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Abstract: The potential of four different neuro-fuzzy embedded meta-heuristic algorithms, particle 
swarm optimization, genetic algorithm, harmony search, and teaching-learning-based optimization 
algorithm, was investigated in this study in estimating the water quality of the Yamuna River in Delhi, 
India. A cross-validation approach was employed by splitting data into three equal parts, where the 
models were evaluated using each part. The main aim of this study was to find an accurate prediction 
model for estimating the water quality of the Yamuna River. It is worth noting that the hybrid 
neuro-fuzzy and LSSVM methods have not been previously compared for this issue. Monthly water 
quality parameters, total kjeldahl nitrogen, free ammonia, total coliform, water temperature, potential 
of hydrogen, and fecal coliform were considered as inputs to model chemical oxygen demand (COD). 
The performance of hybrid neuro-fuzzy models in predicting COD was compared with classical 
neuro-fuzzy and least square support vector machine (LSSVM) methods. The results showed higher 
accuracy in COD prediction when free ammonia, total kjeldahl nitrogen, and water temperature were 
used as inputs. Hybrid neuro-fuzzy models improved the root mean square error of the classical 
neuro-fuzzy model and LSSVM by 12% and 4%, respectively. The neuro-fuzzy models optimized 
with harmony search provided the best accuracy with the lowest root mean square error (13.659) and 
mean absolute error (11.272), while the particle swarm optimization and teaching-learning-based 
optimization showed the highest computational speed (21 and 24 min) compared to the other models.

Keywords: river water; pollution; chemical oxygen demand; neuro-fuzzy; meta-heuristic algorithms; 
harmony search

1. Introduction

The industrialization of economics has caused serious environmental problems world
wide. This issue made the members of the United Nations agree to 17 sustainable develop
m ent goals (SDGs) for growing economies and poverty reduction, while preserving the 
environment [1]. Conserving the oceans and seas is one of the fundamental goals of the 
SDGs. Rivers are one of the primary sources of water that discharge from the land to the 
sea, and can transfer pollution to the seas and oceans.

Water is vital for life, and the river is the major source of water for life. Therefore, river 
water quality (W Q) and maintaining river W Q are crucial for sustainable living on earth. 
They are also crucial for the sustainability of the global ecosystem. However, economic
activities, industrialization, and urbanization have affected river WQ globally. This is more 
prominent in developing countries, due to rapid but often unplanned development. The
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Yamuna River, the largest tributary of India's biggest river Ganges, is an example of such 
pollution. River water pollution continuously increased with increased transportation, 
urbanization, and industrialization. Industrial wastes, city sewerages, and agricultural 
runoff significantly reduced the river WQ [2- 5] and disturbed the whole ecosystem, includ
ing animals and humans, especially children's health. Monitoring the WQ of the Yamuna 
River is urgent to adopt protective measures and ensure ecosystem stability [6,7]. However, 
precise WQ monitoring is challenging for the river Yamuna due to the effect of many points 
and non-point pollution sources. Robust models are required to estimate W Q changes 
accurately, with minimum environmental inputs [8].

Chemical oxygen demand (COD) indicates the amount of oxidizable organic material 
in the river water and, therefore, the dissolved oxygen (DO) levels and the anaerobic 
conditions. A higher COD indicates a lower DO level and insufficient conditions for 
aquatic life. Therefore, COD is widely used to measure river WQ [9- 11]. Numerous models 
have been developed for predicting river WQ. Most of these models are statistical, based 
on multiple linear regression, moving average, and auto-regressive moving average. Such 
statistical methods cannot address the nonlinearity in data; thus, they often fail to predict 
W Q in complex situations [12- 14]. Recent studies indicate that ordinary and advanced 
artificial intelligence (AI) models are robust tools in pattern recognition, and are gaining 
popularity [15]. Yilma et al. [16] recommended the application of an artificial neural 
network (ANN) for the prediction of the river WQ index. Ahmed et al. [17] compared the 
performance of an adaptive neuro-Fuzzy inference system (ANFIS) and two ANNs in the 
prediction of river WQ. The results demonstrated that the ANFIS was capable of providing 
greater accuracy. Abba et al. [18] developed three AI models for the prediction of WQ. The 
considered models included the ANFIS, ANN, and least square support vector machine 
(LSSVM). The obtained results indicated that the ANFIS outperformed the other methods. 
Lee and Kim [19] used an ANFIS structure for the simulation of biological oxygen demand 
(BOD) in the Dongjin River. The results confirmed the accuracy of the developed ANFIS. 
Wong et al. [20] used an ANN and square support vector machine (SVM) for monsoonal 
river classification based on water quality. The results approved the accuracy of both the 
ANN and LSSVM; however, the ANN was more accurate.

Hybrid AI models, e.g., LSSVM or ANFIS with meta-heuristic algorithms, have been 
introduced to address the drawbacks of statistical methods [21- 24]. Fadaee et al. [25] used a 
butterfly optimization algorithm (BOA) for training the ANFIS to predict dissolved oxygen 
(DO) in rivers. The results showed that the BOA is stronger than other optimization algo
rithms in the literature. Song et al. [26] developed a model for the prediction of WQ based 
on the LSSVM and sparrow search algorithm (SSA). The capability of LSSVM -SSA  was 
confirmed in the Yangtze River. Arya Azar et al. [27] developed two hybrid algorithms for 
estimating the longitudinal dispersion coefficient of river pollution. The models included 
a hybrid of the ANFIS and SVR, with Harris hawks optimization (HHO) meta-heuristic 
algorithm. The results demonstrated that the HHO may increase the performance of 
AI models.

Around 40% of India's populace relies on the Yamuna River for water supply. There
fore, the Yamuna River's WQ prediction using highly accurate models is directly related to 
national public health and a sustainable environment. In this study, AI-based models were 
used for accurate prediction of the Yamuna River's WQ. The least square support vector 
machine (LSSVM) model was developed using the strength of kernels, which can predict 
any phenomenon much more accurately than statistical models [28- 30]. Kernel-based 
methods can handle the nonlinearity and non-stationary of time series and accurately 
predict the series [31- 33]. The ANFIS has emerged as a powerful AI model for predicting 
environmental processes. It is more accurate than the classical AI models [34]. However, 
the ANFIS also requires tuning of its internal parameters for improved accuracy. The 
ANFIS uses derivative-based learning as the standard parameter learning process, which 
has a high probability of becoming trapped in local minima. The recent literature revealed 
that integrating AI models with optimization algorithms could improve their prediction
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performance by finding optimal control parameters. In the present study, the ANFIS was 
integrated with four meta-heuristic algorithms, particle swarm optimization (PSO), genetic 
algorithm (GA), harmony search (HS), and teaching-learning-based optimization (TLBO) 
to predict the Yamuna River, Delhi's long-term WQ. Most meta-heuristic algorithms need 
to be initialized before starting the iterations to calculate the best answer. TLBO was chosen 
since it is known as one of the optimization algorithms that needs the lowest number of 
initial parameters. PSO, GA, and HS are famous and powerful algorithms, and their perfor
mance has been confirmed in many disciplines. The performances of hybrid ANFISs were 
compared with the classical ANFIS method to show the efficiency of the TLBO algorithm 
compared to the classical method. The heuristic ANFIS methods were also compared with 
the LSSVM method, which was recently applied by Kisi and Parmar [21] to investigate 
the accuracy of proposed neuro-fuzzy methods in estimating COD. It is worth noting that 
the application of LSSVM, as well as TLBO, PSO, GA, and HS meta-heuristics algorithms 
together with the ANFIS to model WQ variables, is a novel comparison. Since the perfor
mance of meta-heuristics depends on the particular problem, the results of this research 
can determine the best candidates for practical applications with the Yamuna River.

A brief overview of the study area is provided in Section 2, whereas a description of 
the ANFIS and meta-heuristics algorithms are provided in Section 3 . Section 4 discusses 
the results obtained through the application of the models, and finally, Section 5 provides 
the main conclusions derived from the study, including limitations and recommendations.

2. Case Study

The Yamuna River is the longest and largest tributary of the Ganga, the largest river in 
India. After originating from the Yamunotri Glacier in the Garhwal Himalayas in northern 
India, it travels 1376 km before merging with the River Ganga at Allahabad. The Yamuna 
River contributes 40.2% of the total water of the Ganga. Nearly 70% or 57 million inhabitants 
of the Indian capital Delhi depend on the Yamuna River for water. The river mixes with 
the drainage system many times during its long travel from its origin, which causes severe 
pollution of its water.

The sampling site at Nizamuddin in Delhi is used to monitor the WQ of the Yamuna. 
The industrial waste and sewerage of the states of Haryana and Delhi affect the WQ at the 
sample site (Figure 1). This study used 10-year monthly average COD data (January 1999- 
April 2009) collected by the Central Pollution Control Board (www.cpcb.nic.in, accessed on 
1 July 2020). A basic statistical summary of the data is provided in Table 1. WQ parameters 
of free ammonia (AMM), total kjeldahl nitrogen (TKN), water temperature (WT), total 
coliform (TC), fecal coliform (FC), and potential of hydrogen (PH) were recorded at the 
sample site. Table 2 provides the Pearson's correlations between the WQ parameters and 
COD for all of the data sets. It is clear from the table that the COD is highly positively 
correlated with the river water parameters AMM, TKN, TC, and FC, while it has negative 
correlations with the pH and WT parameters. The mean values of the river water parame
ters for the studied period are 7.47225 m g/L, 65.05833 m g/L, 15.42467 m g/L, 20.498 m g/L, 
25.68517 m g/L , 39,941,063 m g/L , and 5,084,043 m g/L  for the pH, COD, AMM, TKM, WT, 
TC, and FC, respectively.

The WQ parameters were used as inputs to develop the COD prediction in different 
scenarios. The effect of the parameters was analyzed in these scenarios. Cross-validation 
was used to assess the model performance, where the available data (120 monthly values) 
were split into three equal parts, M1, M2, and M3, as shown in Table 3 . Thus, the models 
were evaluated for three different data sets. The period of each training and test is provided 
in Table 3, where M1 indicates model 1, and vice versa. The data of the clusters were 
divided into two main parts, including the training and the testing data sets. The models 
were optimized using the training part, and the testing data sets were used for evaluating 
the accuracy of the predictions. About 15% of the training data were randomly separated 
during the optimization process to prevent overfitting. In cluster M1, the models were 
trained using data from 1999 January to 2005 August (80 monthly values), and were tested

http://www.cpcb.nic.in
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using data from 2005 September to 20090 December (40 monthly values). The other periods 
can be observed in Table 3.

Figure 1. Sampling site at Nizamuddin in Delhi.

Table 1. The monthly statistics of COD at the sampling site in Delhi during different periods (Kisi 
and Parmar, [21]).

IData Set xm e a n Sx Csx xm in xm ax

January 1999 to April 2002 56.8 22.6 -0.00 18 104
April 2002 to September 2005 70.4 25.4 -0.64 13 116

September 2005 to December 2009 68.0 31.9 -0.24 9 127
Note: xmean, Sx, Csx, xmin, and xmax indicate the overall mean, standard deviation, and skewness, respectively.
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Table 2. Pearson's correlations between water quality parameters and COD.

PH AMM TKN WT TC FC

Pearson Correlation -0.048 0.823 ** 0.741 ** -0.273 ** 0.211 * 0.164

COD Sig. (2-tailed) 0.603 0.000 0.000 0.003 0.021 0.074

N 120 120 120 120 120 120
Notes: ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 3. The training and test data sets used in the study (Kisi and Parmar, [21]).

Cross-Validation Training Testing

M1 Jan1999 to August 2005 September 2005 to December 2009

M2 January 1999 to April 2002 & 
September 2005 to December 2009 May 2002 to August 2005

M3 May 2002 to December 2009 January 1999 to August 2002

3. Methods
3.1. Least Square Support Vector Machine

The SVMs were constructed based on the statistical learning theory and the structural 
risk minimization principle. These make the SVMs sufficiently capable of not becoming 
trapped in local minima. However, reaching out to an accurate SVM model was challenging 
due to its requirement of solving a set of nonlinear quadratic equations. In this respect, 
Suykens et al. [35] introduced a simpler form of the SVM known as the least square 
support vector machine (LSSVM). LSSVM employs a set of linear equations to train models. 
Similarly to the SVMs, the LSSVMs models are based on kernel methods, which can 
accurately estimate hydrological phenomena during training and testing [21].

3.2. Adaptive Neuro-Fuzzy Inference System
The adaptive neuro-Fuzzy inference system (ANFIS) is a robust data-driven model that 

integrates a feed-forward artificial neural network (ANN) and fuzzy inference system (FIS) 
to simulate complex problems. In the ANFIS, the Sugeno-type FIS part is utilized to process 
the input information using different numbers and membership functions (MFs). For the 
adjustment of the fuzzy logic parameters, an adaptive learning algorithm that integrates 
the least square and ANN training algorithm (gradient descent) is utilized. Information 
about the theoretical and practical usage of the ANFIS can be found in several pertinent 
sources [36,37].

3.3. The Hybrid Procedure o f  ANFIS and Meta-Heuristic Algorithms

In the ANFIS, M F parameters, such as the center and the width in Gaussian MFs, 
should be optimized. In the standard version of the ANFIS, the amalgamation of gradient 
descent (CD) and least square estimator (LSE) optimizes the parameters. Instead of using 
the CD-LSE algorithm, the ANFIS structure can be merged with meta-heuristic algorithms. 
It has been reported in some previous studies that merging meta-heuristic algorithms 
improves the model accuracy in solving complex hydrological problems [38- 40].

This study assessed the skill of the ANFIS model merged with four meta-heuristic 
algorithms, particle swarm optimization (PSO), genetic algorithm (GA), harmony search 
(HS), and teaching-learning-based optimization (TLBO), and compared their performance 
with the standalone ANFIS model. The performance was compared in optimizing the 
Gaussian M F parameters for the inputs and linear M F parameters for the output of the 
ANFIS. Figure 2 shows a flowchart of the developed integration of the ANFIS with meta
heuristic algorithms. A brief description of the algorithms is as follows.
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Figure 2. Flowchart of integrated ANFIS with TLBO.

3.3.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is considered a population-based evolutionary 
optimization algorithm that can be applied to decision-making functions. Its creation was 
inspired by the sociological and biological behavcor of animals in groups (e.g., flock;? of 
birds). In PSO, each potential solution (swarm) represents the particle of a population. 
Particles follow the optimal particle (global best; Gbest) through a multi-dimensional search 
space with keeping the memory of their own previous best personal solution (Pbest). In 
this regard, each particle updates its position and velocity vector according; to the values of 
Pbest arid Gbest [41,42].

3.3.2. Genetic Algorithm

Genptic algorithm (GA) is a search technique that is widely employed to solve opti
mization issues. It is a particular kind of evolutionary algorithm that makes use of concepts 
from evolutionary biology including natural selection and genetic drift. GAs use Darwinian 
principles of natural selection to arrive at the best possible formula for making a prediction 
or modifying a pattern. They work well with regression-based forecasting methods. It 
mimics the way natural selection works to solve problems. Some of the inputs derive 
solutions via genetic selection, which are then evaluated as candidates using the fitness 
function. The process in iterated until the terminaiion condition is fulfilled. In general, GA 
is an iteration-based algorithm which finds the solution through a random process [43- 45].

3.3.3. Harmony Search

Harmony search (HS) is one of tPe newost and simplest meta-heuristic methods that 
mimics an orchestra's harmonic behavior of searching for the optimal feasible solution. In 
other words, finding an optimal solution for a complex problem resembles playing music.
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The HS has recently become a popular optimization algorithm due to its applicability 
for discrete and continuous optimization problems, its few mathematical calculations, 
simple concept, few parameters, and easy running. Furthermore, compared to other 
meta-heuristic methods, it has fewer mathematical requirements, and has been widely 
adapted for solving different engineering issues through simply changing the parameters 
and operators. Another advantage of this method over the GA is that it uses all the 
available solutions in its memory, which yields higher flexibility in searching the solution 
spaces [46- 48].

3.3.4. Teaching-Learning-Based Optimization Algorithm

The teaching-learning-based optimization algorithm (TLBO), proposed by Rao [49], 
was designed based on principles of learning and teaching, where the teacher plays an 
essential role in the class, and can raise students' levels and the average level of the class 
through a good speech and communication style. Generally, an individual with a better 
value and higher level compared to others is determined to be a teacher who shares his/her 
knowledge with others. The TLBO algorithm comprises two optimization phases, the 
teacher and learning phases.

In the teacher phase, the average class level is raised to the teacher level; thus, the 
student's level changes in this phase. The teacher phase is followed by the learning phase, 
where the students can learn from and influence each other to improve students' levels [50- 52].

4. Application of the Methods

Four meta-heuristic algorithms, PSO, GA, HS, and TLBO, were applied to improve 
the skill of the classic ANFIS in estimating river water chemical oxygen demand (COD) 
from six water quality (WQ) parameters, free ammonia (AMM), total kjeldahl nitrogen 
(TKN), water temperature (WT), total coliform (TC), fecal coliform (FC), and potential of 
hydrogen (PH). Meta-heuristic algorithms were integrated with theANFIS to improve its 
performance. The improvement was measured by comparing the hybrid ANFIS model 
with the classical ANFIS and least square support vector machine (LSSVM) models. The 
following input combinations were attempted, following the previous study of Kisi and 
Parmar [13,15]:

i. AMM, TKN, and WT;
ii. AMM, TKN, WT, and TC;
iii. AMM, TKN, WT, TC, and FC;
iv. AMM, TKN, WT, TC, FC, and PH.

The parameter values of the meta-heuristic algorithms are provided in Table 4 . These 
values were selected based on recommendations from the literature [53,54], and trial 
and error. The models' performance was evaluated using root mean square error (RMSE), 
correlation coefficient (R2), mean absolute error (MAE), and peak percent threshold statistics 
(PPTS), as described in Equations (1)-(4), following the study of [15]:

RM SE
1 N

N  E (CODio -  CODi,e)2 (1)
i=1

1 N
M AE =  -  E |CODi,o -  CODhe | (2)

i=1

1 ku

PP T Sc u  =  E M  (3)

CODi,o -  CODi,e
E' =  CodT,, x  100 (4)
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where N is the sample size; COD;/0 and COD,,e are the measured and modelled COD, 
respectively; k\ =  1N and ku =  U|N in which u and I are higher and lower bounds in 
%, respectively; E, denotes the relative error of the ith data. PPTS(//U) indicates the mean 
absolute relative error in modeling COD varying between the top u% and l% data.

Table 4. The parameter values of the four meta-heuristic algorithms used in this study.

Optimization Method Parameters

PSO

Population Size = 500 
Maximum Iteration = 2000 

Iteration Weight = 1 
Inertia Weight Damping Ratio = 0.95 

Personal Learning Coefficient = 1 
Global Learning Coefficient = 2

GA

Population Size = 500 
Maximum Iteration = 2000 
Crossover Percentage = 0.7 

Mutation Rate = 0.01

HS

Harmony Memory Size = 500 
Maximum Iteration = 2000 
Pitch Adjustment Rate = 0.1 

Harmony Memory Consideration Rate 0.9

TLBO Population Size = 500 
Maximum Iteration = 2000

5. Results and Discussion
Table 5  presents the performance of the applied methods in modeling Chemical 

Oxygen Demand (COD) using three inputs, free ammonia (AMM), total kjeldahl nitrogen 
(TKN), and water temperature (WT). Average statistics of the test results are also provided 
in Table 5 . It shows that the ANFIS with meta-heuristic algorithms performed better than 
the least square support vector machine (LSSVM). As expected, merging the neuro-fuzzy 
method and the new algorithms remarkably enhanced the predictivity of the classical 
ANFIS method. Among the hybrid ANFIS methods, the A N FIS-H S provided the best 
RMSE (14.024 m g/L ), MAE (11.033 m g/L ), and the best PPTS criterion estimates. The 
ANFIS-HS decreased the RMSE of the classical ANFIS and LSSVM from 16.261 m g/L  and 
15.093 m g/L  to 14.024 m g/L , with percentages of 13.75 and 7.08, respectively.

The RMSE, R2, MAE, and PPTS statistics of the different neuro-fuzzy methods and 
LSSVM are shown in Table 6 for input combination (ii) (AMM, TKN, WT, and total coliform, 
TC). Here also, the methods showed the best and worst predictivity for the M2 and M1 
data sets. Training the ANFIS with meta-heuristic algorithms improved its accuracy, 
similarly to the previous input combination. Hybrid ANFIS methods, except ANFIS-PSO, 
outperformed the LSSVM, while A N FIS-PSO  showed similar performance. Among the 
hybrid methods, AN FIS-TLBO and AN FIS-H S showed the best performance. However, 
the PPTS 5%, PPTS 10%, and PPTS 20% values of ANFIS-TLBO were lower than ANFIS-HS, 
which indicates that TLBO acted slightly better than HS. The RMSE of the ANFIS and 
LSSVM methods reduced from 16.722 m g/L  and 15.177 m g /L  to 14.565 m g/L , or by 13% 
and 4% using the ANFIS-TLBO and ANFIS-HS methods, respectively. The addition of TC 
as input could not improve the accuracy of the applied models.

Tables 7  and 8 show the test results of the applied methods for input combinations
(iii) and (iv), respectively. The results showed that all hybrid ANFIS methods provided a 
higher skill than the classical ANFIS and LSSVM algorithms in modelling COD. For input 
combination (iii), the ANFIS-HS provided the best accuracy in terms of various comparison 
statistics. This method increased the RMSE of the classical ANFIS and LSSVM methods 
by 7% and 6%, respectively. For input combination (iv), the AN FIS-TLBO  showed the 
best performance in RMSE, while the A N FIS-H S showed slightly lower PPTS than the



Water 2023,15,1095 9 of 18

ANFIS-TLBO. The RMSE of the ANFIS and LSSVM methods reduced from 16.451 m g/L  
and 15.987 m g/L  to 15.158 m g/L , or by 8% and 5%, respectively, using the ANFIS-TLBO. 
The results indicate that COD estimation accuracy did not increase by including fecal 
coliform (FC) and potential of hydrogen (PH) as inputs.

Table 5. Comparison of models' performance with AMM, TKN, and WT as inputs.

Method Cross-Validation
Statistics

RMSE R MAE PPTS5% PPTS 10% PPTS 20%

M1 17.874 0.824 13.845 29.360 30.872 34.236

ANFIS
M2 13.770 0.837 11.411 23.314 24.465 26.914
M3 17.139 0.743 13.552 30.714 32.284 35.637

Mean 16.261 0.801 12.936 27.796 29.207 32.262

M1 15.872 0.864 12.333 26.291 27.624 30.582

ANFIS-PSO
M2 13.723 0.840 11.327 22.364 23.469 25.750
M3 15.396 0.759 12.399 27.155 28.470 31.163

Mean 14.997 0.821 12.020 25.270 26.521 29.165

M1 15.646 0.870 11.970 24.669 25.931 28.535

ANFIS-GA
M2 13.802 0.837 11.315 23.415 24.597 27.082
M3 15.372 0.739 12.298 28.318 29.796 32.933

Mean 14.940 0.815 11.861 25.467 26.775 29.517

M1 15.226 0.878 11.650 24.416 25.659 28.400

ANFIS-HS
M2 12.802 0.860 10.249 19.934 20.978 23.030
M3 14.043 0.795 11.199 25.386 26.671 29.228

Mean 14.024 0.844 11.033 23.245 24.436 26.886

M1 15.470 0.874 11.946 25.600 26.902 29.749

ANFIS-TLBO
M2
M3

13.280
15.479

0.850
0.747

11.051
12.523

22.889
28.691

23.966
30.174

26.371
33.405

Mean 14.743 0.824 11.840 25.727 27.014 29.842

M1 16.460 0.867 12.720 28.110 29.520 32.520

LSSVM *
M2
M3

13.590
15.230

0.915
0.841

11.150
12.420

22.760
28.760

23.980
30.200

26.500
33.270

Mean 15.093 0.874 12.097 26.543 27.900 30.763
Note: * Results were obtained from Kisi and Parmar [21].

Table 6. Comparison of the applied models with AMM, TKN, WT, and TC as inputs.

Method Cross-Validation
Statistics

RMSE R MAE PPTS 5% PPTS 10% PPTS 20%

M1 16.403 0.860 12.637 28.844 30.341 33.574

ANFIS
M2 17.720 0.743 12.928 23.115 24.323 26.839
M3 16.042 0.710 12.944 28.882 30.297 33.398

Mean 16.722 0.771 12.836 26.947 28.320 31.270

M1 16.588 0.856 12.786 28.556 30.046 33.303

ANFIS-PSO
M2
M3

13.290
15.652

0.850
0.728

11.006
12.421

22.369
28.336

23.454
29.807

25.810
32.971

Mean 15.177 0.811 12.071 26.420 27.769 30.695

M1 16.827 0.850 12.990 29.630 31.141 34.486

ANFIS-GA
M2 13.830 0.835 11.213 22.845 24.036 26.378
M3 15.757 0.720 12.601 28.231 29.685 32.898

Mean 15.471 0.802 12.268 26.902 28.287 31.254

M1 16.184 0.859 12.482 26.589 27.955 31.013

ANFIS-HS
M2 12.940 0.858 10.683 22.403 23.580 26.161
M3 14.571 0.786 11.517 25.569 26.822 29.547

Mean 14.565 0.834 11.561 24.854 26.119 28.907
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Table 6. Cont.

Method Cross-Validation
Statistics

RMSE R MAE PPTS 5% PPTS 10% PPTS 20%

M1 15.539 0.872 11.843 24.392 25.652 28.355

ANFIS-TLBO
M2 13.427 0.846 10.578 21.101 22.192 24.656
M3 14.729 0.770 11.906 26.633 28.049 30.984

Mean 14.565 0.829 11.442 24.042 25.298 27.998

M1 16.540 0.865 12.830 28.130 29.520 32.490

LSSVM *
M2
M3

13.760
15.230

0.837
0.749

11.250
12.420

22.840
28.760

24.020
30.200

26.580
33.270

Mean 15.177 0.817 12.167 26.577 27.913 30.780
Note: * Results were obtained from Kisi and Parmar [21].

Table 7. Comparison of the applied models with AMM, TKN, WT, TC, and FC as inputs.

Method Cross-Validation
Statistics

RMSE r MAE PPTS 5% PPTS 10% PPTS 20%

M1 16.766 0.851 12.959 29.562 31.069 34.420

ANFIS
M2 14.895 0.812 11.793 23.277 24.444 26.965
M3 15.709 0.722 12.570 28.059 29.511 32.677

Mean 15.790 0.795 12.441 26.966 28.341 31.354

M1 16.595 0.853 12.559 28.952 30.457 33.915

ANFIS-PSO
M2 14.517 0.824 10.678 20.474 21.536 23.953
M3 15.644 0.724 12.449 28.473 29.961 33.219

Mean 15.585 0.800 11.895 25.966 27.318 30.362

M1 16.764 0.851 12.959 29.560 31.066 34.416

ANFIS-GA
M2 14.823 0.816 11.822 23.061 24.225 26.661
M3 14.985 0.749 12.128 27.780 29.207 32.282

Mean 15.524 0.805 12.303 26.800 28.166 31.120

M1 15.761 0.866 11.738 23.790 25.013 27.775

ANFIS-HS
M2 13.358 0.858 10.324 22.240 23.391 26.072
M3 15.177 0.762 11.486 23.987 25.145 27.593

Mean 14.765 0.829 11.183 23.339 24.516 27.147

M1 16.243 0.858 11.936 25.587 26.867 29.685

ANFIS-TLBO
M2 12.889 0.862 10.489 22.358 23.483 25.978
M3 15.522 0.726 12.419 27.342 28.685 31.691

Mean 14.885 0.815 11.615 25.096 26.345 29.118

M1 16.440 0.868 12.620 27.800 29.260 32.350

LSSVM *
M2
M3

15.400
15.250

0.802
0.748

12.460
12.450

23.690
28.640

24.890
30.070

27.620
33.130

Mean 15.697 0.806 12.510 26.710 28.073 31.033
Note: * Results were obtained from Kisi and Parmar [21].

The computational times of the applied hybrid methods are reported in Table 9 for 
comparison. The computer's properties were an Intel CPU, Core i7, 8 GB RAM. The total 
average computational time (in minutes) provided in the table shows that AN FIS-H S 
predicted the COD in the lowest time during calibration, while the AN FIS-G A  was the 
slowest method. The A N FIS-PSO  and AN FIS-TLBO  also showed high computational 
speed compared to the AN FIS-G A  method. This clearly indicates the superiority of the 
PSO and TLBO algorithms over GA.
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Table 8. Comparison of the models' performance with all variables as inputs.

Method
Statistics

Cross-Validation
RMSE r MAE PPTS 5% PPTS10% PPTS 20%

M1 16.864 0.848 13.068 29.912 31.473 34.998
M2 15.451 0.802 12.383 23.949 25.160 27.705

ANFIS M3 17.038 0.707 13.315 30.207 31.728 34.754
Mean 16.451 0.786 12.922 28.023 29.454 32.486

M1 15.534 0.873 11.782 24.583 25.842 28.630
M2 14.224 0.829 11.550 23.603 24.783 27.307

ANFIS-PSO M3 15.726 0.722 12.583 28.078 29.529 32.684
Mean 15.161 0.808 11.972 25.421 26.718 29.540

M1 16.634 0.860 12.679 27.777 29.227 32.420
M2 15.335 0.804 12.276 23.917 25.103 27.664

ANFIS—GA M3 15.250 0.748 12.174 27.890 29.352 32.517
Mean 15.740 0.804 12.376 26.528 27.894 30.867

M1 16.498 0.857 12.703 24.229 25.408 27.878
M2 13.659 0.844 11.272 23.102 24.198 26.654

ANFIS-HS M3 15.998 0.717 12.759 28.147 29.606 32.547
Mean 15.385 0.806 12.245 25.159 26.404 29.026

M1 16.746 0.851 12.842 28.011 29.456 32.690
M2 12.850 0.860 10.480 21.734 22.821 25.178

ANFIS-TLBO M3 15.878 0.725 12.663 27.699 29.131 32.144
Mean 15.158 0.812 11.995 25.815 27.136 30.004

M1 16.590 0.861 12.720 28.400 29.870 33.170
M2 15.180 0.809 12.630 23.970 25.080 27.530

LSSVM * M3 16.190 0.706 13.140 31.150 32.680 35.950
Mean 15.987 0.792 12.830 27.840 29.210 32.217

Note: * Results were obtained from Kisi and Parmar [21].

Table 9. Computational time (min) in predicting COD by the applied hybrid methods.

Optimization
Inputs

Method AMM, TKN 
and WT

AMM, TKN, 
WT and TC

AMM, TKN, 
WT, TC and FC

Total Average 
CPU Time (min)

ANFIS-PSO 20 21 23 21
ANFIS-GA 104 106 114 108
ANFIS-HS 12 13 13 13

ANFIS-TLBO 22 24 25 24

The observed and model estimated CODs for the input combinations (i), (ii), (iii), and
(iv) are illustrated in Figures 2- 5, respectively. The figures indicate less scattered estimates 
by the hybrid ANFIS methods than the ANFIS and LSSVM methods. It is worth noting 
that the R2 values were compatible with the model accuracy in some cases, as it indicated a 
linear relationship between the observed and model estimations. However, R2 =  1 does 
not indicate that the model exactly estimated all target values. This can also be observed 
in Tables 5- 8, in which correlation was incompatible with the RMSE an d /o r MAE. In 
such cases, the RMSE an d /o r MAE statistics should be considered as the main criterion 
to determine the best model. The hybrid models were more successful in modelling peak 
values than the ANFIS and LSSVM, as confirmed by the PPTS statistics in Tables 5- 8 . It can 
also be observed that the ANFIS-HS model with input combination (i) and the M2 data set 
provided more precise results with smaller values of the RMSE (13.358 m g/L ) and mean 
MAE (10.324 m g/L ). It is also visible from Figures 3- 6 that all of the models could not 
estimate the extreme COD values. The main reason for this was that limited data involving 
extreme values prevented the models from learning the extreme phenomena appropriately.
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Figure S visually compares the RMSE and MAE of tine best models using bar charts. This 
graph also shows the superior accuracy of hybrid ANFIS models over the slngle ANFIS 
and LSSVM. A Taylor's diagram of the models for the M2 data set and input combination 
(i) is illustrated in Figure at. It shows that the hybrid ANFIS models were slightly more 
accurate than the ANFIS.

Observed, mg/l Observed, mg/l Observed, mg/l

Observed, mg/l
20  40  60 80  100 120 140

Observed, mg/l Observed, mg/l

Figure if. The observed and model-estimated CODs for the M2 data set with AMM, TKN, and WT 
as inputs.

Observed, mg/l Observed, mg/l Observed, mg/l

Observed, ing/1 Observed, mg/l Observed, mg/l

Figure 4. The observed and model-estimated CODs for the M2 data set with AMM, TKN, WT, and 
TC as inputs.
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Observed, mg/l Observed, mg/l Observed, mg/l

Observed, mg/l
20  40  60  80  100 120 140

Observed, mg/l Observed, mg/l

Figure 5. The observed and model-estimated CODs for the M2 data set with AMM, TKN, WT, TC, 
and as inputs.

Observed, mg/I Observed, mg/l Observed, mg/l

Observed, mg/I Observed, mg/l Observed, mg/l

Figure 6. The observed and model-estimated CODs for the M2 data set with all variables as input.
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]Figur«e 7. Visua1 comparison of model performance for the best input combination and data set.

Figure 8. Taylor diagram of the predicted COD by ANFIS-based and LSSVM models using best input 
combination and data set during testing phase.

6. Discussion

The; potential of four hybrid ANFIS methods was investigated in this study in esti
mating the chemical oxygen demand COD oi the Yamuna River in Delhi, India, using 
monthly water quality parameters, total kjeldahl nitrogen, free ammonia, total coliform, 
water ternperature, potential od hydrogen, and fecal coliform as inputs to the models. The 
outcomes of the implemented methods were compared with those of Kisi and Parmar [21].

The tables and figures revealed that the finst input combination ( AMM, TKN, and 
WT) provided the best accuracy in modelling COD, as reported in tine previous study [21]. 
Bhardwaj and Parmar [55] reported that COD has high positive cornelotions with AMM 
(0.823) and TKN (0.741), and a negative correction with WT (—0.273). Kora et al. [56] found 
no correlation between COD with TC and FC at Hussain Sagar Lake, Hyderabad, India. 
Kagalou et al. [57] studied the interrelationships between increased bacterial concentrations 
in near-bottom samples and an increase in TC and FC counts after precipitation. Evidence 
supports the idea that bacteria rely more on the source of pollution than the total organic 
load, indicating weak or negative relationships between bacteriological indices and BOD 
and COD levels.

It was observed Srom Table 4 that the best aacuracy od the merhods for the M2 data set, 
while the M1 dsta set resulted in the worst accuracy. This may be besause of a different
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data range of M1 compared to M2 and M3 (see Table 1), which caused difficulties for the 
applied models in data extrapolation, as stated by Kisi and Parmar [21]. In addition, the 
training data were more skewed (Csx = -0 .6 4  and -0 .2 4  for M2 and M3, respectively) than 
the test data (Csx = -0 .0 8 ) in this case.

The results showed that the accuracy of the models considerably fluctuated for these 
inputs. For example, the adaptive neuro-fuzzy inference system (ANFIS) showed an 
RMSE of 13.770 m g /L  for M2, while it yielded 17.874 and 17.139 m g /L  for M1 and M3, 
respectively. This indicates that the testing methods with only one data set may mislead 
the modeler about model performance. Therefore, cross-validation is very necessary for a 
robust evaluation of the methods.

Liu et al. [58] predicted COD using dynamic kernel extreme learning machine (DKELM) 
method, and compared it using partial least squares, ELM, dynamic ELM, and kernel ELM. 
The best model (DKELM) provided an R2 of 0.7585 in the test stage. Sharafati et al. [59] 
used ada boost regression, gradient boost regression, and random forest regression for the 
prediction of COD; the highest correlation (R = 0.751) was found with the gradient boost 
regression. In the present study, the AN FIS-G A  produced an R2 =  0.740 (or R =  0.860), 
which is acceptable compared to that of previous studies.

The main limitation of the present study is the use of limited data. That data interval 
was monthly, and the available data period was very short. In order to justify the models' 
robustness an d /o r generalization capability, more data from different regions should be 
applied. It was clearly seen from the scatterplots that the hybrid methods could detect the 
extreme values well, and this can be explained by the limited number of training examples, 
especially for the COD extremes.

7. Conclusions

In the present study, the potential of four meta-heuristic-algorithm-integrated adap
tive neuro-fuzzy inference system (ANFIS) models in estimating river water chemical 
oxygen demand (COD) was explored. The ability of hybrid neuro-fuzzy methods was 
investigated for different combinations of water quality (WQ) parameters, free ammonia 
(AMM), total kjeldahl nitrogen (TKN), water temperature (WT), total coliform (TC), fecal 
coliform (FC), and potential of hydrogen (PH) as inputs. Various input combinations 
were used by applying a cross-validation method, and the results were compared with the 
classical ANFIS and least square support vector machine (LSSVM) methods. The ANFIS 
comprising AMM, TKN, and WT input parameters provided the best accuracy in estimating 
monthly COD. The analysis outcomes revealed that employing meta-heuristic algorithms 
improved the accuracy of the classical ANFIS, and generally outperformed the LSSVM 
method in modelling COD. The ANFIS with harmony search algorithm provided the best 
COD estimates in terms of accuracy and computational time. The applications produced 
considerable fluctuations in estimations for the implemented models for three different 
data sets; this suggested the necessity of using cross-validation for better assessment of the 
applied methods.

The outcomes of this study led us to recommend the use of the hybrid neuro-fuzzy 
model tuned with harmony search algorithm for estimating the water quality of the Yamuna 
River, India. The results can be helpful for authorities and decision makers in managing 
water pollution in this region. The hybrid model developed in this study can be used 
to model COD, a vital W Q index, from AMM, TKN, and WT. The case study selected in 
the current study is important for India, as the selected river is the water source for 40% 
of the country's population. M easuring COD requires sample preparation and chemical 
pre-treatment, which are time-consuming and labor-intensive. The models developed in 
this study can be employed for estimating COD amounts at critical points of the river, 
which can be helpful for monitoring and controlling industrial and sewerage effects.

The developed models could not be generalized because only data from one site 
were available to assess them; this can be carried out in future studies using more data 
from other regions. The implemented methods can be applicable for other sites, but they
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require enough data and training. The models implemented by this study can be compared 
with other advanced methods, such as hybrid artificial neural networks, extreme learning 
machine, and deep learning models, in future studies using daily or monthly water quality 
data for longer durations.
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