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Abstract—This paper focuses on modifying the existing Con-
jugate Gradient (CG) method of Rivaie, Mustafa, Ismail and
Leong (RMIL). The RMIL technique has been the subject of
previous studies to enhance its effectiveness. In this study, a
new CG search direction, IRMIL, has been presented. This new
variation combines the scaled negative gradient, which acts as
an initial direction, and a third-term parameter. This paper
proves that the IRMIL satisfies the sufficient descent criteria.
The method also exhibits global convergence characteristics for
exact and strong Wolfe line searches. The method’s efficacy is
assessed using two distinct methodologies. The first method-
ology involved conducting numerical tests on conventional
Unconstrained Optimisation (UO) problems. The test shows
that, while the IRMIL method performs very similarly to other
existing CG methods during exact line search, it excels during
strong Wolfe line search and converges more quickly. For the
second methodology, the NEWMRIL method is applied to solve
issues regarding image restoration. Overall, IRMIL method
exhibits excellent theoretical and numerical efficiency potential.

Index Terms—conjugate gradient method, sufficient descent
property , global convergence, strong Wolfe line search, uncon-
strained optimization, image restoration problems.

I. INTRODUCTION

The Conjugate Gradient (CG) method is a notable tech-

nique utilised for resolving the Unconstrained Optimisation
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(UO) problem as follows:

min
x∈Rn

f(x). (1)

Its wide acceptance can be attributed to its capacity for

global convergence and relatively low memory requirements.

Equation (1) comprises a smooth function, denoted as

f : R
n → R, with a computable gradient represented by

g(x) = ∇f(x). Using an initial estimate of x0 ∈ R
n, the

CG method would generate an iterative sequence comprising

the following steps:

xk+1 = xk + αkdk, (2)

where αk is the stepsize calculated by any line search tech-

niques along the search direction dk. Line search techniques,

such as the exact line search and the weak or strong Wolfe

line search, commonly facilitate the computation of αk. The

exact numerical value of αk can be determined by solving

the following equation:

αk = argmin
αk≥0

f(xk + αkdk). (3)

The strong Wolfe line search [1] is computed such that αk

satisfies

f(xk + αkdk) ≤ f(xk) + µαkg
T
k dk, (4)

∣

∣g(xk + αkdk)
Tdk

∣

∣ ≤ −σgT
k dk, (5)

where 0 < µ < σ < 1.

CG’s search direction vector dk is defined as:

dk =

{

−gk, for k = 0

−gk + βkdk−1, for k ≥ 1.
(6)

The CG coefficient, abbreviated as βk, is crucial in

determining the theoretical features of the algorithm. The

selection of the line search method significantly impacts

both the convergence and accuracy of the algorithm, as

indicated in reference [2]. Hestenes and Steifel established

the CG approach in [3], and Fletcher and Reeves expanded

it to address UO issues. After that, they developed the first

non-linear CG approach, FR [4]. Besides that, other CG

techniques have also been developed throughout the years,

including the PRP method [5], [6], the Daniel method [7],

the conjugate-descent (CD) method [8], the Liu-Storey (LS)

method [9], the Dai-Yuan (DY) method [10]. However, most

of these methods lacked global convergence qualities and

failed to meet the sufficient descent criterion (SDC) [11].
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The descent condition can be extended to SDC in the

following form:

gT
k dk ≤ −c∥gk∥

2
, k ≥ 0, c > 0. (7)

Hager and Zhang published an improved version of the

HS technique in 2005 [12]. It is called CG DESCENT and

is one of the most effective CG algorithms. This formula

provides a working definition of it:

βCG DESCENT
k = max{βN

k , ηk}, (8)

where

βN
k =

1

dT
k−1yk−1

(

yk−1 − 2dk−1
∥yk−1∥

2

dT
k−1yk−1

)T

gk, (9)

ηk =
−1

∥dk−1∥min{η, ∥gk−1∥}
, (10)

with the positive constant η, yk−1 = gk − gk−1 and ∥.∥
stands for Euclidean norm. The CG DESCENT technique

is unique in consistently generating descent directions when

dT
k yk ̸= 0. Due to its excellent performance, the CG DE-

SCENT technique is widely regarded as a benchmark of the

CG algorithm. However, its performance varies depending

on searched lines [13] .

Rivaie et al. [14] developed the RMIL method, which was

described as follows:

βRMIL
k =

gT
k (gk − gk−1)

dT
k−1(dk−1 − gk)

. (11)

The sign of βRMIL
k is determined by the values of dT

k−1gk
and gT

k gk−1, which can be categorised into four cases as

presented in Table I.

TABLE I
SEVERAL CASES OF RMIL METHOD

Case Numerator Denominator Sign of βRMIL
k

1 ∥gk∥
2 > gT

k
gk−1 ∥dk−1∥

2 > dT

k−1gk Positive

2 ∥gk∥
2 < gT

k
gk−1 ∥dk−1∥

2 > dT

k−1gk Negative

3 ∥gk∥
2 > gT

k
gk−1 ∥dk−1∥

2 < dT

k−1gk Negative

4 ∥gk∥
2 < gT

k
gk−1 ∥dk−1∥

2 < dT

k−1gk Positive

The global convergence of using βRMIL
k was established

under exact line search. Given that the orthogonal condition,

gT
k+1dk = 0, is satisfied by the exact minimisation rule,

Equation ( 11) can be modified in another variant known as

RMIL* [15]. The expression for RMIL* is as follows:

βRMIL*
k =

gT
k (gk − gk−1)

∥dk−1∥
2 . (12)

Under the exact line search, both equations RMIL and

RMIL*, derived from Equations ( 11) and ( 12), exhibit

comparable performance and convergence features. In order

to facilitate the analysis, βRMIL
k will be simplified as follows:

0 < βk ≤
∥gk∥

2

∥dk−1∥
2 . (13)

As demonstrated in both references [14] and [15], any CG

technique that satisfies Equation (13) has the potential for

global convergence if an exact or strong Wolfe line search is

employed. Based on this, most comparable works, such as

[16]–[21], built RMIL variations to satisfy (13).

While RMIL exhibits global convergence properties when

exact line search is employed, its numerical output is com-

paratively slower than the original HS and PRP algorithms.

Furthermore, it was argued by [22] that the RMIL technique

was incapable of satisfying (13) and was only valid under

the condition that the inequality ∥gk∥
2

≥ gT
k gk−1 was

fulfilled. In Case 1, [22]’s modified RMIL version, RMIL+,

was included in the RMIL procedure. The RMIL+ method

was defined in its entirety as follows:

βRMIL+
k =

{

gT

k
(gk−gk−1)

∥dk−1∥
2 , if 0 ≤ gT

k gk−1 ≤ ∥gk∥
2
,

0, otherwise.
(14)

The objective of RMIL+ is to retain the non-negativity of

βk by applying the Case 1 constraint from the RMIL method.

This method is comparable to the PRP+ and PRP* techniques

described in [23]. However, when the exact line search is

used, RMIL+ does not significantly outperform RMIL and

is still slower than CG approaches like HS and PRP. Hence,

it is intriguing to investigate alternative ways to enhance the

performance and global convergence features of RMIL while

refraining from imposing the constraint of Equation (13).

Another consideration for improving the RMIL method

involves using an inexact line search instead of an exact line

search. The strong Wolfe condition is a widespread criterion

for inexact line searches; it has two required parameters,

µ and σ, where 0 < µ < σ < 1. Some studies, such as

[17], [24], and [25], expanded RMIL to the strong Wolfe

line search, with ranges of σ < 1
2 , σ < 1

4 , σ < 1
5 ,

respectively. Nevertheless, certain CG methods, such as [26]

and [27], can accomplish global convergence for any choice

of σ < 1 under the strong Wolfe condition. Motivated by

prior research findings, researchers aim to expand the RMIL

method using a strong Wolfe line search to any option of

σ < 1.

The three-term CG comes from its general form [28],

defined as

dk =

{

−gk, if k = 0,

−β
(1)
k ok + β

(2)
k pk + β

(3)
k qk, if k ≥ 1,

(15)

where ok,pk and qk are directions and β
(1)
k , β

(2)
k , β

(3)
k are

scalars. The vector pk is either dk−1 or sk−1 = xk −xk−1.

Considering the two-term CG structure, this research limits

the options to β
(1)
k = 1, ok = gk and pk = dk−1.

Since there is limited data on the RMIL method’s three-

term strategy, presently, only five formulations utilise RMIL

or a derivative of it to calculate β
(2)
k . Recent literature [29],

[30] have established the SDC property by utilising a strong

Wolfe line search, with β
(2)
k to βRMIL

k and βRMIL+
k , respec-

tively. Furthermore, without providing a thorough global

convergence analysis, [31] established a three-term CG based

on βSMAR
k and βSMARZ

k .

On the other hand, [32] has given a fourth technique

that employs either βRMIL*
k or βMRMIL

k as β
(2)
k , with global

convergence features assessed using standard Wolfe. Finally,

a three-term RMIL method was suggested by [33], which

utilises βRMIL*
k as β

(2)
k and qk = dk−1. However, its SDC

property and global convergence are shown only under

subjected to an exact line search. The three-term RMIL

methods are summarised in Table II.
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TABLE II
THREE-TERM RMIL METHOD

Reference β
(2)
k

β
(3)
k

qk

[30] βRMIL+
k

gT

k
dk−1

∥dk−1∥
2

gk−1

[31] βSMAR
k

or βSMARZ
k

gk −
∥gk∥

∥gk−1∥
dk−1 yk−1

[29] βRMIL
k

−
gT

k
dk−1

dT

k−1
(dk−1−gk)

yk−1

[32] βRMIL*
k

or βMRMIL
k

−
gT

k
dk−1

∥dk−1∥
2

yk−1

[33] βRMIL*
k

−βk

gT

k
gk−1

∥gk−1∥
2

dk−1

II. PROPOSED ALGORITHM

The IRMIL technique was introduced as a new CG ap-

proach for UO. An exhaustive explanation of the IRMIL

procedure is as follows:

dk =

{

−gk + ωgk, if k = 0,

−gk + βRMIL
k dk−1 +

gT

k
dk−1

dT

k−1
(dk−1−gk)

gk−1, if k ≥ 1,

(16)

where ω ∈ (0, 1).
Algorithm 1 describes the operation of the proposed

method.

Algorithm 1 IRMIL CG method

Require: Set k = 0. Initiate the starting point x0 ∈ R
n.

Specify the convergence tolerance, ϵ and maximum

iterations, Maxit.

1: Set d0 = −g0 + ωg0 for ω ∈ (0, 1).
2: while ∥g∥ > ϵ and k < Maxit do

3: Determine αk either by (3) or (4)-(5).

4: Update xk+1 = xk + αkdk.

5: Compute βRMIL
k+1 using (11).

6: Find search direction,

dk+1 = −gk+1 + βRMIL
k+1 dk +

gT

k+1dk

dT

k
(dk − gk+1)

gk.

7: k ⇐ k + 1
8: end while

III. CONVERGENCE ANALYSIS

In convergence analysis, two key assumptions for the

objective function are boundedness on the level set and the

Lipschitz assumption.

Assumption 1: If the level set Ω = {x ∈ R
n} where

f(x) ≤ f(x0) is bounded, then there exists a positive

constant, B > 0 where ∥x∥ ≤ B for all x ∈ Ω.

Assumption 2: In some neighbourhoods ζ of Ω, f is

continuously differentiable, and its gradient g is Lipschitz

continuous, so there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥ for any x,y ∈ ζ. (17)

The boundedness assumption is necessary to guarantee

that the stepsize αk is well-defined for every k [34]. As

a result, Assumptions (1) and (2) imply the existence of a

constant m > 0 such that

∥gk∥ ≤ m, ∀x ∈ Ω. (18)

The sequence of xk generated by the CG technique is

reduced by integrating the sequence {f(xk)} into the level

set of Ω using these two assumptions. This feature may

ensure the xk’s progress to stationary.

A. Convergence Analysis under Exact Line Search

This section analyses the IRMIL method when executed

with an exact line search. It commences by demonstrating

the validity of SDC in Theorem 1, followed by establishing

the global convergence property in Theorem 2.

Theorem 1: Presume that the IRMIL algorithm generates

a CG method with a search direction for all k > 0 under an

exact line search using Equation (3). The method proposed

in Equation (16) is proven to meet the Sufficient Descent

Condition (SDC) outlined in Inequality (7), such that

gT
k dk ≤ −c∥gk∥

2
, k ≥ 0, c > 0.

Proof: If k = 0, then the initial direction takes d0 =
−g0 + ωg0 = −(1− ω)g0 where ω ∈ (0, 1). Next, multiply

d0 with gT
0 ,

gT
0 d0 = −(1− ω)∥g0∥

2
. (19)

Since (1 − ω) > 0, then the SDC is satisfied when k =
0. The proof for k ≥ 1 is established using the induction

method. From Equation (16), set k = k + 1 where

dk+1 = −gk+1 + βRMIL
k+1 dk +

gT
k+1dk

dT
k (dk − gk+1)

gk.

Next, multiply dk+1 with gT
k+1,

gT
k+1dk+1 = −∥gk+1∥

2
+ βk+1g

T
k+1dk

+ gT
k+1

(

gT
k+1dk

dT
k (dk − gk)

)

gk.

For exact line search, this condition hold gT
k+1dk = 0 [35],

[36]. Thus, the equation gT
k+1dk+1 = −∥gk+1∥

2
indicates

that dk+1 is a sufficient descent direction. Hence, gT
k dk ≤

−C∥gk∥
2

holds and the proof is concluded.

The reduction of the proposed three-term CG method to

the standard two-term CG method is apparent when an exact

line search is employed. In this case, the search direction in

Equation ( 16) can be expressed as:

dk =

{

−gk + ωgk, if k = 0,

−gk + βRMIL
k dk−1, if k ≥ 1,

(20)

where ω ∈ (0, 1).
Moreover, according to the derivation presented in Equa-

tion (12), the IRMIL approach can be expressed as follows:

dk =

{

−gk + ωgk, if k = 0,

−gk + βRMIL*
k dk−1, if k ≥ 1.

(21)

The convergence analysis for the IRMIL method is derived

from the following relation:

∥dk∥ ≤ κ̄∥gk∥, ∀k ≥ 0, (22)

where κ̄ ∈ R
+. The condition (22) is crucial in preventing

significant steps in areas with a slight gradient, such as

around saddle points and at the bottom of valleys [37]. This

indicates that the gradient determines the direction.
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Lemma 1: Presume that Assumptions 1 and 2 hold; the

search direction is defined by Equation (21) with exact line

search (Equation 3). Then the Inequality (22) holds.

Proof: It is obvious for k = 0, ∥d0∥ = |1− ω|∥g0∥ <
∥g0∥. The next step is to establish that k > 0. This can be

shown by modifying Equation (21) such that k = k+1. The

new equation can be written as

∥dk+1∥ =
∥

∥−gk+1 + βRMIL*
k+1 dk

∥

∥.

By applying the triangle inequality of the Euclidean norm,

it yields

∥dk+1∥ ≤ ∥gk+1∥

(

1 +
∥yk∥

∥dk∥

)

. (23)

By Lipschitz assumption in Assumption (2),

∥yk∥ = ∥gk+1 − gk∥ ≤ L∥xk+1 − xk∥ = |αk+1|L∥dk∥.

Thus,
∥yk∥
∥dk∥

≤ L|αk+1| and hence the condition (22) is

satisfied.

For any k, the required stepsize αk must be well-defined;

hence the boundedness condition is necessary [34]. As a

result, Assumptions (1) and (2) entail the existence of a

constant m > 0 such that

∥gk∥ ≤ m, ∀x ∈ Ω. (24)

With these two assumptions, the sequence xk is contained

in the level set Ω for the decreasing sequence of {f(xk)}
generated by a CG method. This feature might guarantee the

xk to progress to stationary.

In addition, under Assumptions (1) and (2), the following

Lemma, proven by [38], is obtained.

Lemma 2: Presume that Assumptions (1) and (2) hold

and αk satisfies the exact minimisation rule (Equation 3).

Consider any iteration of Equation (2), where dk satisfies

SDC in Inequality (7). Then, the following condition, known

as Zoutendijk condition, holds:

∑

k≥0

(

gT
k dk

)2

∥dk∥
2 < +∞. (25)

The proof of this lemma can be acquired from reference

[38]. As demonstrated in [39], Lemma 2 also holds to exact

minimization and the Goldstein and Wolfe rules.

Using Lemma 2, the following theorem is applied to prove

the global convergence of the IRMIL method by employing

an exact line search.

Theorem 2: Presume that Assumptions (1) and (2) hold

and let the search direction is defined by Equation (21) where

αk is obtained from an exact line search (Equation 3). If the

SDC holds, then either

lim inf
k→∞

∥gk∥ = 0, or
∑

k≥0

(

gT
k dk

)4

∥dk∥
2 < +∞.

Proof: The proof is established by contradiction to

lim infk→∞ ∥gk∥ = 0 and the Equation (24). Then there

exists a constant r > 0 such that

∥gk∥ ≥ r. (26)

Using Lemma (1), the search direction is modified in

Equation (23) by setting (k + 1 = k).

∥dk∥ ≤ ∥gk∥ (1 + L|αk|) ≤ κ̄∥gk∥. (27)

Consequently, Equation (27) is divided with ∥gk∥
2

and,

taking into account the contradiction statement
(

1
∥gk∥

< 1
r

)

,

gives Equation 28:

∥dk∥

∥gk∥
2 ≤

κ̄

∥gk∥
≤

κ̄

r
. (28)

Squaring both sides of (28),

∥dk∥
2

∥gk∥
4 ≤

κ̄2

r2
, (29)

which can be altered to

∥gk∥
4

∥dk∥
2 ≥

r2

κ̄2
, for all k. (30)

For k = 0,

∥g0∥
4

∥d0∥
2 =

∥g0∥
4

(1− ω)2∥g0∥
2 ≥

r2

(1− ω)2
≥

r2

κ̄2
. (31)

Summing up all the terms to obtain,

∞
∑

k=0

∥gk∥
4

∥dk∥
2 ≥

∞
∑

k=0

r2

κ̄2
. (32)

Since limk→∞
r2

κ̄2 ̸= 0, by divergent test, the series
∑∞

k=0
r2

κ̄2

diverges and consequently violates the Zoutendijk condition.

The proof is then concluded.

B. Convergence Analysis under strong Wolfe Line Search

This section presents the proofs of the SDC and the global

convergence of IRMIL when applied under the strong Wolfe

line search. In a prior study, it was demonstrated by [17]

that RMIL* converges under the condition that σ < 1/2

and the
∥gk∥
∥dk∥

≤ 1
1−Γu

where 0 < Γu < 1. Following that,

[18] investigates the convergence of LAMR+ by limiting the

strong Wolfe parameter such that σ < 1/5 and the relation

∥dk−1∥ > (2/3)∥gk−1∥. In a recent study, [24] expanded

the range of σ to σ < 1/4. In addition, the convergence of

RMIL+ was established under the condition that ∥dk−1∥ >
(1/2)∥gk−1∥.

For this study, no restrictions are placed on the parameter

σ as long as it falls within the range (0, 1) indicated by the

strong Wolfe criteria.

The proof is based on the relation

∥dk∥ ≥ (1− Γ)∥gk∥, ∀k ≥ 0, (33)

where 0 < Γ < 1 is a scalar.

Moreover, another assumption is as follows:

∥dk∥
2
− dT

k gk+1 > ∥dk∥
2
. (34)

Theorem 3: Presume the sequences {gk} and {dk} are

generated by the IRMIL method when implemented using

the strong Wolfe line search. If σ < (1− Γ) for 0 < Γ < 1
then the Inequality (33) holds.

Proof: The case is proven by the induction method. For

k = 0,

∥d0∥ = |1− ω|∥g0∥.

Thus, the Inequality (33) is satisfied since (1− ω) ∈ (0, 1).
Assuming that condition ( 33) holds for a value of k > 1.

Subsequently, the IRMIL algorithm, as expressed in Equation
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( 16), is executed with a value of k = k + 1. The outcome

of Equation ( 16) is then multiplied by gT
k+1.

gT

k+1dk+1 = −∥gk+1∥
2 + βRMIL

k+1 gT

k+1dk

+ gT

k+1

(

gT

k+1dk

dT

k
(dk − gk+1)

)

gk
(35)

= −∥gk+1∥
2 +

gT

k+1dk

dT

k
(dk − gk+1)

∥gk+1∥
2. (36)

Rewriting Equation (36) ,

∥gk+1∥
2
= −gT

k+1dk+1+
gT
k+1dk

∥dk∥
2
− dT

k gk+1

∥gk+1∥
2
. (37)

By triangle inequality, Equation (37) will become

∥gk+1∥
2
=

∥

∥

∥

∥

∥

−gT
k+1dk+1 +

gT
k+1dk

dT
k (dk − gk+1)

∥gk+1∥
2

∥

∥

∥

∥

∥

(38)

≤
∣

∣gT
k+1dk+1

∣

∣+

∣

∣gT
k+1dk

∣

∣

∣

∣

∣
∥dk∥

2
− dkgk+1

∣

∣

∣

∥gk+1∥
2
.

(39)

Hence using Equation (34), we obtain the following:

∥gk+1∥
2
<
∣

∣gT
k+1dk+1

∣

∣+

∣

∣gT
k+1dk

∣

∣

∥dk∥
2 ∥gk+1∥

2
(40)

Consequently, with the strong Wolfe condition ( refer to

Equations 4 and 5 ),

∥gk+1∥
2
≤
∣

∣gT
k+1dk+1

∣

∣+
σ
∣

∣gT
k dk

∣

∣

∥dk∥
2 ∥gk+1∥

2
, (41)

where 0 < σ < 1.
Then by applying the Cauchy–Schwartz inequality and the

induction hypothesis, the inequality (41) becomes

∥gk+1∥
2
≤ ∥gk+1∥∥dk+1∥+ σ

∥gk∥

∥dk∥
∥gk+1∥

2
. (42)

Then, simplify Equation (42) and divide by ∥gk+1∥
2

on both

sides, yields
∥dk+1∥

∥gk+1∥
≥ 1− σ

∥gk∥

∥dk∥
. (43)

From the induction hypothesis,
∥gk∥
∥dk∥

≤ 1
1−Γ , implies

∥dk+1∥

∥gk+1∥
≥ 1−

σ

1− Γ
. (44)

The proof is complete.

Next is to prove the sufficient descent property for IRMIL

method.

Theorem 4: Consider the IRMIL algorithm with αk is

calculated using strong Wolfe line search in Equations 4 and

5 where 0 < σ < (1−Γ). Then for all k ≥ 1 the SDC holds

such that

gT
k dk ≤ −c∥gk∥

2
, k ≥ 0, c >

1− Γ

σ
and Γ ∈ (0, 1).

(45)

Proof: According to ( 16), d0 = −g0 + ωg0 = −(1 −
ω)g0 for k = 0 where ω ∈ (0, 1). Furthermore,

gT
0 d0 = −(1− ω)∥g0∥

2
. (46)

Since (1−ω) > 0, the SDC is fulfilled for k = 0. Assume

also that the SDC is fullfilled for some k > 0. By using

Equation (36), the SDC for k + 1 can be shown:

gT
k+1dk+1 = −∥gk+1∥

2
+

gT
k+1dk

dT
k (dk − gk+1)

∥gk+1∥
2
. (47)

The expression for Equation (47) is modified by the

presence of Inequality (34), resulting in

gT
k+1dk+1 ≤ −∥gk+1∥

2
+

∣

∣gT
k+1dk

∣

∣

∥dk∥
2 ∥gk+1∥

2
. (48)

Subsequently, when the strong Wolfe condition is applied

(Inequalities (4) and (5)), the induction assumption yields

gT
k+1dk+1 ≤ −∥gk+1∥

2
− σ

∣

∣gT
k dk

∣

∣

∥dk∥
2 ∥gk+1∥

2
(49)

≤ −∥gk+1∥
2
− cσ

∥gk∥
2

∥dk∥
2 ∥gk+1∥

2
. (50)

Consequently, dividing with ∥gk+1∥
2

and using Theorem

3 leads to
gT
k+1dk+1

∥gk+1∥
2 ≤ −1−

cσ

1− Γ
. (51)

Thus, the SDC is fulfilled.

The proof is concluded.

Given that the suggested approach consistently generates

a search direction that meets the SDC, it is necessary to

restrict the step length to prove global convergence. Lemma

(3) demonstrates that the strong Wolfe line search always

provides a lower bound for the step length αk.

Lemma 3: Let the sequence {gk} and {dk} be generated

by IRMIL method, and αk is computed using strong Wolfe

line search, then

αk ≥ −
(1− σ)gT

k dk

L∥d∥
2 . (52)

Proof: Initiate the proof by writing the expression of

(σ − 1)gT
k dk = σgT

k dk − gT
k dk. In accordance to the

strong Wolfe rule outlined in Inequations 4 and 5, it can

be concluded that,

σgT
k dk − gT

k dk ≤ gT
k+1dk − gT

k dk,

≤ ∥gk+1 − gk∥∥dk∥,

≤ L∥xk+1 − xk∥∥dk∥,

≤ αkL∥dk∥
2
.

Thus, (σ − 1)gT
k dk ≤ αkL∥dk∥

2
.

Lemma 2 and the subsequent theorem are necessary to

facilitate the proof of global convergence properties.

Theorem 5: Let the sequences {xk} and {dk} be gener-

ated by the IRMIL, and αk is computed using a strong Wolfe

line search for all k ≥ 0. Then the Zoutendijk condition is

deemed fulfilled if either

lim
k→∞

inf∥gk∥ = 0 or
∑

k≥0

∥gk∥
4

∥dk∥
2 < +∞. (53)

Proof: Utilising Theorem (4) and Inequalities (4 and 5

) from the strong Wolfe line search,

f(xk+1) ≤ f(xk) + µαkg
T
k ≤ f(xk) ≤ · · · ≤ f(x0), (54)
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which implies {f(xk)}k≥0 is a bounded sequence.

Also, Lemma (3) and Inequalities (4) and (5) yields

µ(1− σ)

L

(gT
k dk)

2

∥dk∥
2 ≤ f(xk)− f(xk+1). (55)

Since {f(xk)} is a bounded sequence produces,

µ(1− σ)

L

∞
∑

k=0

(gT

k
dk)

2

∥dk∥
2 ≤ (f(x0)− f(x1)) + (f(x1)− f(x2))+ . . .

= f(x0)− lim
k→∞

f(xk) < +∞.

(56)

Because
µ(1−σ)

L
is a non-negative scalar and the direction is

descent, Equation 57 holds.

∞
∑

k=0

(gT
k dk)

2

∥dk∥
2 ≤

∞
∑

k=0

∥gk∥
4

∥dk∥
2 < ∞ (57)

In conclusion, it can be stated that the IRMIL algorithm

achieves global convergence by fulfilling the Zoutendijk

condition.

IV. NUMERICAL EXPERIMENTS

The MATLAB R2020b subroutine programme was utilised

to test all CG methods discussed in this study. The computa-

tions were executed on an AMD Ryzen 5 3550H with Radeon

Vega Mobile Gfx, operating at a frequency of 2100 Mhz,

and equipped with 4 Core(s) and 8 Logical Processor(s).

The computer system has a central processing unit (CPU)

operating at a frequency of 2.30 GHz and a memory capacity

of 8.00 GB. The computer is equipped with the Windows 10

operating system. The calculation of βk has been modified

accordingly. The methods have been executed utilising both

exact line search and strong Wolfe line search, with the

specific parameters σ = 0.1 and µ = 0.0001, as documented

in reference [40]. Furthermore, the IRMIL method utilised

a parameter value of ω = 0.3.

Table III summarises the numerical experiments for each

method, encompassing 924 runs across 44 test problems of

varying dimensions, including small and large dimensions.

The test functions utilised in the study were selected from

[41] and [42]. The comprehensive list of test questions can

be accessed at https://tinyurl.com/mrxe4cj6 .

TABLE III
TOTAL RUN FOR EXPERIMENT

Function Initial points Dimension Total run

44 4 2,4,50,100,500,1000, 10000 924

This experiment has the potential to fail in three distinct

situations. The first situation involves the process being ter-

minated if the CPU time hits 500 seconds [43] or the number

of iterations (NOI) exceeds 1000. If the situation occurs,

the method cannot effectively resolve the corresponding test

problems and is classified as ”FAIL.” The second situation of

failure occurs when the final values of the function diverge

from the solution. The third instance of failure arises when

the line search procedure cannot execute the method due to

its inability to determine a positive stepsize. However, among

various problem-solving approaches, a particular method can

be deemed superior if it demonstrates a faster execution

speed and produces a superior output function. The perfor-

mance of the tested methods was compared using Dolan and

Moré’s performance profile method [44]. The performance

profile plot depicts the algorithms’ performance, with the

top curve indicating the most outstanding ones. Additionally,

the right-hand side of the plot serves as an indicator of the

algorithms’ reliability.

A comprehensive explanation of the numerical

findings for the NOI and CPU time can be

found at https://tinyurl.com/ms8u59mw and

https://tinyurl.com/ychrpcfd , respectively. The performance

comparisons are interpreted as follows: i.

1) Performance profile based on exact line search (Figure

1),

2) Performance profile based on strong Wolfe line search

(Figure 2).

Figures 1(a) and 1(b) illustrate the comparison of IRMIL

to RMIL, RMIL+, CG DESCENT and 3TNRMIL in term of

NOI and CPU time, respectively under exact line search.

(a)

(b)

Fig. 1. Performance profile under exact line search due to (a) NOI and (b)
CPU time.

Figure 1(a) and 1(b) depicts the comparison of IRMIL,

RMIL, RMIL+, CG DESCENT, and 3TNRMIL regarding the

number of iterations (NOI) and central processing unit (CPU)

time when the exact line search is employed. Both figures

display performance profiles with almost similar shapes.

This implies that the findings obtained by each method

for NOI and CPU time are very constant. Upon closer

examination of the left side of both figures, it is evident
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that the RMIL and IRMIL techniques are associated with the

lowest curve. Hence, these methodologies were considered

to exhibit inferior performance. The CG DESCENT method

dominates the top curve, so it is determined to be the

best performer. The RMIL+ and 3TNRMIL algorithms rank

second and third in the exact line search. However, there are

no significant distinctions in their respective performances.

A closer inspection of the right-hand side of both figures

reveals that all methods achieve Ps(t) values in the range

of 0.77 to 0.82. This result implies that the methodologies

effectively addressed 77% to 82% of the issues. Additionally,

all methods have successfully solved 16 out of 44 test

problems (27.27%).

Meanwhile, Figures 2(a) and 2(b) depict a NOI and

CPU time comparison of IRMIL, RMIL+, CG DESCENT,

3SRMIL+, 3KRMIL, and TTRMIL under a strong Wolfe

line search. The superior performance of the IRMIL al-

gorithm is evident in Figures 2(a) and 2(b), as it outper-

forms all other algorithms across all curves. Thus, it can

be concluded that the IRMIL algorithm exhibits superior

efficiency compared to RMIL+, CG DESCENT, 3SRMIL+,

3KRMIL, and TTRMIL in terms of both the NOI and CPU

time. In addition, 3KRMIL and TTRMIL are shown to

have similar performances since they both demonstrate the

poorest performance in the figures. It is also revealed that

IRMIL is unable to achieve the stationary point for certain

functions. Therefore, it effectively resolves approximately

92.8% of the test functions. Following it are 3SRMIL+,

CG DESCENT, RMIL+, TTRMIL, and 3KRMIL, which,

respectively, solve 82.4%, 81.01%, 80.9%, 80.26%, and

79.82% of test functions. The CG techniques employed for

each selected initial point have effectively resolved 18 test

problems. At the same time, this study has identified the

Rastrigin, NONSCOMP, Extended Freudenstein & Roth, and

Extended Beale functions as unsuccessful functions for at

least one conjugate gradient (CG) method utilised in this

research.

V. IMAGE RESTORATION PROBLEMS

This section employs IRMIL, CG DESCENT, and RMIL+

methods, utilising the strong Wolfe line search to address

image restoration issues. The parameter selection process is

similar to that outlined in the Section Numerical Experi-

ments. These issues relate to recovering a digital image that

has undergone partial damage due to impulse noise. The

impulse noise replaces some of the pixels in the original

picture, resulting in image corruption. The specifics of the

issues at hand may be obtained from [40], [45], [46].

The present study employed a set of standardised test

images, namely Cat (256 x 256), Bird (256 x 256), Lena

(256 x 256), and Goldhill (256 x 256), each contaminated

with salt-and-pepper noise at varying levels of contamination,

specifically 30%, 50%, and 90%. The images are then

subjected to noise reduction by applying a median filter [46],

[47]. The quality of the restored images is assessed by three

metrics: CPU time, relative error (Relerr), as described in

reference [48]) and peak signal to noise ratio (PSNR), as

outlined in reference [49]. To conserve paper space, Figure

3 only depicts the noisy and restored images for IRMIL,

RMIL+, and CG DESCENT techniques when the salt-and-

paper noise ratio is 90%.

(a)

(b)

Fig. 2. Performance profile under strong Wolfe line search due to (a) NOI
and (b) CPU time.

In addition, the numerical findings for each approach are

listed in Table IV. The findings in Table IV show a positive

correlation between the salt and pepper noise ratio and the

CPU time required to restore the corrupted image. Table IV

demonstrates that the suggested IRMIL approach, with the

exception of a few circumstances, consumes less time while

maintaining high PSNR quality. The findings indicate that the

IRMIL method effectively restored the given test images with

suitable quality and exhibited comparable results to other

algorithms.

VI. CONCLUSION

The IRMIL algorithm is an improved version of RMIL

that incorporates a three-term parameter and a scaled initial

direction without limiting the sign of the RMIL parameters.

In contrast to previous research, this study considered the

RMIL CG parameter in its entirety and exhibited the global

convergence characteristics of IRMIL. The IRMIL algorithm

is designed to satisfy the Sufficient Decrease Condition

(SDC) and the strong Wolfe line search criteria, thereby guar-

anteeing convergence to a stationary point. To thoroughly

analyse the IRMIL method, the authors conducted tests with

44 multi-dimensional mathematical test functions of various

degrees of complexity. The numerical efficacy of the algo-

rithm was enhanced while preserving its global convergence

characteristics, suggesting its viability as an alternative to the

RMIL algorithm. Furthermore, IRMIL was also compared
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Fig. 3. Restoration of Cat, Bird, Lena and Goldhill. From top to bottom: noisy images with 90% salt-and-pepper noise, restorations obtained by the
IRMIL, CG DESCENT, RMIL+ methods, respectively.

TABLE IV
NUMERICAL RESULTS OF IMAGE RESTORATION

Image Noise IRMIL CG DESCENT RMIL+
Ratio (%) CPU/Relerr/PSNR CPU/Relerr/PSNR CPU/Relerr/PSNR

Cat 0.3 22.84/0.55/28.43 22.83/0.58/28.50 22.93/0.54/28.56

0.5 37.70/0.87/25.54 38.21/0.89/25.82 37.83/ 0.87/25.80
0.9 38.73/1.27/24.21 39.07/1.28/24.19 39.66/ 1.28/24.18

Bird 0.3 8.16/0.39/40.81 8.18/0.35/40.93 8.14/ 0.39/41.02
0.5 13.74/0.56/37.42 14.28/0.55/37.46 13.80/0.53/37.46
0.9 29.55/1.40/30.62 23.28/1.15/32.10 48.93/ 1.69/30.23

Lena 0.3 10.86/0.96/33.57 10.76/1.05/33.24 10.80/0.90/33.55
0.5 17.81/1.33/30.47 17.46/1.36/30.23 17.45/ 1.38/30.34
0.9 43.35/2.68/25.55 42.59/2.85/25.17 41.64/2.56/25.55

Goldhill 0.3 10.67/0.89/32.17 10.71/0.92/32.13 11.32/0.88/32.11
0.5 17.89/1.44/29.48 18.18/1.39/29.35 18.14/ 1.42/29.33
0.9 57.95/2.93/25.68 30.39/2.97/25.57 37.67/ 3.81/23.91

with RMIL, RMIL+, CG DESCENT, 3SRMIL+, 3KRMIL,

TTRMIL, and 3TNRMIL. The results prove that the IRMIL

algorithm exhibits potential as an optimisation methodology

for addressing UO issues.
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