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A B S T R A C T   

Extreme climate is one of the important variables which determine the capability of tropical peatland to act as 
either carbon sink and/or carbon source. The purpose of this study is to reveal the spatio-temporal trend in the 
long-term time series of extreme rainfall and temperature in Sarawak peatland cause by climate change. Gridded- 
based Princeton datasets were used for trend analysis spanning 68-year (1948–2016) based on Modified Mann- 
Kendall (m-MK) test which has the capability of distinguishing unidirectional trend with multi-scale variability. 
The m-MK test was also used to confirm the increasing or decreasing trend produce by Mann-Kendall (MK), and 
to discriminate the exaggeration in trend caused by serial auto-correlation due to the high effect of large scale 
climate events regulating the climate in the region. By using R-based program, RClimDex for extreme climate 
indices output, extreme climate under Northeast (NE) and Southwest (SW) monsoon showed lower grid point 
with significant changes under m-MK test compared to MK test at 95% significance level. Here, the exaggeration 
of trend by MK test has been reduced by using m-MK test which can accommodate the scaling effect in the time 
series due to inherent natural climate variability. Diurnal temperature range (DTR) was expected to decrease for 
both monsoons in the central-coastal region as minimum temperature (TN) increased more than maximum 
temperature (TX). Significant increase in extreme rainfall (R10, R20, Rnn) was spatially observed more during 
SW monsoon compared to NE monsoon, although with high spatial variability. Significant increase of TN indices 
of TNn and TN90p might cause increased rainfall intensity in the south and central-coastal region, while high TX 
indices of TXn might cause increased rainfall intensity in the north. Due to the imminent threat of climate 
change, this study gives scientists an essential view on the behavior of different extreme climate variables and its 
potential impact on the peatland area which is susceptible to flood and risk of fire during the NE and SW 
monsoon, respectively.   

1. Introduction 

The hydrological cycle has been drastically affected by the increase 
in global temperature and has consequently brought about increases in 

the rates of rainfall and temperature (Beyaztas and Yaseen, 2019; 
Warburton et al., 2010). These changes in the rates of temperature and 
rainfall have further increased the extent and magnitude of climatic 
changes globally (Khan et al., 2018; Pour et al., 2020; Yaseen et al., 
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2021). According to the Intergovernmental Panel on Climate Change 
(IPCC), owing to the sensitivity of the ecology of the tropical region to 
insignificant changes in climate characteristics, such region is normally 
considered more susceptible to changes in climate (IPCC, 2014; Mishra 
and Liu, 2014; Yang et al., 2005). For instance, most coastline tropical 
countries have witnessed significant changes climatic pattern over the 
years (Mayowa et al., 2015; Sa’adi et al., 2017); the study by Mayowa 
et al. (2015) observed substantial changes in the annual and seasonal 
rainfall and days of rainfall in the east coast of Peninsular Malaysia. 
Furthermore, significant changes in annual maximum rainfall has been 
witnessed across Sarawak which suggests a high impact of climatic 
variability across the region (Halder et al., 2021; Sa’adi et al., 2017). 

Under such vulnerability, the eco-environmental systems in tropical 
regions, particularly the State of Sarawak located in the north-western 
region in the island of Borneo may become more susceptible to the 
changes in the climate (Mishra and Liu, 2014). Tropical peatland char
acterized with a deep peat profile plays an essential role in sequestering 
and storing more than 70 Gt (20% of global peatland carbon) carbon in 
peat domes. The carbon storage has been preserved for thousands of 
years by waterlogging, which suppresses decomposition (Cobb et al., 
2017). Water table in tropical peatland is generally high because it lies 
mostly in coastal, low-lying regions, and high annual rainfall. The water 
table gradient is small with very high permeability of the surface layer, 
consist of a mixed of woody debris, leaves, and peaty material, as the 
water flows slowly into the bounding rivers (Cobb and Harvey, 2019; 
Dommain et al., 2015). The high water table and high permeability of 
the surface layer in the natural peat condition, allow the accumulation 
rate of the organic material to surpass the decomposition rate. In addi
tion, high heterogeneity of hydraulic properties in the vertical and 
horizontal direction characterize how the change in water table govern 
the storage of the catchment (Cobb and Harvey, 2019). Therefore, any 
changes affecting the tropical peatland will change its capability to act 
as a sink of greenhouse gases (GHG). 

Various studies have shown that human activities by fire and 
drainage through the conversion of pristine tropical peatland into 
various types of land use has altered its function as carbon sink (Cobb 
et al., 2017). However, there is a lack of knowledge on how climatic 
drivers due to the changing global climate might affect the function of 
the tropical peatland ecosystem. Within the context of climate change, a 
clear insight on the biological and environmental effect of climatic 
drivers is crucial, because it provides a basis for anticipating and pre
paring for the effects of future change (Alamgir et al., 2020; Halder et al., 
2022). 

Extreme climate events may cause a major impact on peatland 
environment as it exerts more immediate and profound effects due to 
high sensitivity of peat with the changing climate (Behnke et al., 2016; 
Ise et al., 2008). However, insufficient information was known 
regarding trends in extreme climate in relation with Sarawak peatland. 
This is due to difficult passage into typically inundated peatland envi
ronments, causing a lack of meteorological stations to cover a wide 
range of peat area. Poor accessibility subsequently causes poor avail
ability of climate data, quality and its dependability. The number of 
rainfall days and warm nights in Kuching station has been found to in
crease significantly by Manton et al. (2001) in response to the extent of 
decline in the number of cool nights and days. Sa’adi et al. (2017) re
ported a significant trend of 6- and 72-h maximum rainfall at the Lower 
Rajang basin (peatland area). This area is highly prone to extreme 
climate as it is exposed to various type of climate events. For instance, 
the climate-induced extended droughts (El Niño) and excessive rainfall 
rates (La Niña) could significantly affect vegetation structure and rich
ness in peatland areas (Dohong et al., 2017). The prolonged drought 
associated with the El Niño events could significantly affect the 
groundwater table, and this could lead to improved peat oxidation, 
microbial activities, and consequently increase CO2 emission. In recent 
years, forest fires have been a common event in the Borneo, Sumatra, 
Peninsular Malaysia, and West Papua with the most severe events been 

associated with the El Niño phase of El Niño-Southern Oscillation 
(ENSO) that prolonged the drought periods (Miettinen et al., 2017; Najib 
et al., 2022; Tu et al., 2016). Coastal peatland in low-lying areas make it 
vulnerable to flood and on the contrary, prone to fires during the rela
tively dry period due to the carbon rich ecosystem. Any variation in the 
rate of extreme climate recurrence or severity, could have profound 
impacts on the peatland as it affects the fluctuation of the water tables 
and subsequently its capability for carbon accumulation and storage 
(Hikouei et al., 2023; Mezbahuddin et al., 2022). 

Most of the long-term global climate studies do not highlight the 
changes in extreme value (Manton et al., 2001; Salman et al., 2021; 
Zhang et al., 2005). This is due to the scarcity of climate data with high 
quality that was required for identification, detection and monitoring 
for changes in extreme climate. High quality data was required, as the 
occurrence of extreme events may be overlooked even with a smaller 
extent of missing data. Without proper assessment, complication may 
increase due to invalid data where outliers can be mistakenly thought as 
true data and vice versa. Climate data are prone to discontinuities and 
inhomogeneities as a result of the station set-up, location, and natural 
exposure; it could also be attributed to variations in observational pro
cedure (Manton et al., 2001). The problem is compounded by sparse 
meteorological stations and their heterogeneous distribution when 
studying the large-scale spatial pattern of the extreme climate. Besides, 
extreme events tend to be more localized which can only be captured 
over a small and sufficient spatial and temporal resolution. Extreme 
events are also sensitive to spatial heterogeneity where nonlinear re
sponses may be observed. 

Such limitations make spatio-temporally constant yet fine-resolution 
gridded climate data more appropriate for the extreme climate assess
ment within inaccessible peatland areas. Examples of gridded-based 
climate data are Global Meteorological Forcing Dataset for land sur
face modelling by Land Surface Hydrology Research Group, Princeton 
University (Princeton) (Sheffield et al., 2006), Global Precipitation 
Climatology Centre (GPCC) (Schnider et al., 2011), Climatic Research 
Unit (CRU) (Harris et al., 2013), Asian Precipitation-Highly-Resolved 
Observational Data Integration Towards Evaluation (APHRODITE) 
(Yatagai et al., 2009), University of Delaware (UDel) (Matsuura and 
Willmott, 2012), Tropical Rainfall Measuring Mission (TRMM) (Huff
man et al., 2015), ECMWF Re-Analysis (ERA) (Decker et al., 2012) and 
Modern-Era Retrospective analysis for Research and Applications 
(MERRA) (Rienecker et al., 2011). Numbers of studies have applied 
gridded-based climate datasets for climate trend analysis (Agnihotri 
et al., 2018; Asfaw et al., 2018; Khan et al., 2018; Nashwan and Shahid, 
2019). Therefore, a more specific study on extreme climate employing 
fine resolution climate data to capture climate extreme and its 
spatio-temporal pattern could be employed in Sarawak peatland. Hence, 
gridded-based Princeton (Sheffield et al., 2006) climate data sets was 
retrieved for this study to tailor for the demand for finer resolution of 
spatial and longer temporal climate information spanning 1948 to 2016. 
In addition, Princeton dataset can deliver near-surface meteorological 
data with the availability of the rainfall and temperature data for 
extreme climate trend analysis. It merges observations and reanalysis 
data which was then homogeneously disaggregated (temporally and 
spatially) based on bias-corrected climate model output. Previous works 
also have validated and utilized these datasets in the tropical climate 
countries for various purposes (Ang et al., 2022; Ayoub et al., 2020; 
Sa’adi et al., 2021; Singh and Xiaosheng, 2019). 

There are many methods developed for calculating and monitoring 
extreme climate including a combination of indices by employing 
various type of input datasets (Adeyeri et al., 2022; He et al., 2017; 
Katsanos et al., 2018; Shamshirband et al., 2020; Sun et al., 2016; Zhao 
et al., 2018). For the purposes of defining meaningful extreme indices 
which are consistent across a wide region, Frich et al. (2002) created the 
Expert Team on Climate Change Detection and Indices (ETCCDI) to 
illustrate a wide range of climates indices and indicators. In total, 27 
indices were defined and have been applied for climate extreme study in 
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various parts of the world (POPOV et al., 2017; Rahimi et al., 2018; 
Razavi et al., 2016). The ETCCDI indices let a direct monitoring of the 
intensity and frequency of climatic trend, which would possibly cause 
stress to human, biological condition or the environment. Other studies 
(Fung et al., 2022; Nashwan et al., 2019; Syafrina et al., 2017; Tan et al., 
2021) investigated extreme climate trend and show a contrasting 
spatio-temporal results, mainly because of the usage of different defi
nitions of extreme event (Lacombe and McCartney, 2014). Therefore, a 
generally adopted ETCCDI indices was employed in this study due to the 
comprehensive list of the indices being provided and its suitability to be 
employed in the tropical country as well as other countries for 
comparative assessment (Panda et al., 2016). The use of ETCCDI indices 
has been employed in other part of Malaysia (Hanif et al., 2022; Hasan 
et al., 2016; Ng et al., 2022), and indeed has accelerated further research 
into observed climate extremes, as well as further research into model 
simulation and assessment of such events (Yin and Sun, 2018). 

A standard method of parametric/non-parametric trend analysis has 
been adopted in the past for climate trend assessment (Hanif et al., 2022; 
Kozan, 2020; Krishnan et al., 2018; Leong Tan et al., 2019). However, 
anthropogenic climate change forcing in trend assessment can be 
misguided due to the persistence of the internal variability of the natural 
climate (Armal et al., 2018). Therefore, several studies have been con
ducted to address this issue. Mallick et al. (2022) used trend free 
pre-whitening (TFPW) technique to eliminate serial autocorrelation 
before implementing the MK test in the assessment of temperature ex
tremes in Bangladesh. Armal et al. (2018) use Bayesian multilevel model 
to identify the annual frequency of extreme rainfall events more accu
rately across the contiguous United States by pooling information across 
stations to minimize parameter estimation uncertainty. Panda et al. 
(2016) examine the heavy tails of the probability density function (PDF) 
among the pooled grid scale meteorological indices in different 
sub-periods to better diagnose the changes. Wang (2008) proposes an 
empirical approach incorporated in a stepwise testing algorithm to ac
count for lag-1 autocorrelation in identifying mean shifts in time series 
to detect single or multiple changepoints It has been demonstrated that 
the new algorithms detect single or multiple changepoints in real-world 
climate data series very well and quickly. Lately, non-parametric MK test 
has been broadly applied for trend tests since it does not adopt an un
derlying probability distribution of the data time series and has low 
sensitivity to sudden disruptions due to data inhomogeneity (Shahid, 
2010; Zhang et al., 2005). However, the output of the MK test can be 
exaggerated by serial auto-correlation triggering an increase in the 
chance for significance in trend (Zhang et al., 2005). MK test also sen
sitive with the long-term persistence (LTP) due to natural variability in 
the time series (Fathian et al., 2014; Lacombe et al., 2012; Shahid et al., 
2014). By taking into account the LTP into the MK equation, Hamed 
(2008) has reported a substantial reduction in the significance of trends. 
Therefore, an iterative procedure which modified the MK method by 
Hamed (2008, 2009) to account for the scaling effect has gained its 
popularity due to its capability in distinguishing multi-scale variability 
of unidirectional trends for various climate indices. 

In this paper, we present a spatio-temporally detailed long-term 
trend analysis spanning 68 years of extreme rainfall and temperature 
in Sarawak peatland based on m-MK to confirm the significance of the 
test output under MK. The m-MK test was employed to reveal the trend 
in the time series that is cause by climate change by discriminating the 
exaggeration in trend cause by serial auto-correlation due to the high 
influence of large scale climate phenomena governing the region. Pre
vious studies only estimate the changes in climate trend of selected 
meteorological stations and the mean of the climate indices within a 
broader area. No study has been done in case of Sarawak, which 
employed the usage of the ETCCDI indices and gridded-based datasets 
which provide the opportunity for a finer resolution of spatio-temporal 
information for extreme climates. Therefore, the usage of Princeton 
gridded-based datasets with the longest and continuous spatio-temporal 
resolution was applied, to capture the long-term climatic trend over the 

climate sensitive peatland region of Sarawak. The study makes impor
tant contributions to the climate change research for the region and will 
add to the supplementary understanding of climate change impact on 
tropical peatland which is susceptible to climate change. 

2. Study area and sources of data 

The study area is situated in ~1.6 Mha of Sarawak peatland found 
principally along the low-lying alluvial coastal plain, extending over 
750 km along the north-western coast as shown in Fig. 1. Geographi
cally, Sarawak and its peatland is positioned in the centre of the Mari
time Continent between latitude 0◦50′N and 5◦N and longitude 
109◦36′E and 115◦40′E, closely north of the equator. The peat swamp 
forest of Sarawak generally has a yearlong high water table, and high 
soil moisture because the forest settings are highly humid, damp and 
heavily shaded with a closed canopy ecosystem (Kreitmeier et al., 2015; 
Ngau et al., 2022). The forest ground was covered with thick fibrous 
roots and undecomposed litter of leaf and branches. Sarawak peatland 
has been logged over the years and utilized for agricultural activities 
particularly for oil palm, sago and rubber where compaction and 
drainage is a precondition. Copious rainfall, high humidity and uniform 
temperature characterized the tropical equatorial climate of Sarawak 
(Tangang et al., 2013). The Köppen-Geiger climate classification char
acterized this region as Tropical Rainforest (Af), with annual rainfall 
ranging between 3 300 mm close to the coastland and 4 600 mm further 
inland (Kottek et al., 2006). 

Out of 58 rainfall station initially being assessed in this study, 27 
rainfall and 4 temperature stations with the longest and reliable tem
poral continuity and fairly distributed across Sarawak peatland were 
selected for validation of the gridded-based Princeton datasets. Rainfall 
and temperature stations data was retrieved from the Department of 
Irrigation and Drainage (DID) of Malaysia and Berkeley Earth (Berkeley 
Earth, 2018) respectively. The stations were chosen based on the 
availability of the continuous and homogeneous historical records for 
the period of 1960–2010 with less than 20% missing values in each year. 
However, different starting years for rainfall records were used due to 
the gap and inhomogeneity in the time series. This should be borne in 
mind when the validation results were discussed. The average temper
ature records were available for the period of 1960–2010. Station in
formation including station number, basin, coordinates and the period 
of record, were given in Table 1. 

To reveal long-term climate trends, at least 30 years of climate data 
are recommended for climate assessment (Mckee et al., 1993). This is 
because trends based on shorter time series are highly sensitive to values 
at the start and end of the series. Larger periods than 30 years are suf
ficiently independent in climatological time series when handled with 
inherent variability, as per World Meteorological Organization (WMO) 
guidelines (Arguez and Vose, 2011). The Princeton data sets provided by 
Terrestrial Hydrology Research Group from Princeton University and 
available at the website, http://hydrology.princeton.edu/data.pgf.php, 
was used in this study with a spatial resolution of 0.25◦. Daily rainfall, 
TX and TN data sets with the longest period available at the beginning of 
this study, spanning 68-years from 1948 to 2016 at 47 grid points 
(Fig. 1) covering the whole peatland area of Sarawak were retrieved and 
used. 

There are 27 core indices (the ETCCDI indices) of climate extreme 
available through RClimDex, recommended by Expert Team on Climate 
Change Detection, Monitoring and Indices (ETCCDMI) with primary 
focuses on extremes (Peterson et al., 2001; Zhang et al., 2005). 25 
indices relevant to the tropical region of Sarawak including TA, TX and 
TN were applied in this study as listed in Table 2. These indices were 
selected because extreme rainfall and temperature are two main climate 
component governing the local natural climate in Sarawak and play an 
important role for agricultural production. Due to climate change, 
extreme rainfall and temperature are likely to occur in tropical regions 
of Southeast Asia more frequently which will enhance the already high 
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flood and drought risks, particularly across the climate-sensitive area of 
tropical peatland (Ge et al., 2019). As far as the authors’ knowledge, no 
study has been done in Sarawak utilizing the ETCCDI indices to provides 
fundamental characteristics analysis of extreme climate. In addition, 
these indices are relevant in all part of the world, allowing comparison 
between different regions. (Yin and Sun, 2018). 

3. Methods 

3.1. Data quality control 

A rigorous data quality assessment was done to ensure a reliability 
validation process of Princeton gridded-based dataset, and the subse
quent climate extreme assessment. The imputation of missing data for 
27 rainfall stations was done by using nearest neighbor method due to its 
conceptual simplicity (Ferrari and Ozaki, 2014) by using R-based pro
gram, RClimTool (Llanos-Herrera, 2014). As the low range of missing 
data (0–6.7%) was observed in the time series, the nearest neighbor 
method was applied by using auxiliary information from the neigh
boring rainfall stations to initially detect any observable outliers, trends 
and potential discontinuities and breaks in the time series. The missing 
data was then imputed directly to lessen the amount of missing data and 
subsequently obtaining a continuous data series for each rainfall station 
(Ferrari and Ozaki, 2014). Then, to facilitate data quality assessment, 
the integrated R package, Multi-Site Auto-Regressive Weather GENer
ator (RMAWGEN) which make use of Vector AutoRegressive models 
(VARs) estimation in RClimTool was applied to fill the remaining 
missing data (Cordano and Eccel, 2011). 

The evaluation of the quality control of the time series was assessed 
afterwards by using RClimTool to identify and replace unverified re
cords in the database (Ferrari and Ozaki, 2014). The double mass curve 
for the annual time series was constructed after imputation and quality 
control processes to detect if there is any breakpoint. Temperature 
datasets were excepted from the imputation process because it has been 
subjected to internal adjustment and data quality control by Berkeley 
Earth. Nonetheless, the presence of outliers were identified in daily 

rainfall, TX, and TN which was then checked with neighboring stations 
for consistency or potential breaks. The annual and monthly mean 
temperature (total for rainfall) series were then prepared and examined 
for discontinuities. A sufficiently long record of daily data which passed 
with these quality control and homogeneity procedures were subse
quently used to validate and to assess the capability of the gridded-based 
Princeton datasets in simulating the local climate. Even though Prince
ton datasets has been validated and utilized in many part of the world, 
the validation under tropical climate is still low. Therefore, the valida
tion process in this study will contribute to the reliability assessment of 
the Princeton datasets in tropical climate, in case of Sarawak. 

3.2. Extreme climate data preparation and validation 

The extreme climate for rainfall and temperature indices were 
computed by using R-based software package, RClimDex, developed at 
the Climate Research Branch of Meteorological Service of Canada on 
behalf of the ETCCDMI. RClimDex and its documentation can be found 
at http://etccdi.pacificclimate.org/software.shtml. In this study, 25 
indices relevant to Sarawak’s tropical climate, including TX and TN, 
were used, as shown in Table 2. An annual and seasonal time-series of 
each index was computed for each 47 grid point. Hence, the indices 
convey information about events with the most extreme magnitude 
annually and seasonally. The areal average of rainfall and temperature 
data were used for the validation of gridded-based Princeton datasets. 
Validation was also done by visualization of the time series, construction 
of scatter plot, probability distribution function (PDF), student’s t-test 
and statistical performance indices, namely normalized root mean 
square error (NRMSE), percent bias (PBIAS), Nash–Sutcliffe efficiency 
(NSE), modified index of agreement (MD), coefficient of determination 
(R2) and volumetric efficiency (VE). This widely used statistical per
formance was employed as it has been used by other studies in hydrol
ogy and climatology time series (Iqbal et al., 2021; Navidi Nassaj et al., 
2022; Salehie et al., 2022; Tan et al., 2021). 

Fig. 1. Sarawak soil map with 27 rainfalls and 4 temperature stations (light yellow label = station no.) and 47 grid-based Princeton climate data covering the 
peatland area. Grid point (suncross symbol) indicate that there is significant auto-correlation in the annual time series. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Z. Sa’adi et al.                                                                                                                                                                                                                                   

http://etccdi.pacificclimate.org/software.shtml


Weather and Climate Extremes 40 (2023) 100554

5

3.3. Mann-Kendall and Modified Mann-Kendall test 

To explore the trends in hydro-climatological time series, the World 
Meteorological Organization (WMO) has recommended non-parametric 
MK test (Peterson et al., 2001) and this approach was used in this work 
trend detection. As per, Koutsoyiannis and Montanari (2007), MK trend 
tests statistic is susceptible to the scaling behavior and this significantly 
increases the pattern of trends. Hence, numerous studies have doubted 
the previously obtained results due to the multi-decadal variability in 
time-series (Ehsanzadeh and Adamowski, 2010; Fathian et al., 2014; 
Lacombe et al., 2012; Shahid et al., 2014). The MK method was modified 
by Hamed (2009, 2008) to accommodate the scaling effect and this 
improved the power of the tests in discriminating multi-scale variability 
of unidirectional time series trends. Thus, the m-MK tests are also 
employed in the present study to confirm the significance of MK test at 
95% significant level for 25 selected ‘ETCCDI’ (Table 2) across 47 ho
mogeneous Princeton grid points of Sarawak peatland. 

MK trend test calculation involved comparison of each data value 
with all following data values of the ordered data sample. Here, the time 
series x1, x2, x3 …, and xn of the Mann Kendall statistic (S) is computed 
as, 

S=
∑n− 1

k=1

∑n

i=k+1
sign (xi − xk)

where sign 

(xi − xk)=

⎧
⎨

⎩

+1 if (xi − xk) > 0
0 if (xi − xk) = 0
− 1 if (xi − xk) < 0

(1) 

To statistically quantify the trend significance employing normalized 
test statistic Z, the associated probability of S and the sample size, n, is 
afterwards computed as follow, 

Z=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var (S)

√ if S > 0

0 if S = 0
S+ 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var (S)

√ if S < 0

(2) 

The computation for variance, Var(S) for the above normalized test 

Table 1 
List and general information of 27 rainfall stations and 4 Temperature stations in 
Sarawak peatland used in this study.  

Rainfall Station Information 

No Station 
No. 

Basin Lat Long Period NA* (%) 

1 2625051 Balingian 2.69 112.50 1989–2010 5.6 
2 3025001 Balingian 3.03 112.59 1979–2010 6.3 
3 3842034 Baram 3.86 114.24 1983–2010 2.1 
4 4339005 Baram 4.33 113.99 1982–2010 0 
5 4440001 Baram 4.48 114.00 1973–2010 0.2 
6 3130002 Kemena 3.17 113.04 1973–2010 0 
7 3132023 Kemena 3.11 113.26 1984–2010 4.5 
8 1713005 Krian 1.74 111.33 1984–2010 0 
9 4854009 Lawas 4.85 115.4 1989–2010 0 
10 4548004 Limbang 4.55 114.85 1984–2010 5.4 
11 4749001 Limbang 4.74 115.00 1984–2010 0 
12 2115008 Lower Rajang 2.13 111.25 1986–2010 0 
13 2412001 Lower Rajang 2.42 111.67 1986–2010 3.9 
14 2514004 Lower Rajang 2.51 111.42 1998–2010 6.7 
15 2712001 Lower Rajang 2.74 111.51 1984–2010 3.1 
16 1018002 Lupar 1.04 111.83 1984–2010 1.2 
17 1111008 Lupar 1.14 111.11 1977–2010 3.7 
18 1313006 Lupar 1.30 111.39 1964–2010 3.7 
19 1509009 Lupar 1.52 110.92 1984–2010 0.2 
20 2522038 Mukah 2.60 112.29 1990–2010 0 
21 3737045 Niah 3.74 113.78 1985–2010 5.6 
22 2321001 Oya 2.40 112.13 1989–2010 3.3 
23 1306055 Sadong 1.31 110.67 1966–2010 6 
24 1303014 Samarahan 1.39 110.32 1982–2010 0.5 
25 4038006 Sibuti 4.06 113.84 1982–2010 3.8 
26 1503007 Sungai 

Sarawak 
1.58 110.38 1977–2010 0 

27 2828025 Tatau 2.88 112.85 1985–2010 0 

Temperature Station Information 
No Station 

No. 
Basin Lat Long Period NA** 

(%) 

1 156, 669 Sg. Sarawak 1.38 110.33 1960–2010 – 
2 156, 673 Lower Rajang 2.29 111.83 1960–2010 – 
3 156, 678 Kemena 3.16 113.03 1960–2010 – 
4 156, 684 Miri 4.32 113.99 1960–2010 – 

NA* = Missing value observed after imputation by using the nearest neighboring 
method. 
NA** = Temperature datasets has been subject to Berkeley Earth quality control 
procedures and adjustment. 

Table 2 
List of climate extreme indices used in this study (Frich et al., 2002; Karl et al., 
1999; Peterson et al., 2001).  

Indicator name Definitions Units 

TA Average temperature ◦C 
TX Maximum temperature ◦C 
TN Minimum temperature ◦C 
Max TX (TXx) Monthly maximum value of daily maximum 

temperature 

◦C 

Max TN (TNx) Monthly maximum value of daily minimum 
temperature 

◦C 

Min TX (TXn) Monthly minimum value of daily maximum 
temperature 

◦C 

Min TN (TNn) Monthly minimum value of daily minimum 
temperature 

◦C 

Cool nights (TN10p) Percentage of days when TN < 10th 
percentile 

Days 

Cool days (TX10p) Percentage of days when TX < 10th 
percentile 

Days 

Warm nights (TN90p) Percentage of days when TN > 90th 
percentile 

Days 

Warm days (TX90p) Percentage of days when TX > 90th 
percentile 

Days 

Warm spell duration index 
(WSDI) 

Annual count of days with at least 6 
consecutive days when TX > 90th 
percentile 

Days 

Cold spell duration index 
(CSDI) 

Annual count of days with at least 6 
consecutive days when TN < 10th 
percentile 

Days 

DTR Monthly mean difference between TX and 
TN 

◦C 

Max 1 day precipitation 
amount (Rx1day) 

Monthly maximum 1-day precipitation mm 

Max 5 day precipitation 
amount (Rx5day) 

Monthly maximum consecutive 5-day 
precipitation 

mm 

Simple daily intensity 
index (SDII) 

Annual total precipitation divided by the 
number of wet days (defined as rain ≥ 1.0 
mm) in the year 

mm/ 
day 

Number of heavy 
precipitation days (R10) 

Annual count of days when rain ≥ 10 mm Days 

Number of very heavy 
precipitation days (R20) 

Annual count of days when rain ≥ 20 mm Days 

Number of days above 27 
mm (Rnn) 

Annual count of days when rain ≥ nn mm, 
nn is user defined threshold 

Days 

Consecutive dry days 
(CDD) 

Maximum number of consecutive days with 
RR < 1 mm. 

Days 

Consecutive wet days 
(CWD) 

Maximum number of consecutive days with 
RR ≥ 1 mm 

Days 

Very wet days (R95p) Annual total prcp when RR > 95th 
percentile 

Days 

Extremely wet days (R99p) Annual total prcp when RR > 99th 
percentile 

mm 

Annual total wet-day 
precipitation 
(PRCPTOT) 

Annual total prcp in wet days (RR ≥ 1 mm) mm 

Number of tropical nights 
(TR) 

Annual count of days when TN (daily 
minimum temperature) > 20 ◦C. 

mm  
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statistic Z, is as follow, 

Var(S)=
n(n − 1)(2n+ 5) −

∑m

i=1
ti(ti − 1)(2ti + 5)

18
(3)  

where the data points number is denoted as n, the set with the same 
value of sample data of a tied number group denotes as m, and the 
number of the extended ties i, denotes as ti. Based on the positive or 
negative value of the normalized test statistic Z, increasing or decreasing 
trends are indicated. Significance level of 95% was used in the study to 
determine the significant change. Here, if |Z| > 1.96; and at 95% sig
nificance level, the null hypothesis of no trend is rejected. If |Z| > 1.645; 
and at 95% significance level, the null hypothesis of no trend is rejected. 

The de-trended series based on the ranking of the equivalent normal 
variants for the calculation of m-MK test were attained by using the 
following equation, 

Zi =φ− 1
(

Ri

n+ 1

)

for i= 1 : n (4)  

where the de-trended series is denote as Ri, time series length denote as 
n, and the inverse standard normal distribution function, with mean 
value of 0, and standard deviation of 1, is denote as φ− 1. 

The function of log likelihood in McLeod and Hipel (1978) was 
maximised to calculate the scaling coefficient or Hurst coefficient, H. 
When true H is 0.5, this assessment of H is assumed to be normally 
distributed in the uncorrelated case. The following equation is used to 
calculate the correlation matrix for H, 

Cn(H)=
[
ρ|j− i|

]
, for i= 1 : n, j= 1 : n (5)  

ρl =
1
2

(
|l+ 1|2H − 2|l|2H + |l − 1|2H

)
(6)  

where, for a given H, ρl is denoted as the autocorrelation function of lag l 
which for the constructed time series is independent from aggregation 
(Koutsoyiannis and Montanari, 2007). Subsequently, the calculated H 
can be obtained as follow, 

log L(H)= −
1
2

log|Cn(H)| −
Zτ[Cn(H)]

− 1Z
2γo

(7)  

Where the determinant of correlation matrix [Cn(H)] is denote as |Cn(H)|, 
the transpose vector of equivalent normal variates Z, [Cn(H)]

− 1 is denote 
as Zτ, the inverse matrix is [Cn(H)]

− 1, and the variance of zi is denote as 
γo. The maximum log L(H) is determined as the value of H for the time 
series xi. The value of H is solved in this study between 0.50 and 0.98 
with an increasing step of 0.01. When H = 0.5 (normal distribution), the 
mean (μH) and standard deviation (σH) can be used to computed the 5% 
significance level of H by using the equation provided by (Hamed, 2009) 
as follow, 

μH = 0.5 − 2.87n− 0.9067  

σn = 0.7765n− 0.5 − 0.0062 (8) 

If H is found to be statistically significant, the variance of S is ob
tained for given H as follow, 

V(S)H
′

=
∑

i<j
.
∑

k<l

2
π sin− 1

(
ρ|j − i| − ρ|i − l| − ρ|j − k| + ρ|i − k|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2 − 2ρ|i − j|)(2 − 2ρ|k − l|)

√

)

(9)  

Where V(S)H
′

is denote as the estimated bias by calculating ρl for a given 
H by using equation (6). On the other hand, the following equation (10) 
was used to calculate V(S)H, unbiased estimate, by multiplication of the 
bias correcting factor B, 

V(S)H =V(S)H
′

× B (10)  

where, B is a function of H as shown below, 

B= a0 + a1H + a2H2 + a3H3 + a4H4 (11) 

In equation (11), the sample size n are based on the function of the 
coefficients, a0, a1, a2, a3, and a4 (Hamed, 2008). As provided in the 
previous equation (2), V(S)H was replace with V(S) to determine the 
significance of the MK test. 

Kendall’s tau based slope estimator was used to calculate the 
magnitude of the observed trend at 95% significance level (Sen, 1968). 
Because of its robustness against the effect of outliers in time series, this 
estimator has been broadly used in hydro-meteorological studies (Zhang 
et al., 2005). All of the paired data are calculated to derive an estimate of 
the slope Q as follow, 

Qi =
xj − xk
j − k

, i = 1, 2,…N, j > k (12) 

N = n(n-1)/2 slope estimates Qi can be determine, if there are n 
values xj in the time series. The median of the values of N associated with 
Qi, is the slope estimated by Sen’s. These median of all slopes, are ranked 
from the lowest to the highest Qi based on the slopes value of N as follow, 

Qmed =

⎧
⎪⎨

⎪⎩

Q|(N+1)/2| if N is odd

Q|N/2| + Q|(N+2)/2|

2
if N is even

(13)  

4. Application results 

In Sarawak peatland, the highest annual rainfall was recorded in 
2008 at 4 355 mm (not shown) coincide with strong La Niña event 
(Arndt et al., 2010) and the lowest annual rainfall was recorded in 1972 
at 2 909 mm (not shown) coincide with strong El Niño event (Vose et al., 
2014). High amount and high intensity rainfall, occurring throughout 
the months of November to March characterized the NE monsoon, while 
a relatively prolonged dry period characterized the SW monsoon during 
the months of May to September (Dindang et al., 2013; Diong et al., 
2015). The NE and SW monsoon recorded annual mean of 1 697 mm and 
1 243 mm respectively with the highest monthly rainfall on the month of 
January at 395 mm and the lowest monthly rainfall on the month of July 
at 208 mm. During the inter-monsoon months of April and October, high 
spatial variability of rainfall happens due to the locally driven convec
tive activities (Joseph et al., 2008). Linear regression (not shown) 
showed that temperature is increasing for average temperature (TA), TX, 
and TN at annual rate of 0.0057 ◦C ranging between 25.8oC-27.2 ◦C, 
0.0026 ◦C ranging between 30.0oC-31.7 ◦C and 0.0088 ◦C ranging be
tween 21.5oC-23.3 ◦C respectively. Temperatures are increasing more at 
nights than during the days indicating an overall trend of decreasing 
DTR. 

ENSO events play a key role in governing the seasonal extremity of 
NE and SW monsoon across Sarawak. El Niño and La Niña are the 
extreme phases of the ENSO cycle. During El Niño, there is a warming of 
the ocean surface in the central and eastern tropical Pacific Ocean. Over 
the maritime continent which consists of Malaysia, Indonesia, New 
Guinea and the surrounding land and oceanic areas (including Sar
awak), the easterly wind weakens and rainfall tends to become reduced. 
Meanwhile, during La Niña there is a cooling of the ocean surface in the 
central and eastern tropical Pacific Ocean. On the contrary, there is a 
cooling of the ocean surface during La Niña causing the easterly wind to 
become stronger than normal along the equator and rainfall tends to 
increase across the maritime continent. It is widely known that during El 
Niño years, droughts tend to occur over the maritime continent (Gomyo 
and Kuraji, 2009). During the La Niña, heavy rainfall happens which 
usually leads to flooding. 

In Niño-3.4 area (5◦S‒5◦N, 170◦‒120◦W) where Sarawak was 
located, Niño-3.4 sea surface temperature (SST) anomaly reached a 
maximum during the DJF (December, January, February) warm phase 
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(La Niña) and JJA (June, July, August) cool phase (El Niño) of the ENSO 
(Rasmusson and Carpenter, 1982). Both of these ENSO events coincide 
with the NE and SW monsoon, respectively. It was found by Gomyo and 
Kuraji (2009) that ENSO-rainfall relationship during JJA give a stronger 
negative correlation in the Southwest of Sarawak whereas during DJF, a 
stronger negative correlation shifted northeastward of Sarawak. 
Therefore, as the ENSO event becomes more extreme due to climate 
change, the NE and SW monsoon which affect the local climate in Sar
awak is expected to become more extreme as well as it coincides with the 
maximum anomaly of the ENSO event. Juneng and Tangang (2005) 
suggested that the possible mechanism of such correlation can be asso
ciated with the anomalous cyclonic/anticyclonic circulation that stipu
lated to be a downstream response to the boomerang-shaped SST 
anomalies. These confirm the influence of decadal-scale climatic factors 
(ENSO) affecting the local climate which increase the extremity of high 
rainfall event during the NE monsoon (coincide with La Niña) and drier 
period during the SW monsoon (coincide with El Niño). 

An estimate of the auto-correlation function of a time series for 
annual (18 out of 47 grid point) as shown in Fig. 1, and monthly (all 47 
grid point) rainfall showed that there is significant positive serial auto- 
correlation which signify the influence of natural climate variability in 
the study area (Hyndman, 2015). Significant positive serial 
auto-correlation was also found for all grid points for annual and 
monthly TA time series. The results indicate a constant rate of increase 
in spatial and temporal autocorrelation over time for monthly rainfall, 
and for both annual and monthly TA across Sarawak tropical peatland 
due to climate change, which is similar in other studies (Barnston et al., 
2020; Di Cecco and Gouhier, 2018; Liu et al., 2019; Rousta et al., 2017). 
This could be caused by the substantial influence of regional climate 
upon exposure to different atmospheric conditions, as well as in-situ 
synoptic systems, such as Madden Julian Oscillation (MJO), ENSO, In
dian Ocean Dipole (IOD), Asian-Australian monsoon, and the localized 
land-sea breezes. There has been increases in ENSO-induced changes of 
the South China Sea which, during El Niño, increased the westward 
Luzon Strait through flow, thereby forcing a warmer surface water to 
flow into the northern Makassar Strait and subsequently pass through 
the north-western coast of Sarawak (Gordon et al., 2012). Consequently, 
the northern coastal peatland of Sarawak would be subject to higher 
natural climate variability than other regions which has been further 
confirmed by Gomyo and Kuraji (2009). Another recent study by Che 
Ros et al. (2016) also confirms that ENSO plays a key role that causes 
sudden increase in variability of long-term rainfall in Kelantan River 
basin. Break points in temperature time series also have been found by 
Suhaila and Yusop (2018) which possibly related to climatic factors, 
such as El Niño and La Niña events. Therefore, in addition to MK, there is 
a need to employ m-MK which is capable of distinguishing unidirec
tional trend with multi-scale variability due to the influence of climate 
variability. 

4.1. Rainfall data quality 

It has been observed that the selected rainfall stations in Sarawak 
were subject to missing values of less than 20%, discontinuities and 
different starting and end dates. Table 1 presents the rainfall records 
with missing values less than 6.7% after imputation through the nearest 
neighbor method. All the missing values were then filled afterwards by 
using RClimTool. A quality control (QC) log file was created for every 
station to document each change or acceptance of an outlier. The in
formation derive from the QC log file were percentage of data within and 
outside the predefine limits and range of mean and standard deviation, 
identifying the cases of TX lower than TN, percentage of days of tem
perature variation higher or equal than 10 ◦C, identifying equal data in a 
period of longer than five consecutive days and the presence of outliers. 
A preliminary report consists of graphical and descriptive analysis (Plot 
Charts, Graphs, Scatter plots or Boxplot) made by the application was 
also being assessed (result not shown). The double mass curve for the 

annual and monthly rainfall showed no breakpoint in the time series 
(not shown) which indicates good consistency of the rainfall data after 
imputation. The sequential student’s t-test was then applied to the 
different subsets of the time series data at each station for homogeneity 
evaluation by determining whether or not a potential shifting point 
exists between the imputed rainfall station and gridded-based Princeton 
time series. The acquired t-test statistics for all stations were found be
tween 0.71 and 0.90. As the critical t-values were much higher 
compared to the test statistics at 0.05 significance level, it can be 
concluded that potential discontinuity does not exist in the time series at 
any station after imputation. As a number of statistical, graphical, and 
descriptive analysis has been done for the imputed rainfall station 
datasets, the subsequent analysis can be done to validate gridded-based 
Princeton datasets. 

4.2. Validation of gridded-based data 

The time series, scatter plot and PDF of both station and gridded- 
based Princeton datasets of rainfall and temperature was compared to 
show the efficacy of the Princeton datasets in capturing and simulating 
the local climate (Fig. 2). The detail on the statistical performance 
evaluation is presented in Table 3. The time series showed a high cor
relation of 0.84 (rainfall) and 0.83 (temperature). The shape of the PDF 
does not vary, showing a high associative probability between the 
datasets, with slightly higher kurtosis of Princeton rainfall data and 
slightly lower kurtosis of Princeton temperature data. In addition, the 
performance of the statistical analysis based on the various methods 
(Section 3.2) has been taken into consideration that the plots show a 
considerably good match. The R2 and MD values were found at 0.71 and 
0.72 respectively for rainfall, while 0.69 and 0.72 respectively for 
temperature which indicate there is less error variance. The NSE value 
for rainfall and temperature is 0.70 and 0.68 respectively while VE was 
found at 0.83 and 0.99. PBIAS was 5.1 and − 0.1 for rainfall and tem
perature respectively and NRMSE was 55.1 for rainfall and 56.3 for 
temperature. Negative PBIAS was observed for temperature indicates 
only a slight overestimation of the extreme temperature event. The low 
errors and biases and near to 1 values of NSE, MD, R2 and VE suggest the 
promising capability of Princeton data sets in replicating the daily 
rainfall and temperature of Sarawak peatland. Some inherent differ
ences between datasets are to be expected because the datasets vary in 
their representation of coastal areas. Keeping in mind that the station’s 
data was spatially less homogeneous than gridded-based datasets and 
has low representation along the coastline has caused the inherent dif
ferences between the datasets. In addition, high climate heterogeneity in 
rainfall and temperature was also observed in both space and time for 
station data. 

4.3. Spatiotemporal distribution of seasonal trend 

The results for the annual, regional average and monsoonal (NE and 
SW monsoons) trend of extreme climate in Sarawak peatland based on 
MK and m-MK at 95% significance level are shown in Table 4. The 
annual trend was assessed to revealed the annual changes of the extreme 
climate in relation with the annual and inter-annual influence of the 
climate phenomena. In addition, to get a general and broader view of 
trends across Sarawak peatland, the regional average trend was calcu
lated based on the mean of 47 grid points for each extreme climate 
index. As monsoon play a major role in regulating the regional climate in 
a year over Sarawak, the changes in trend for both monsoon was also 
assessed. The table showed the number of grid points for each climate 
extreme indices that showed either significant increasing/decreasing 
(±) across Sarawak tropical peatland were detected under MK and m- 
MK trend test. 

No significant change was detected by using m-MK test for regional 
trend, and a lower number of significant changes for annual and 
monsoonal trend was observed under m-MK test compared to MK test as 
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shown in Table 2. For the annual trend, both a significant increasing and 
decreasing trend was observed for extreme rainfall and temperature for 
23 indices (MK) and 13 indices (m-MK). However, a significant reduc
tion of the number of indices with significant trend was found under the 
m-MK test. Under m-MK test, there are only 11 indices with increasing 
trend (CDD, CSDI, CWD, R10, R20, Rnn, TN90p, TNn, TNx, WSDI and 
TR) and 7 indices with decreasing trend (CSDI, DTR, R10, Rnn, TN10p, 
WSDI and TR). Meanwhile, CSDI, R10, Rnn, WSDI and TR were showing 
both increasing and decreasing trends. 

This is due to the capability of the m-MK test in removing the effect of 
serial auto-correlation due to the influence of high climate variability 
found in the time series. Ahmed et al. (2022) also found lower significant 
changes in long-term rainfall over India, observed under m-MK test 
compared to MK test. Another study by Rana et al. (2022) also showed 
no significant trend under m-MK test at the Chamoli and Pithoragarh 
district rainfall station in Uttarakhand, India that showed autocorrela
tion in annual rainfall and rainy days. These stations otherwise showed 
significant changes under the MK test. Longobardi and Boulariah (2022) 
also found a large difference in significant trend between MK and m-MK 
test with 80% and 73% respectively in inter-annual variability of pre
cipitation in the Campania Region, Southern Italy. They also conclude 
that the m-MK test identifies a reduced number of stations displaying a 

significant trend, highlighting the potential effect of autocorrelation in 
the data that the MK does not account for. Therefore, for spatial analysis 
in this study, extreme climate results based on m-MK test which can 
discriminate the serial auto-correlation in the time series were further 
discussed between the NE and SW monsoon to evaluate the real impact 
of climate change. 

In general, the NE (November to March) and SW (May and 
September) monsoons have a significant seasonal effect on the devel
opment of weather patterns in Borneo, shaping local and regional at
mospheric convection (Sa’adi et al., 2021). For seasonal trends, 18 and 
22 indices were significant under MK test for both NE and SW monsoon, 
respectively. However, a lower number of indices and grid points 
showing significant changes under m-MK test compared to MK test, 
emphasized that without removing the effect of serial auto-correlation, 
there will be exaggeration of changes in climatic trend. Hence, the 
spatial mapping of the extreme climate indices which only reveal sig
nificant trends under m-MK test will be discussed and are shown in Fig. 3 
(NE monsoon) and Fig. 4 (SW monsoon). 

DTR showed a higher distribution of significant decreasing trend 
during the NE monsoon (7 grid) compared to SW monsoon (5 grid) at the 
central-coastal region as temperature at night warms more than during 
the day. The results were concurrent with a significantly increasing 
trend of extreme minimum temperature indices of TNn and TN90p in 
these regions. This suggests that the DTR is decreasing in the central- 
coastal region during the NE monsoon. Other studies also found a 
decreasing DTR due to climate change. For example, Qu et al. (2014) 
found a steady decrease of annual DTR in the United States over the past 
decades. Based on the newly developed China Meteorological Admin
istration–Land Surface Air Temperature (CMA-LSAT) dataset employed 
by Sun et al. (2019), there is a large significant decrease in global land 
DTR from 1951 to 2014. In Sarawak, there is an inverse relationship 
between DTR and monsoon rainfall throughout the year. As extreme 

Fig. 2. Scatter plot and PDF of (a) monthly areal average of rainfall vs gridded-based Princeton dataset and (b) Miri temperature station with the nearest corre
sponding Princeton grid point for the period of 1973–2010 (rainfall) and 1960–2010 (TA) in Sarawak peatland. The selected Princeton grid points are based on Fig. 1. 

Table 3 
Statistical performance results for the validation of the monthly areal average of 
rainfall vs gridded-based Princeton dataset and Miri temperature station with 
the nearest corresponding Princeton grid point for the period of 1973–2010 
(rainfall) and 1960–2010 (TA) in Sarawak peatland.   

R2 MD NSE VE PBIAS 

Rainfall 0.71 0.72 0.7 0.83 5.1 
Temperature (Miri Station) 0.69 0.72 0.68 0.99 − 0.1  
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climates have been altered due to climate change, the regional clima
tological features including DTR are decreasing more, forming a stron
ger inverse relationship with rainfall (Beule and Tantanee, 2014; Kim 
and Bae, 2021). The stronger inverse relationship might be due to 
increased evaporation at night as temperature rises, producing more 
cloudy nights and rainfall (Qu et al., 2014). Decreasing DTR is becoming 
a concern for wildlife conservation as it may cause some 
climate-sensitive animals and plants to shift their distribution and even 
loss of population due to the changing physiological limits (Scheffers 
et al., 2014). 

Low intensity rainfall (R10) was found to significantly increase at the 
south and northern region for NE (14 grid) and SW (17 grid) monsoon, 
although more homogeneous and regionally localized distribution was 

found during SW monsoon. This indicates that due to climate change, 
low rainfall distribution has become more sporadic and distributed over 
the years across tropical peatland of Sarawak. However, there is a dif
ference in terms of high intensity rainfall (R20 and Rnn) spatial distri
bution between the NE and SW monsoon. High intensity rainfall (R20) 
showed higher distribution of significant increasing trend during the SW 
monsoon (30 grid) than NE monsoon (17 grid). The significant changes 
were found across all regions during SW monsoon, while changes were 
found to be concentrated at the central-coastal region during NE 
monsoon. The results indicate that a relatively drier period of SW 
monsoon will received rain in the form of higher intensity rainfall across 
the tropical peatland of Sarawak, providing a relief for water avail
ability, storage, and recharge for natural ecosystem and agricultural 

Table 4 
Trend results for extreme climate in Sarawak peatland. Significant increasing and decreasing trends was represented by (+) and (− ), respectively.  

No Indices Annual Regional average NE SW 

MK m-MK MK m-MK MK m-MK MK m-MK 

1 CDD  5(+)       
2 CSDI 9(+), 1(− ) 5(+), 5(− )       
3 CWD  8(+)       
4 DTR 27(− ) 2(− ) –  26(− ) 7(− ) 26(− ) 5(− ) 
5 PRCPTOT 2(+)    13(+)  3(− )  
6 R10 25(+), 3(− ) 15(+), 1(− ) + 31(+), 1(− ) 14(+), 1(− ) 4(+) 17(+), 1(− ) 
7 R20 17(+), 1(− ) 21(+)    17(+) 29(+) 30(+), 3(− ) 
8 Rnn 18(+), 1(− ) 21(+), 1(− )   1(+) 10(+) 32(+), 3(− ) 22(+), 2(− ) 
9 R95p 13(− )    2(− )  3(− ) 1(− ) 
10 R99p 12(− )      1(− )  
11 Rx1day 8(− )  –  23(− )  30(− )  
12 Rx5day 3(− )      17(− )  
13 SDII 6(− )      19(− ) 1(− ) 
14 TA 46(+)  + 43(+)  47(+)  
15 TX 27(+)    7(+)  29(+)  
16 TN 47(+)  + 44(+)  46(+)  
17 TN10p 26(− ) 1(− ) –  37(− )  40(− )  
18 TN90p 21(+), 2(− ) 11(+) + 46(+)  47(+) 3(+) 
19 TNn 14(+) 6(+)   30(+) 10(+) 36(+)  
20 TNx 47(+) 16(+) + 47(+)  47(+)  
21 TX10p     4(− )  29(− )  
22 TX90p 1(− )    2(+)  23(+)  
23 TXn 15(+)  + 6(+)  34(+) 1(+) 
24 TXx 16(+)    21(+)  8(+)  
25 WSDI 1(+), 1(− ) 6(+), 6(− )       
26 TR 18(+), 4(− ) 12(+), 1(− ) + 44(+)  47(+)  

MK = Mann-Kendall test; m-MK = modified Mann-Kendall test; NE = Northeast monsoon; SW = Southwest monsoon. 

Fig. 3. NE monsoon trend for DTR, R10, R20, Rnn and TNn for the period of 1948–2016 under m-MK test at 95% significance level. Increasing and decreasing trends 
were represented by (+) and (− ), respectively. 
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activity. However, a high intensity rainfall at the central-coastal region 
during NE monsoon might worsen the flood condition that has been 
frequently recorded in the area (Asmat et al., 2021; Yiiong and Bundan, 
2018). Similarly, very high intensity rainfall (Rnn) was found to be more 
significantly increased and widespread across Sarawak peatland during 
the SW monsoon (22) than NE monsoon (10). Increases in high rainfall 
intensity were found to be similar within other regions in Malaysia. For 
example, Mayowa et al. (2015) showed a significant increase in annual 
rainfall as well as rainfall during the monsoon on Peninsular Malaysia’s 
east coast. 

The monthly minimum value of minimum temperature (TNn) was 
found to significantly increase at the south (10 grid) during NE monsoon 
which might explain the increasing intensity of rainfall due to increased 
rate of evapotranspiration forming a cloudy night leading to rainfall 
event. Rainfall projection by Hussain et al. (2017) also suggested an 
increased rainfall over the southern and central-coastal region of Sar
awak. Another study by (Hussain et al. (2015) also found an increasing 
projected rainfall over the northern region of Sarawak by using Statis
tical Downscaling Model (SDSM). Increase rainfall in these area during 
the NE monsoon might be due to increase influence of the ENSO-related 
rainfall anomalies associated to the seasonal modulation of the boreal 
summer intraseasonal oscillation, MJO activity and Borneo vortex 
genesis (Gomyo and Kuraji, 2009; Kurita et al., 2018). 

On the contrary, a significant decreasing trend (1 grid) of percentile- 
based indices (R95p) was found during the SW monsoon as drier seasons 
become more extreme in the south. A stronger decreasing pattern of 
rainfall during the SW monsoon might explain the finding by Hin et al. 
(2009) which found a decreasing pattern of annual rainfall in Sarawak 
river located in southern Sarawak. Another study by Chiew et al. (2013) 
also found a decreasing trend of peak discharge in Sarawak river, indi
cating a decreasing rainfall pattern in the south of Sarawak. Rainfall 
intensity (SDII) was also found to significantly decrease at the 

central-coastal region (1 grid) during the SW monsoon. The distinct 
difference between increased rainfall during the NE monsoon and 
decreasing rainfall during the SW monsoon based on certain extreme 
climate indices in this study showed the importance of the monsoon in 
modulating the local climate. This difference would otherwise cannot be 
revealed based on the annual temporal pattern alone. 

The upper end of percentile-based minimum temperature (TN90p) 
showed a significant increasing trend (3 grid) in the central-coastal re
gion which might explain the increased intensity of rainfall (R20 and 
Rnn) in these regions due to increasing rate of evapotranspiration at 
night. Night-time warming may significantly decrease the oil palm and 
agricultural production in the central-coastal region of Sarawak tropical 
peatland (Zhang et al., 2021). However, increased intensity of rainfall 
(R20 and Rnn) may offset the negative effect of night-time warming. 
Meanwhile, the monthly minimum value of maximum temperature 
(TXn) was found to significantly increase (1 grid) in the north which 
might similarly cause higher rainfall intensity (R20 and Rnn) in these 
regions but during the day-time. Most of the extreme temperature 
indices have been found to increase across the world. A study by De 
Longueville et al. (2016) also found an increasing TN90P in Burkina 
Faso, showing night-time temperature is increasing more than day-time 
temperature. Another study by Sheikh et al. (2015) also found a sig
nificant increasing trend of TXn in Nepal and Pakistan. However, there is 
a mixed finding on the relationship between increased temperature and 
rainfall across the world with some regions showing increased rainfall 
and decreasing rainfall over another region (Sheikh et al., 2015). As 
there is a different large scale climate influence affecting the 
coastal-central region and the northern region of Sarawak, the 
increasing rainfall pattern during the relatively drier SW monsoon in the 
central-coastal and northern region of Sarawak might be due to the 
ENSO-related rainfall anomalies associated to the seasonal modulation 
of the boreal summer intraseasonal oscillation and MJO activity and 

Fig. 4. SW monsoon trend for DTR, R10, R20, Rnn, R95p, SDII, TN90p and TXn for the period of 1948–2016 under m-MK test at 95% significance level. Increasing 
and decreasing trends were represented by (+) and (− ), respectively. 
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Borneo vortex genesis (Gomyo and Kuraji, 2009; Kurita et al., 2018). 
Overall, although rainfall intensity (SDII) was found to be decrease 
(significant at one grid point during the SW monsoon) across Sarawak 
peatland, certain indices of extreme rainfall showed that rainfall in
tensity (R10, R20, Rnn) has significantly increases either at night or day, 
due to significant changes of TX and TN. 

The results for the seasonal trend were distinct from the annual trend 
which emphasized the importance of the monsoon in modulating the 
climate over Sarawak. It showed that the homogeneous climate pattern 
which characterized each of the monsoon with higher rainfall (NE 
monsoon) and drier period (SW monsoon) need to be evaluated sepa
rately to reveal the trend. Therefore, a clear picture of the climate over 
the region can only be properly derived based on the monsoon to un
derstand the changes of the intensity and duration of the extreme 
climate over the region. The result also showed high spatial variability in 
terms of geographical distribution of significant trend depended on the 
indices. 

5. Discussion 

Present study showed that changes of extreme climate under the 
influence of climate change being detected under m-MK test have a 
lower number of significant changes compared to the MK test. It was 
expected that the high number of significant changes that was detected 
by employing MK test might be due to the effect of high climate vari
ability in the time series. By removing the persistence of serial auto- 
correlation in the time series due to climate variability, m-MK test can 
be used to comparatively confirm the significant changes being detected 
by MK test. 

The results suggest that significant changes in rainfall due to sig
nificant increase in temperature either at night and/or day will play a 
major role in modulating the extremity of the changing climate in Sar
awak peatland. Higher rainfall intensity during the NE monsoon in
dicates that Sarawak peatland will be at risk of flood and inundation for 
a longer period than usual as peatland becomes saturated. This might 
affect the productivity of the agricultural land in the area. On the other 
hand, higher rainfall intensity during the SW monsoon does not mean 
that there will be more water available during the drier season. This is 
due to the amount of rain that falls intensely within a shorter period 
might not be able to compensate for higher temperature changes 
throughout the season, which may nevertheless, increase the fire risk. 
However, depending on the structural capability and management 
practice, it also can be argued that significant changes of extreme 
rainfall (R10, R20 and Rnn) being observed during the SW monsoon may 
have a profound effect on forest growth and agricultural productivity. 
Feher et al. (2017) reported that a slight change in extreme rainfall is 
expected to trigger relatively large changes in canopy growth. The 
availability of water through rainfall would help enhance rooting ac
tivity and growth of the plants, thus increasing productivity (Silins and 
Rothwell, 1998). Peat accumulation will also increase due to the inun
dation caused by higher water table and subsequently lower soil respi
ration in the area is expected as peat moisture content increases (van 
Huissteden et al., 2006). 

Rainfall characteristics and trends may become more significant in 
the near future in conjunction with the increasing temperature as the 
optimum evaporation can be translated into rainfall. Increased air 
moisture may change rainfall behaviors in different ways, such as 
changes in daily intensity, seasonal distribution and inter-annual vari
ability (IPCC, 2014). However, more investigation will be needed to 
project the future extreme climate pattern affecting the region. The in
crease in the number of hot days and warm nights, and the decrease in 
number of cool days and cool nights were observed in Sarawak peatland 
which is similar with a number of previous studies (IPCC, 2014; Manton 
et al., 2001; Tangang et al., 2006). The extremity of TN which increases 
more than TX, signifies an overall decreasing trend of DTR particularly 
in the central-coastal region. The results are similar as reported by Donat 

et al. (2013) that presented both daily TX and daily TN have turned out 
to be higher over the past years, but at different degrees: greater for TN 
than for TX values. Crop yield in peatland is expected to decline due to 
increased night time temperature because respiration losses as crop 
photosynthesis were sensitive to temperature changes (Peng et al., 
2004). 

It was also found that there is high spatio-temporal variability on 
how the extreme climate has changed across various regions in Sarawak. 
For example, under m-MK test, although most of the grid points showed 
a significant increasing trend for R10, R20 and Rnn during the SW 
monsoon, there is also a significant decreasing trend being detected. 
This spatial heterogeneity on the regional scale might be due to complex 
topography, land cover and irregular land masses across the island. 
Besides, there are various other climatic events such as Borneo Vortex, 
MJO, IOD and Asian-Australian Monsoon which affect various regions of 
Sarawak differently. The timing and intensity of these events over Sar
awak may vary from region to region. Such that Borneo Vortex occur
rence has a bigger impact in the Southwest region of Sarawak, while 
ENSO has a bigger impact in the Northwest region. Besides, complex 
topography and land cover might also play a key role in determining the 
local climate. Harrison (2005) reported that 1997–98 El Niño-induced 
severe droughts were reported in southern Borneo in September 1997 
but they occurred in early 1998 in northern and eastern Borneo. How
ever, due to station data limitation, no comprehensive study has been 
done to confirm the extent of the regional climate variability across 
Borneo and Sarawak in particular. Our results showed that within a finer 
regional scale, high spatio-temporal climate variability may persist. 
Therefore, further study will be needed to assess and confirm whether 
complex topography, land cover and certain climate events may influ
ence the local climate. 

The extreme rainfall and temperature trend in Sarawak peatland has 
changed and is expected to magnify in the coming decades. It is inferred 
that certain area of the peatland region will become drier due to 
increased evaporation and water loss cause by significant increasing 
trend of hot days (northern Sarawak) and warm nights (central-coastal 
region). Thus, it is crucial to devise a plan for water retention that can 
cater for extreme rainfall that falls within a shorter period in these area. 
Nonetheless, further works need to be done to clarify how the change in 
temperature might drive spatio-temporal changes in evaporation and 
water loss in a highly variable tropical climate. Increasing rates of soil 
respiration and decomposition will happen as the water table becomes 
lower with the increased intensity and frequency of the extreme tem
perature especially during the dry period. A more distinct seasonal 
pattern in the depth of the water table is expected as SW monsoon be
comes drier than NE monsoon. Increasing temperature also means 
increasing decomposition rates of soil organic matter which subse
quently increase the carbon release into the atmosphere. Increasing rate 
of respiration influenced by increasing extreme temperature is expected 
to occur in the peatland ecosystem which has denser decomposing litter 
layers. Peat moisture content is expected to decrease which can be 
correlated with an increase in peat decomposition as microbial activity 
increases (Davidson et al., 1998). Relative humidity would decline as 
extreme temperature increases significantly which would result in the 
higher rates of soil respiration. Thus, a decline in humidity would reduce 
the photosynthetic rate and plant productivity by depressing the 
response of stomatal opening to CO2 (Talbott et al., 2003). In the coming 
years, the significant increasing trends of the extreme rainfall and 
temperature might magnify its role in determining soil temperature and 
soil respiration rates regardless of the type of ecosystem (van Huissteden 
et al., 2006). 

It is expected that the peatland area which receives more rainfall will 
have a higher water table and the rate of decomposition will be inhibited 
as the production of peat will exceed its decay causing peat to accu
mulate (Cobb et al., 2017). On the contrary, peatland areas that receive 
less rainfall and are subject to high temperature will have lower water 
table whereas aerobic decomposition will increase and release carbon 
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(Cobb et al., 2017). By understanding the climatic trend over the peat
land, we can devise a better water control system by conserving the 
water at the area prone to prolonged dry periods and systematically 
releasing the water at the area that receives intense rainfall. 

6. Conclusion 

The extreme climate trend based on the ETCCDI indices have been 
examined for extreme rainfall and temperature at 47 spatially homo
geneous grid points in Sarawak peatland for the long-term historical 
period of 68-years from 1948 to 2016. The high spatio-temporal reso
lution of gridded-based Princeton climate data that was used to derive 
the extreme climate indices and trend in this study have not been used 
before in Borneo, particularly in Sarawak. The Princeton climate data 
provide homogeneously detailed analysis of extreme climate informa
tion across the region compared to station data and give higher confi
dence in the veracity of the reported trend. The application of RClimtool 
in choosing and testing of station data has facilitated the performance of 
quality control, filling missing data, homogeneity analysis and statistical 
analysis for the daily time series of rainfall and temperature. On the 
other hand, RClimDex offers a friendly graphical user interface to 
compute all selected 25 core climate change indices defined by ETCCDI. 

The results obtained for the trend of extreme climate give evidence 
that global warming is not always observed everywhere spatially or 
temporally, because contrasting trends linked to specific local features 
can be deduced. Nevertheless, the trends observed under m-MK test 
which confirm the significant changes under MK test could have po
tential impacts on several biological and environmental sectors, in 
particular on biodiversity, forestry and agriculture. Extension of this 
approach to other parts of the world and ecosystem, where little is 
currently known regarding trends in extremes, would be valuable. 
Further study should be made to investigate and confirm the possible 
causes of the observed trends in extremes. The study is limited in terms 
of employing rainfall and temperature as the main input for extreme 
climate assessment. Therefore, other bioclimatic and environmental 
indices employing more input parameters that can assess climate impact 
on the environment and species range can also be explored (Amiri et al., 
2020; Noce et al., 2020). The study can be extended to other tropical 
peatland regions in Southeast Asia to improve the understanding and 
relationship between the impact of climate extreme on this particularly 
sensitive ecosystem. In addition, there is also a number of gridded-based 
datasets with a good selection of climate parameters that can be 
employed for comparison with the current study such as ERA, 
APHRODITE, MERRA, TRMM, UDel, and GPCC among others, to 
improve the spatiotemporal resolution of the output. The relationship 
between GHG emission such as carbon dioxide, methane, and Nitrous 
oxide with the change in extreme climate affecting the tropical peatland 
due to climate change will be important for future carbon accounting in 
the region. Higher confidence in the certainty of future projection for 
extreme climate also could be subsequently pursued in future works. 
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Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/ 
10.1127/0941-2948/2006/0130. 

Koutsoyiannis, D., Montanari, A., 2007. Statistical analysis of hydroclimatic time series: 
uncertainty and insights. Water Resour. Res. 43 https://doi.org/10.1029/ 
2006wr005592. 

Kozan, O., 2020. Trend analysis of rainfall characteristics in the kemena and tatau river 
basins, Sarawak. Adv. Asian Human-Environmental Res. 71–83. https://doi.org/ 
10.1007/978-981-13-7513-2_4. 

Kreitmeier, S., Wokaun, A., Büchi, F.N., Watts, J.D., Natali, S.M., Carlson, K.M., 
Goodman, L.K., May-Tobin, C.C., 2015. Modeling relationships between water table 
depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 
74006 https://doi.org/10.1088/1748-9326/10/7/074006. 

Krishnan, M.V.N., Prasanna, M.V., Vijith, H., 2018. Statistical analysis of trends in 
monthly precipitation at the limbang river basin, Sarawak (NW Borneo), Malaysia. 
Meteorol. Atmos. Phys. 1314 (131), 883–896. https://doi.org/10.1007/S00703-018- 
0611-8, 2018.  

Kurita, N., Horikawa, M., Kanamori, H., Fujinami, H., Kumagai, T., Kume, T., 
Yasunari, T., 2018. Interpretation of El Niño–Southern Oscillation-related 
precipitation anomalies in north-western Borneo using isotopic tracers. Hydrol. 
Process. 32, 2176–2186. https://doi.org/10.1002/HYP.13164. 

Lacombe, G., Hoanh, C.T., Smakhtin, V., 2012. Multi-year variability or unidirectional 
trends? Mapping long-term precipitation and temperature changes in continental 
Southeast Asia using PRECIS regional climate model. Clim. Change 113, 285–299. 
https://doi.org/10.1007/s10584-011-0359-3. 

Lacombe, G., McCartney, M., 2014. Uncovering consistencies in Indian rainfall trends 
observed over the last half century. Clim. Change 123, 287–299. https://doi.org/ 
10.1007/S10584-013-1036-5/FIGURES/3. 

Z. Sa’adi et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2212-0947(23)00007-5/sref21
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref21
https://doi.org/10.1046/j.1365-2486.1998.00128.x
https://doi.org/10.1046/j.1365-2486.1998.00128.x
https://doi.org/10.1002/JOC.4640
https://doi.org/10.1175/jcli-d-11-00004.1
https://doi.org/10.1175/jcli-d-11-00004.1
https://doi.org/10.1038/s41598-018-33217-0
https://doi.org/10.1038/s41598-018-33217-0
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref26
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref26
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref26
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref27
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref27
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref27
https://doi.org/10.1016/j.landusepol.2017.09.035
https://doi.org/10.1016/j.landusepol.2017.09.035
https://doi.org/10.1002/2014JG002796
https://doi.org/10.1002/2014JG002796
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1002/jgrd.50150
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref31
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref31
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref31
https://doi.org/10.1007/s00704-014-1120-4
https://doi.org/10.1002/ecs2.1956
https://doi.org/10.1590/s0102-77862014000100003
https://doi.org/10.1590/s0102-77862014000100003
https://doi.org/10.3354/cr019193
https://doi.org/10.3354/cr019193
https://doi.org/10.1016/J.ASEJ.2021.09.001
https://doi.org/10.1016/J.ASEJ.2021.09.001
https://doi.org/10.1088/1748-9326/AAFF7E
https://doi.org/10.1088/1748-9326/AAFF7E
https://doi.org/10.2151/sola.2009-011
https://doi.org/10.2151/sola.2009-011
https://doi.org/10.1029/2012gl052021
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref40
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref40
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref40
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref41
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref41
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref41
https://doi.org/10.1016/j.jhydrol.2008.11.024
https://doi.org/10.1016/j.jhydrol.2008.11.024
https://doi.org/10.1016/j.jhydrol.2007.11.009
https://doi.org/10.1016/j.jhydrol.2007.11.009
https://doi.org/10.3390/CLI10030044
https://doi.org/10.3390/CLI10030044
https://doi.org/10.1002/joc.3711
https://doi.org/10.1002/joc.3711
https://doi.org/10.1007/0-387-27161-9_5
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref47
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref47
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref47
https://doi.org/10.1002/JOC.4739
https://doi.org/10.1002/JOC.4739
https://doi.org/10.1016/J.SCITOTENV.2022.159701
https://doi.org/10.1016/J.SCITOTENV.2022.159701
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref50
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref50
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref50
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref51
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref51
https://doi.org/10.2495/WRM150231
https://doi.org/10.2495/SDP-V12-N8-1299-1311
https://doi.org/10.2495/SDP-V12-N8-1299-1311
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref54
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref55
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref55
http://refhub.elsevier.com/S2212-0947(23)00007-5/sref55
https://doi.org/10.1016/j.atmosres.2021.105525
https://doi.org/10.1038/ngeo331
https://doi.org/10.1029/2008jd010319
https://doi.org/10.1029/2008jd010319
https://doi.org/10.1007/s00382-005-0031-6
https://doi.org/10.1007/s00382-005-0031-6
https://doi.org/10.1007/978-94-015-9265-9_2
https://doi.org/10.1007/978-94-015-9265-9_2
https://doi.org/10.1016/J.ATMOSRES.2017.09.002
https://doi.org/10.1016/J.ATMOSRES.2017.09.002
https://doi.org/10.1007/s00704-018-2520-7
https://doi.org/10.1029/2021EA001701
https://doi.org/10.1029/2021EA001701
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1029/2006wr005592
https://doi.org/10.1029/2006wr005592
https://doi.org/10.1007/978-981-13-7513-2_4
https://doi.org/10.1007/978-981-13-7513-2_4
https://doi.org/10.1088/1748-9326/10/7/074006
https://doi.org/10.1007/S00703-018-0611-8
https://doi.org/10.1007/S00703-018-0611-8
https://doi.org/10.1002/HYP.13164
https://doi.org/10.1007/s10584-011-0359-3
https://doi.org/10.1007/S10584-013-1036-5/FIGURES/3
https://doi.org/10.1007/S10584-013-1036-5/FIGURES/3


Weather and Climate Extremes 40 (2023) 100554

14

Leong Tan, M., Samat, N., Chan, N.W., Lee, A.J., Li, C., 2019. Analysis of Precipitation 
and Temperature Extremes over the Muda River Basin. https://doi.org/10.3390/ 
w11020283. Malaysia.  

Liu, D., Zhao, Q., Guo, S., Liu, P., Xiong, L., Yu, X., Zou, H., Zeng, Y., Wang, Z., 2019. 
Variability of spatial patterns of autocorrelation and heterogeneity embedded in 
precipitation. Nord. Hydrol 50, 215–230. https://doi.org/10.2166/NH.2018.054. 

Llanos-Herrera, L., 2014. RClim Tool: User Manual and Video. 
Longobardi, A., Boulariah, O., 2022. Long-term regional changes in inter-annual 

precipitation variability in the Campania Region. Southern Italy. Theor. Appl. 
Climatol. 148, 869–879. https://doi.org/10.1007/S00704-022-03972-2/FIGURES/ 
7. 

Mallick, J., Salam, R., Islam, H.M.T., Shahid, S., Kamruzzaman, M., Pal, S.C., Bhat, S.A., 
Elbeltagi, A., Rodrigues, T.R., Ibrahim, S.M., Islam, A.R.M.T., 2022. Recent changes 
in temperature extremes in subtropical climate region and the role of large-scale 
atmospheric oscillation patterns. Theor. Appl. Climatol. 148, 329–347. https://doi. 
org/10.1007/S00704-021-03914-4/FIGURES/7. 

Manton, M.J., Della-Marta, P.M., Haylock, M.R., Hennessy, K.J., Nicholls, N., 
Chambers, L.E., Collins, D.A., Daw, G., Finet, A., Gunawan, D., Inape, K., Isobe, H., 
Kestin, T.S., Lefale, P., Leyu, C.H., Lwin, T., Maitrepierre, L., Ouprasitwong, N., 
Page, C.M., Pahalad, J., Plummer, N., Salinger, M.J., Suppiah, R., Tran, V.L., 
Trewin, B., Tibig, I., Yee, D., 2001. Trends in extreme daily rainfall and temperature 
in Southeast Asia and the South pacific: 1961-1998. Int. J. Climatol. 21, 269–284. 
https://doi.org/10.1002/joc.610. 

Matsuura, K., Willmott, C.J., 2012. Terrestrial Precipitation: 1900–2010 Gridded 
Monthly Time Series (Version 3.02). Cent. Clim. Res. Univ. Delaware, Newark, DE.  

Mayowa, O.O., Pour, S.H., Shahid, S., Mohsenipour, M., Harun, S.B.I.N., Heryansyah, A., 
Ismail, T., 2015. Trends in rainfall and rainfall-related extremes in the east coast of 
peninsular Malaysia. J. Earth Syst. Sci. 124, 1609–1622. https://doi.org/10.1007/ 
s12040-015-0639-9. 

Mckee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and 
duration to time scales. AMS 8th Conf. Appl. Climatol. 179–184. 

McLeod, A.I., Hipel, K.W., 1978. Preservation of the rescaled adjusted range: 1. A 
reassessment of the Hurst Phenomenon. Water Resour. Res. 14, 491–508. https:// 
doi.org/10.1029/wr014i003p00491. 

Mezbahuddin, S., Nikonovas, T., Spessa, A., Grant, R., Imron, M., 2022. Modelling Large- 
Scale Seasonal Variations in Water Table Depth over Tropical Peatlands in Riau, 
Sumatra. Authorea Prepr. https://doi.org/10.1002/ESSOAR.10501280.1. 

Miettinen, J., Shi, C., Liew, S.C., 2017. Fire distribution in peninsular Malaysia, Sumatra 
and Borneo in 2015 with special emphasis on peatland fires. Environ. Manag. 60, 
747–757. https://doi.org/10.1007/S00267-017-0911-7/FIGURES/6. 

Mishra, A., Liu, S.C., 2014. Changes in precipitation pattern and risk of drought over 
India in the context of global warming. J. Geophys. Res. Atmos. 119, 7833–7841. 
https://doi.org/10.1002/2014jd021471. 

Najib, M.K., Nurdiati, S., Sopaheluwakan, A., 2022. Copula-based joint distribution 
analysis of the ENSO effect on the drought indicators over Borneo fire-prone areas. 
Model. Earth Syst. Environ. 8, 2817–2826. https://doi.org/10.1007/S40808-021- 
01267-5/FIGURES/5. 

Nashwan, M.S., Ismail, T., Ahmed, K., 2019. Non-stationary analysis of extreme rainfall 
in peninsular Malaysia. J. Sustain. Sci. Manag 14, 17–34. 

Nashwan, M.S., Shahid, S., 2019. Spatial distribution of unidirectional trends in climate 
and weather extremes in Nile river basin. Theor. Appl. Climatol. 137, 1181–1199. 

Navidi Nassaj, B., Zohrabi, N., Nikbakht Shahbazi, A., Fathian, H., 2022. Evaluating the 
performance of eight global gridded precipitation datasets across Iran. Dynam. 
Atmos. Oceans 98, 101297. https://doi.org/10.1016/J.DYNATMOCE.2022.101297. 

Ng, C.Y., Jaafar, W.Z.W., Mei, Y., Othman, F., Lai, S.H., Liew, J., 2022. Assessing the 
changes of precipitation extremes in peninsular Malaysia. Int. J. Climatol. https:// 
doi.org/10.1002/JOC.7684. 

Ngau, L.D., Fong, S.S., Khoon, K.L., Rumpang, E., Vasander, H., Jauhiainen, J., Yrjälä, K., 
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