiong, J. Zha, and C. Fu, ‘‘Lane detection and trajectory 
tracking control of autonomous vehicle based on model predictive con­
trol,’’ Int. J. Automot. Technol., vol. 21, no. 2, pp. 285-295, 2020, doi: 
10.1007/s12239-020-0027-6.

[53] D. Liu, Y. Wang, T. Chen, and E. T. Matson, ‘‘Accurate lane detection 
for self-driving cars: An approach based on color filter adjustment and 
K -means clustering filter,’’ Int. J. Semantic Comput., vol. 14, no. 1, 
pp. 153-168, Mar. 2020, doi: 10.1142/S1793351X20500038.

[54] S. Shirke and R. Udayakumar, ‘‘A novel region-based iterative seed 
method for the detection of multiple lanes,’’ Int. J. Image Data 
Fusion, vol. 11, no. 1, pp. 57-76, 2019, doi: 10.1080/19479832.2019. 
1683623.

[55] Z. M. Chng, J. M. H. Lew, and J. A. Lee, ‘‘RONELD: Robust neural 
network output enhancement for active lane detection,’’ in Proc. 25th 
Int. Conf. Pattern Recognit. (ICPR), Jan. 2021, pp. 6842-6849, doi: 
10.1109/ICPR48806.2021.9412572.

[56] R. Agrawal and N. Singh, ‘‘Lane detection and collision preven­
tion system for automated vehicles,’’ in Applied Computer Vision and 
Image Processing. Singapore: Springer, 2021, doi: 10.1007/978-981-15- 
4029-5_5.

[57] Z. Wang, W. Ren, and Q. Qiu, ‘‘LaneNet: Real-time lane detection 
networks for autonomous driving,’’ 2018, arXiv:1807.01726.

[58] F. Pizzati, M. Allodi, A. Barrera, and F. Garcia, ‘‘Lane detection and 
classification using cascaded CNNs,’’ in Proc. Int. Conf. Comput. Aided 
Syst. Theory, in Lecture Notes in Computer Science: Including Subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor­
matics, 2020, pp. 95-103, doi: 10.1007/978-3-030-45096-0_12.

[59] S. Chen, B. Li, Y. Guo, and J. Zhou, ‘‘Lane detection based on his­
togram of oriented vanishing points,’’ in Pattern Recognition. Singapore: 
Springer, 2020, pp. 3-11, doi: 10.1007/978-981-15-3651-9_1.

[60] N. Ma, G. Pang, X. Shi, and Y. Zhai, ‘‘An all-weather lane detection 
system based on simulation interaction platform,’’ IEEE Access, vol. 8, 
pp. 46121-46130, 2020, doi: 10.1109/ACCESS.2018.2885568.

[61] C. Hasabnis, S. Dhaygude, and S. Ruikar, ‘‘Real-time lane detection for 
autonomous vehicle using video processing,” in ICT Analysis and Appli­
cations (Lecture Notes in Networks and Systems). Singapore: Springer, 
2020, pp. 217-225, doi: 10.1007/978-981-15-0630-7_21.

[62] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, ‘‘Robust lane 
detection from continuous driving scenes using deep neural networks,’’ 
IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 41-54, Jan. 2020, doi: 
10.1109/TVT.2019.2949603.

[63] T. Andersson, A. Kihlberg, A. Sundstrom, and N. Xiong, ‘‘Road boundary 
detection using ant colony optimization algorithm,’’ in Advances in Nat­
ural Computation, Fuzzy Systems and Knowledge Discovery, vol. 1074. 
New Zealand: Springer, 2020, pp. 409-416, doi: 10.1007/978-3-030- 
32456-8_44.

[64] S. Hossain, O. Doukhi, I. Lee, and D.-J. Lee, ‘‘Real-time lane detec­
tion and extreme learning machine based tracking control for intel­
ligent self-driving vehicle,’’ in Intelligent Systems and Applications. 
Cham, Switzerland: Springer, 2020, pp. 41-50, doi: 10.1007/978-3-030- 
29513-4_4.

[65] V.-T. Luu, V.-C. Huynh, V.-H. Tran, T.-H. Nguyen, and T.-N.-H. Phu, 
‘‘Traditional method meets deep learning in an adaptive lane 
and obstacle detection system,’’ in Proc. 5th Int. Conf. Green 
Technol. Sustain. Develop. (GTSD), Nov. 2020, pp. 148-152, doi: 
10.1109/GTSD50082.2020.9303108.

[66] S. Shirke and R. Udayakumar, ‘‘Fusion model based on entropy by 
using optimized DCNN and iterative seed for multilane detection,’’ Evol. 
Intell., vol. 15, no. 2, pp. 1441-1454, Jun. 2022, doi: 10.1007/s12065- 
020-00480-y.

[67] I. J. P. B. Franco, T. T. Ribeiro, and A. G. S. Concei§ao, ‘‘A novel visual 
lane line detection system for a NMPC-based path following control 
scheme,’’ J. Intell. Robotic Syst., vol. 101, no. 1, pp. 1-13, Jan. 2021, doi: 
10.1007/s10846-020-01278-x.

[68] P. Subhasree, P. Karthikeyan, and R. Senthilnathan, ‘‘Driveable area 
detection using semantic segmentation deep neural network,’’ Computa­
tional Intelligence in Data Science. India: Springer, 2020, pp. 222-230, 
doi: 10.1007/978-3-030-63467-4_18.

[69] R. Pihlak and A. Riid, ‘‘Simultaneous road edge and road surface mark­
ings detection using convolutional neural networks,’’ in Proc. Int. Baltic 
Conf. Databases Inf. Syst., in Communications in Computer and Infor­
mation Science, 2020, pp. 109-121, doi: 10.1007/978-3-030-57672-1_9.

[70] D. Rato and V. Santos, ‘‘Detection of road limits using gradients of the 
accumulated point cloud density,’’ in Proc. 4thIber. Robot. Conf. (Robot),
2020, pp. 267-279, doi: 10.1007/978-3-030-35990-4_22.

[71] Y. Sun, L. Wang, Y. Chen, and M. Liu, ‘‘Accurate lane detection with 
atrous convolution and spatial pyramid pooling for autonomous driv­
ing,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2019, 
pp. 642-647, doi: 10.1109/ROBIO49542.2019.8961705.

[72] J. Liu, ‘‘Learning full-reference quality-guided discriminative gradient 
cues for lane detection based on neural networks,’’ J. Vis. Commun. Image 
Represent., vol. 65, pp. 1-7, Dec. 2019, doi: 10.1016/j.jvcir.2019.102675.

[73] H. Zhan and L. Chen, ‘‘Lane detection image processing algorithm based 
on FPGA for intelligent vehicle,’’ in Proc. Chin. Autom. Congr. (CAC), 
Nov. 2019, pp. 1190-1196, doi: 10.1109/CAC48633.2019.8996283.

[74] S. Srivastava and R. Maiti, ‘‘Multi-lane detection robust to complex 
illumination variations and noise sources,’’ in Proc. 1st Int. Conf. Electr., 
Control Instrum. Eng. (ICECIE), Nov. 2019, pp. 1-8, doi: 10.1109/ICE- 
CIE47765.2019.8974796.

VOLUME 11, 2023 3763

http://dx.doi.org/10.1007/s00607-021-00974-2
http://dx.doi.org/10.1007/978-981-33-4862-2
http://dx.doi.org/10.1007/978-981-33-4862-2
http://dx.doi.org/10.1007/978-3-030-61105-7_30
http://dx.doi.org/10.1007/s12652-021-03261-2
http://dx.doi.org/10.1007/978-3-030-87355-4_30
http://dx.doi.org/10.1007/978-981-15-8462-6_44
http://dx.doi.org/10.1109/ICARCV50220.2020.9305388
http://dx.doi.org/10.1007/s12652-020-01688-7
http://dx.doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00065
http://dx.doi.org/10.1109/EIT48999.2020.9208278
http://dx.doi.org/10.1080/15551020902995363
http://dx.doi.org/10.1145/3430199.3430229
http://dx.doi.org/10.1016/j.image.2020.115811
http://dx.doi.org/10.3390/app10072372
http://dx.doi.org/10.1007/s12239-020-0027-6
http://dx.doi.org/10.1142/S1793351X20500038
http://dx.doi.org/10.1080/19479832.2019.1683623
http://dx.doi.org/10.1080/19479832.2019.1683623
http://dx.doi.org/10.1109/ICPR48806.2021.9412572
http://dx.doi.org/10.1007/978-981-15-4029-5_5
http://dx.doi.org/10.1007/978-981-15-4029-5_5
http://dx.doi.org/10.1007/978-3-030-45096-0_12
http://dx.doi.org/10.1007/978-981-15-3651-9_1
http://dx.doi.org/10.1109/ACCESS.2018.2885568
http://dx.doi.org/10.1007/978-981-15-0630-7_21
http://dx.doi.org/10.1109/TVT.2019.2949603
http://dx.doi.org/10.1007/978-3-030-32456-8_44
http://dx.doi.org/10.1007/978-3-030-32456-8_44
http://dx.doi.org/10.1007/978-3-030-29513-4_4
http://dx.doi.org/10.1007/978-3-030-29513-4_4
http://dx.doi.org/10.1109/GTSD50082.2020.9303108
http://dx.doi.org/10.1007/s12065-020-00480-y
http://dx.doi.org/10.1007/s12065-020-00480-y
http://dx.doi.org/10.1007/s10846-020-01278-x
http://dx.doi.org/10.1007/978-3-030-63467-4_18
http://dx.doi.org/10.1007/978-3-030-57672-1_9
http://dx.doi.org/10.1007/978-3-030-35990-4_22
http://dx.doi.org/10.1109/ROBIO49542.2019.8961705
http://dx.doi.org/10.1016/j.jvcir.2019.102675
http://dx.doi.org/10.1109/CAC48633.2019.8996283
http://dx.doi.org/10.1109/ICECIE47765.2019.8974796
http://dx.doi.org/10.1109/ICECIE47765.2019.8974796


lEEEAress N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review

[75] D. Chang, V. Chirakkal, S. Goswami, M. Hasan, T. Jung, J. Kang, 
S.-C. Kee, D. Lee, and A. P. Singh, ‘‘Multi-lane detection using 
instance segmentation and attentive voting,’’ in Proc. 19th Int. 
Conf. Control, Autom. Syst. (ICCAS), Oct. 2019, pp. 1538-1542, doi: 
10.23919/ICCAS47443.2019.8971488.

[76] X. Jiao, D. Yang, K. Jiang, C. Yu, T. Wen, and R. Yan, ‘‘Real-time 
lane detection and tracking for autonomous vehicle applications,’’ Proc. 
Inst. Mech. Eng. D, J. Automobile Eng., vol. 233, no. 9, pp. 2301-2311, 
Aug. 2019, doi: 10.1177/0954407019866989.

[77] N. Kemsaram, A. Das, and G. Dubbelman, ‘‘An integrated frame­
work for autonomous driving: Object detection, lane detection, and 
free space detection,’’ in Proc. 3rd World Conf. Smart Trends 
Syst. Secur. Sustainablity (WorldS4), Jul. 2019, pp. 260-265, doi: 
10.1109/WorldS4.2019.8904020.

[78] H. Bilal, B. Yin, J. Khan, L. Wang, J. Zhang, and A. Kumar, ‘‘Real­
time lane detection and tracking for advanced driver assistance systems,’’ 
in Proc. Chin. Control Conf. (CCC), Jul. 2019, pp. 6772-6777, doi: 
10.23919/ChiCC.2019.8866334.

[79] L.-A. Tran and M.-H. Le, ‘‘Robust U-Net-based road lane markings 
detection for autonomous driving,’’ in Proc. Int. Conf. Syst. Sci. Eng. 
(ICSSE), Jul. 2019, pp. 62-66, doi: 10.1109/ICSSE.2019.8823532.

[80] J. Philion, ‘‘FastDraw: Addressing the long tail of lane detection by 
adapting a sequential prediction network,’’ in Proc. IEEE Comput. Soc. 
Conf. Comput. Vis. Pattern Recognit., Jun. 2019, pp. 11574-11583, doi: 
10.1109/CVPR.2019.01185.

[81] A. A. Ali and H. A. Hussein, ‘‘Real-time lane markings recognition based 
on seed-fill algorithm,’’ in Proc. Int. Conf. Inf. Commun. Technol., 2019, 
pp. 190-195, doi: 10.1145/3321289.3321306.

[82] A. Yusuf and S. Alawneh, ‘‘GPU implementation for automatic lane 
tracking in self-driving cars,’’ SAE Tech. Papers 2019-01-0680, 2019, 
doi: 10.4271/2019-01-0680.

[83] C. Y. Kuo, Y. R. Lu, and S. M. Yang, ‘‘On the image sensor processing 
for lane detection and control in vehicle lane keeping systems,’’ Sensors, 
vol. 19, no. 7, pp. 1-10, 2019, doi: 10.3390/s19071665.

[84] K. Manoharan and P. Daniel, ‘‘Robust lane detection in hilly shadow roads 
using hybrid color feature,’’ in Proc. 9thAnnu. Inf. Technol., Electromech. 
Eng. Microelectron. Conf. (IEMECON), Mar. 2019, pp. 201-204.

[85] X. Pan and H. Ogai, ‘‘Fast lane detection based on deep convolutional 
neural network and automatic training data labeling,’’ IEICE Trans. Fun- 
dam. Electron., Commun. Comput. Sci., vol. E102.A, no. 3, pp. 566-575, 
Mar. 2019, doi: 10.1587/transfun.E102.A.566.

[86] H. Liu and X. Li, ‘‘Notice of retraction: Sharp curve lane detection 
for autonomous driving,’’ Comput. Sci. Eng., vol. 21, no. 2, pp. 80-95, 
Mar. 2019, doi: 10.1109/MCSE.2018.2882700.

[87] Y. Son, E. S. Lee, and D. Kum, ‘‘Robust multi-lane detection and track­
ing using adaptive threshold and lane classification,’’ Mach. Vis. Appl., 
vol. 30, no. 1, pp. 111-124, Feb. 2019, doi: 10.1007/s00138-018-0977-0.

[88] B. S. S. Rathnayake and L. Ranathunga, ‘‘Lane detection and predic­
tion under hazy situations for autonomous vehicle navigation,’’ in Proc. 
18th Int. Conf. Adv. ICT Emerg. Reg. (ICTer), 2019, pp. 99-106, doi: 
10.1109/ICTER.2018.8615458.

[89] Z. Feng, S. Zhang, M. Kunert, and W. Wiesbeck, ‘‘Applying neural 
networks with a high-resolution automotive radar for lane detection,’’ in 
Proc. Automot. Meets Electron. (AmE), 2019, pp. 8-13.

[90] W. Farag and Z. Saleh, ‘‘An advanced road-lanes finding scheme for self­
driving cars,’’ in Proc. 2nd Smart Cities Symp. (SCS), Bahrain, 2019, 
pp. 1-6, doi: 10.1049/cp.2019.0221.

[91] H. Park, ‘‘Lane detection algorithm based on Hough transform for high­
speed self driving vehicles,’’ Int. J. Web Grid Serv., vol. 15, no. 3, 
pp. 240-250, 2019, doi: 10.1504/IJWGS.2019.10022421.

[92] K.-S. Lee, S.-W. Heo, and T.-H. Park, ‘‘A lane detection and track­
ing method using image saturation and road width data,’’ J. Inst. 
Control, Robot. Syst., vol. 25, no. 5, pp. 476-483, May 2019, doi: 
10.5302/J.ICROS.2019.19.0008.

[93] H. Park, ‘‘Robust road lane detection for high speed driving of 
autonomous vehicles,’’ in Web, Artificial Intelligence and Network 
Applications. Cham, Switzerland: Springer, 2019, pp. 256-265, doi: 
10.1007/978-3-030-15035-8.

[94] N. S. Parameswaran, E. R. Achan, V. Subhashree, and R. Manjusha, 
‘‘Road detection by boundary extraction technique and Hough trans­
form,’’ in Proc. Int. Conf. ISMAC Comput. Vis. Bio-Eng., vol. 30. Cham, 
Switzerland: Springer, 2019, pp 1805-1814.

[95] R. R. Dhanakshirur, P. Pillai, R. A. Tabib, U. Patil, and U. Mudenagudi, 
‘‘A framework for lane prediction on unstructured roads,’’ in Advances 
in Signal Processing and Intelligent Recognition Systems, vol. 968. 
Singapore: Springer, 2019.

3764

[96] A. Mahmoud, L. Ehab, M. Reda, M. Abdelaleem, H. A. E. Munim, 
M. Ghoneima, M. S. Darweesh, and H. Mostafa, ‘‘Real-time lane 
detection-based line segment detection,’’ in Proc. New Gener. CAS 
(NGCAS), Nov. 2018, pp. 57-61, doi: 10.1109/NGCAS.2018.8572124.

[97] Q. Li, J. Zhou, B. Li, Y. Guo, and J. Xiao, ‘‘Robust lane-detection method 
for low-speed environments,’’ Sensors, vol. 18, no. 12, pp. 1-18, 2018, 
doi: 10.3390/s18124274.

[98] W. Farag and Z. Saleh, ‘‘Road lane-lines detection in real-time for 
advanced driving assistance systems,’’ in Proc. Int. Conf. Innov. Intell. 
fo r  Informat., Comput., Technol. (3ICT), Nov. 2018, pp. 1-8, doi: 
10.1109/3ICT.2018.8855797.

[99] B. Li, Y. Guo, J. Zhou, Y. Cai, J. Xiao, and W. Zeng, ‘‘Lane detection 
and road surface reconstruction based on multiple vanishing point & sym­
posia,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 209-214.

[100] E. Adali, H. A. Seker, A. Erdogan, K. Haspalamutgil, F. Turan, 
E. Aksu, and U. Karapinar, ‘‘Detecting road lanes under extreme con­
ditions: A quantitative performance evaluation,’’ in Proc. 6th Int. 
Conf. Control Eng. Inf. Technol. (CEIT), Oct. 2018, pp. 1-7, doi: 
10.1109/CEIT.2018.8751835.

[101] Y. Y. Ye, X. L. Hao, and H. J. Chen, ‘‘Lane detection method based on 
lane structural analysis and CNNs,’’ IETIntell. Transport Syst., vol. 12, 
no. 6, pp. 513-520, 2018, doi: 10.1049/iet-its.2017.0143.

[102] Y. Y. Moon, Z. W. Geem, and G.-T. Han, ‘‘Vanishing point detection for 
self-driving car using harmony search algorithm,’’ Swarm Evol. Comput., 
vol. 41, pp. 111-119, Aug. 2018, doi: 10.1016/j.swevo.2018.02.007.

[103] A. J. Humaidi, S. Hasan, and M. A. Fadhel, ‘‘FPGA-based lane-detection 
architecture for autonomous vehicles: A real-time design and develop­
ment,’’ Asia Life Sci., vol. 16, no. 1, pp. 223-237, 2018.

[104] L. Xiong, Z. Deng, P. Zhang, and Z. Fu, ‘‘A 3D estimation of struc­
tural road surface based on lane-line information,’’ IFAC-PapersOnLine, 
vol. 51, no. 31, pp. 778-783, 2018, doi: 10.1016/j.ifacol.2018.10.131.

[105] X. Chen and C. Luo, ‘‘Real- time lane detection based on a light­
weight model in the wild,’’ in Proc. IEEE 4th Int. Conf. Com­
put. Commun. Eng. Technol. (CCET), Aug. 2021, pp. 36-40, doi: 
10.1109/CCET52649.2021.9544226.

[106] S. Liu, L. Lu, X. Zhong, and J. Zeng, ‘‘Effective road lane detec­
tion and tracking method using line segment detector,’’ in Proc. 
37th Chin. Control Conf. (CCC), Jul. 2018, pp. 5222-5227, doi: 
10.23919/ChiCC.2018.8482552.

[107] M. C. Olgun, Z. Baytar, K. M. Akpolat, and O. K. Sahingoz, 
‘‘Autonomous vehicle control for lane and vehicle tracking by using deep 
learning via vision,’’ in Proc. 6th Int. Conf. Control Eng. Inf. Technol. 
(CEIT), Oct. 2018, pp. 25-27, doi: 10.1109/CEIT.2018.8751764.

[108] Y. Huang, S. Chen, Y. Chen, Z. Jian, and N. Zheng, ‘‘Spatial-temporal 
based lane detection using deep learning,’’ in Proc. 14th IFIP Int. Conf. 
Artif. Intell. Appl. Innov., 2018, pp. 143-154.

[109] J. Xiao, L. Luo, Y. Yao, W. Zou, and R. Klette, ‘‘Lane detection based on 
road module and extended Kalman filter,’’ in Image and Video Technol­
ogy. Berlin, Germany: Springer, 2018, pp. 382-395, doi: 10.1007/978-3­
319-75786-5.

[110] B. S. Khan, M. Hanafi, and S. Mashohor, ‘‘A real time road marking 
detection system on large variability road images database,’’ in Proc. Int. 
Conf. Comput. Sci. Technol., in Lecture Notes in Electrical Engineering, 
vol. 488, 2018, pp. 31-41, doi: 10.1007/978-981-10-8276-4_4.

[111] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and 
L. Van Gool, ‘‘Towards end-to-end lane detection: An instance seg­
mentation approach,’’ in Proc. IEEE Intell. Vehicles Symp., Jun. 2018, 
pp. 286-291, doi: 10.1109/IVS.2018.8500547.

[112] Y. Zhang, J. Gao, and H. Zhou, ‘‘ImageNet classification with deep 
convolutional neural networks,’’ in Proc. 2nd Int. Conf. Mach. Learn. 
Comput., 2020, pp. 145-151, doi: 10.1145/3383972.3383975.

[113] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, 
J. Mueller, R. Manmatha, M. Li, and A. Smola, ‘‘ResNeSt: Split-attention 
networks,’’ 2020, arXiv:2004.08955.

[114] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, ‘‘Aggregated resid­
ual transformations for deep neural networks,’’ in Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987-5995, doi: 
10.1109/CVPR.2017.634.

[115] H. Zhou, J. Zhang, J. Lei, S. Li, and D. Tu, ‘‘Image semantic segmentation 
based on FCN-CRF model,’’ in Proc. Int. Conf. Image, Vis. Comput. 
(ICIVC), Aug. 2016, pp. 9-14, doi: 10.1109/ICIVC.2016.7571265.

[116] Y. Lu, Y. Chen, D. Zhao, and J. Chen, ‘‘Graph-FCN for image seman­
tic segmentation,’’ in Proc. Int. Symp. Neural Netw., in Lecture Notes 
in Computer Science: Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics, 2019, pp. 97-105, doi: 
10.1007/978-3-030-22796-8_11.

VOLUME 11, 2023

http://dx.doi.org/10.23919/ICCAS47443.2019.8971488
http://dx.doi.org/10.1177/0954407019866989
http://dx.doi.org/10.1109/WorldS4.2019.8904020
http://dx.doi.org/10.23919/ChiCC.2019.8866334
http://dx.doi.org/10.1109/ICSSE.2019.8823532
http://dx.doi.org/10.1109/CVPR.2019.01185
http://dx.doi.org/10.1145/3321289.3321306
http://dx.doi.org/10.4271/2019-01-0680
http://dx.doi.org/10.3390/s19071665
http://dx.doi.org/10.1587/transfun.E102.A.566
http://dx.doi.org/10.1109/MCSE.2018.2882700
http://dx.doi.org/10.1007/s00138-018-0977-0
http://dx.doi.org/10.1109/ICTER.2018.8615458
http://dx.doi.org/10.1049/cp.2019.0221
http://dx.doi.org/10.1504/IJWGS.2019.10022421
http://dx.doi.org/10.5302/J.ICROS.2019.19.0008
http://dx.doi.org/10.1007/978-3-030-15035-8
http://dx.doi.org/10.1109/NGCAS.2018.8572124
http://dx.doi.org/10.3390/s18124274
http://dx.doi.org/10.1109/3ICT.2018.8855797
http://dx.doi.org/10.1109/CEIT.2018.8751835
http://dx.doi.org/10.1049/iet-its.2017.0143
http://dx.doi.org/10.1016/j.swevo.2018.02.007
http://dx.doi.org/10.1016/j.ifacol.2018.10.131
http://dx.doi.org/10.1109/CCET52649.2021.9544226
http://dx.doi.org/10.23919/ChiCC.2018.8482552
http://dx.doi.org/10.1109/CEIT.2018.8751764
http://dx.doi.org/10.1007/978-3-319-75786-5
http://dx.doi.org/10.1007/978-3-319-75786-5
http://dx.doi.org/10.1007/978-981-10-8276-4_4
http://dx.doi.org/10.1109/IVS.2018.8500547
http://dx.doi.org/10.1145/3383972.3383975
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/ICIVC.2016.7571265
http://dx.doi.org/10.1007/978-3-030-22796-8_11


N. J. Zakaria et al.: Lane Detection in Autonomous Vehicles: A Systematic Review lEEEAress

[117] S. Zhang, A. E. Koubia, and K. A. K. Mohammed, ‘‘Traffic lane detection 
using FCN,’’ 2020, arXiv:2004.08977.

[118] N. J. Zakaria, H. Zamzuri, M. H. Ariff, M. I. Shapiai, S. A. Saruchi, and 
N. Hassan, ‘‘Fully convolutional neural network for Malaysian road lane 
detection,’’ Int. J. Eng. Technol., vol. 7, no. 4, pp. 152-155, 2018, doi: 
10.14419/ijet.v7i4.11.20792.

[119] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep con­
volutional encoder-decoder architecture for image segmentation,’’ IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495, 
Dec. 2017, doi: 10.1109/TPAMI.2016.2644615.

[120] H. Wu and B. Zhang, ‘‘A deep convolutional encoder-decoder neural 
network in assisting seismic horizon tracking,’’ 2018, arXiv:1804.06814.

[121] X. Ou, P. Yan, Y. Zhang, B. Tu, G. Zhang, J. Wu, and W. Li, ‘‘Moving 
object detection method via ResNet-18 with encoder-decoder structure 
in complex scenes,’’ IEEE Access, vol. 7, pp. 108152-108160, 2019, doi: 
10.1109/ACCESS.2019.2931922.

[122] V. Badrinarayanan, A. Handa, and R. Cipolla, ‘‘SegNet: A deep con­
volutional encoder-decoder architecture for robust semantic pixel-wise 
labelling,’’ 2015, arXiv:1505.07293.

[123] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, ‘‘ENet: A deep 
neural network architecture for real-time semantic segmentation,’’ 2016, 
arXiv:1606.02147.

[124] W. Weng and X. Zhu, ‘‘INet: Convolutional networks for biomedical 
image segmentation,’’ IEEE Access, vol. 9, pp. 16591-16603, 2021, doi: 
10.1109/ACCESS.2021.3053408.

[125] B. De Brabandere, D. Neven, and L. Van Gool, ‘‘Semantic instance seg­
mentation with a discriminative loss function,’’ 2017, arXiv:1708.02551.

[126] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, ‘‘Robust lane 
detection from continuous driving scenes using deep neural networks,’’ 
2019, arXiv:1903.02193.

[127] C. M. Kang, S.-H. Lee, S.-C. Kee, and C. C. Chung, ‘‘Kinematics-based 
fault-tolerant techniques: Lane prediction for an autonomous lane keeping 
system,’’ Int. J. Control, Autom. Syst., vol. 16, no. 3, pp. 1293-1302, 
Jun. 2018, doi: 10.1007/s12555-017-0449-8.

[128] A. Hata and D. Wolf, "Road marking detection using LIDAR reflective 
intensity data and its application to vehicle localization," in Proc. 17th 
Int. IEEE Conf. Intell. Transp. Syst. (ITSC). Oct. 2014, pp. 584-589, doi: 
10.1109/ITSC.2014.6957753. '

[129] L. Frommberger and D. Wo Iter, "Structural knowledge transfer by spatial 
abstraction for reinforcement learning agents," Adapt. Behav., vol. 18, 
no. 6, pp. 507-525, Dec. 2010, doi: 10.1 r77 /l059712310391484.

[130] A. Kasmi, D. Denis, R. Aufrere, and R. Chapuis, "Map matching 
and lanes number estimation with openstreetmap," in Proc. IEEE Int. 
Conf Intell. Transp. Syst. (ITSC). Nov. 2018, pp. 2659-2664, doi: 
10.1109/ITSC.2018.8569840.

[131] A. Kasmi, D. Denis, R. Aufrere, and R. Chapuis, "Probabilistic frame­
work for ego-lane determination," in Proc. IEEE Intell. Vehicles Symp.
(IV). Jun. 2019, pp. 1746-1752. '

[132] A. Joshi and M. R. James, "Generation of accurate lane-level maps from 
coarse prior maps and lidar," IEEEIntell. Transp. Syst. Mag., vol. 7, no. 1, 
pp. 19-29, Spring 2015, doi: 10.1109/MITS.2014.2364081.

[133] J. Fritsch, K. Tobias, and A. Geiger, "A new performance measure and 
evaluation benchmark for road detection algorithms," in Proc. 16th Int. 
IEEE Conf Intell. Transp. Syst.. Oct. 2013, pp. 1693-1700.

[134] M. Aly, "Real time detection of lane markers in urban streets," 2014, 
arXiv:1411.7113.

[135] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, 
U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for 
semantic urban scene understanding," in Proc. IEEE Conf Corn- 
put. Vis. Pattern Recognit. (CVPR). Jun. 2016, pp. 3213-3223, doi: 
10.1109/CVPR.2016.350.

NOOR JANNAH ZAKARIA received the M as­
ter of Philosophy (M.Phil.) and B.E. degrees 
in electronic system engineering from the 
Malaysia-Japan International Institute of Tech­
nology, Universiti Teknologi Malaysia, Kuala 
Lumpur, Malaysia, where she is currently pursuing 
the Doctor of Philosophy (Ph.D.) degree with the 
Malaysia-Japan International Institute of Tech­
nology. Her research interests include artificial 
intelligence, supervised learning, deep learning, 

reinforcement learning, and object detection in the autonomous vehicle.

VOLUME 11, 2023

M OHD IBRAHIM  SHAPIAI (Member, IEEE) 
received the M.Eng. degree from the University 
of York, U.K., in 2007, and the Ph.D. degree 
in machine learning from Universiti Teknologi 
M alaysia, in 2013. He is currently a Senior Lec­
turer and a Researcher at the Center o f Artifi­
cial Intelligence and Robotics (CAIRO), Universiti 
Teknologi Malaysia. From M arch 2010 to April 
2010, he worked as a Visiting Researcher at the 
Graduate School o f Information, Production, and 

Systems, Waseda University, under the supervision o f Dr. Junzo Watada. 
From June 2012 to July 2012, he worked at the Faculty of Engineering, 
Leeds University, under the supervision o f Dr. Vassili Toropov. His research 
interests include artificial intelligence, machine learning, brain-com puter 
interface, and swarm intelligence. In addition, he has been named a Certified 
NVIDIA Deep Learning Instructor.

RASLI ABD  GHANI is currently a Senior Lec­
turer with the Department of Electronic System 
Engineering, M alaysia-Japan International Insti­
tute of Technology (MJIIT), Universiti Teknologi 
Malaysia (UTM).

M OHD NAJIB M O H D YASSIN (Member,IEEE) 
received the M.Eng. degree in electronic engi­
neering from the University of Sheffield, U.K., 
in 2007, and the Ph.D. degree in electronic engi­
neering from the University of Sheffield. He has 
been a Lecturer at the School o f Microelec­
tronics, Universiti Malaysia Perlis, since 2013. 
His research interests include computational elec­
tromagnetics, conformal antennas, mutual cou­
pling, wireless power transfer, array design, and 
dielectric resonator antennas.

M OHD ZAM RI IBRAHIM  received the B.Eng. 
and M.Eng. degrees from Universiti Teknologi 
Malaysia, Malaysia, and the Ph.D. degree from 
Loughborough University, U.K. He is currently 
a Senior Lecturer with the Faculty of Electrical 
and Electronics Engineering, University Malaysia 
Pahang, Malaysia. His research interests include 
the area of computer vision, plasma science, 
embedded system programming, brain-com puter 
interaction, image processing, intelligent systems, 
and speech recognition.

NURBAITI W AHID received the B.Eng. degree in 
electrical engineering and the M.Eng. and Ph.D. 
degrees from Universiti Teknologi Malaysia. Cur­
rently, she is a Senior Lecturer with Universiti 
Teknologi Mara, Malaysia. Her research interests 
include vehicle dynamic systems, motion plan­
ning, and automated vehicle control systems.

3765

J I
■a

http://dx.doi.org/10.14419/ijet.v7i4.11.20792
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/ACCESS.2019.2931922
http://dx.doi.org/10.1109/ACCESS.2021.3053408
http://dx.doi.org/10.1007/s12555-017-0449-8
http://dx.doi.org/10.1109/ITSC.2014.6957753
http://dx.doi.org/10.1177/1059712310391484
http://dx.doi.org/10.1109/ITSC.2018.8569840
http://dx.doi.org/10.1109/MITS.2014.2364081
http://dx.doi.org/10.1109/CVPR.2016.350

