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Abstract: Nanomaterials, classified as emerging pollutants that are toxic to the environment, are 
known to bioaccumulate across different trophic levels in the aquatic ecosystem. This study therefore 
investigates the distribution of silver and silver nanoparticles (AgNPs) in the aquatic environment of 
Skudai River, Johor, Malaysia. Water, sediment, plant, and fish samples were collected seasonally 
along four sites along Skudai River between May 2018 and April 2019. All samples were subjected to 
Ag analysis using an inductively coupled plasma mass spectrometer (ICP-MS). The analysis demon­
strated that the concentration of Ag detected in water samples ranging from 0.001 to 0.505 mg/L was 
the lowest, whereas in the plants, 0.235 to 4.713 mg/kg of Ag was quantified. The upper sediments 
contained 0.036 to 28.115 mg/kg of Ag, whilst fish samples presented the highest accumulation of Ag, 
averaging between 9.144 and 53.784 mg/kg of Ag. Subsequently, the formation of silver nanoparticles 
was further proven by TEM-EDX analysis, where the detected size of AgNPs ranged from 20 nm 
to 35 nm. The overriding conclusion implied by bioaccumulation factor (BAF) and biota-sediment 
accumulation factor (BSAF) calculations suggested that Skudai River was indeed polluted by Ag and 
AgNPs. The values obtained stipulated that silver accumulation is occurring at an alarming rate and 
could therefore endanger fish consumers.

Keywords: emerging pollutants; distribution; silver; silver nanoparticles; aquatic environment

1. Introduction

Silver speciation is capable of interacting with various proteins. Thus, the mechanism 
of silver toxicity is the same as that of other heavy metals, persistent organic pollutants, 
polyaromatic hydrocarbons (PAHs), pesticides, and other emerging contaminants causing 
adverse effects on humans and living organisms [1- 3] Silver nanoparticles (AgNPs) are 
extensively used in a broad spectrum of consumer and industrial products due to their 
superior antibacterial, anticancer agents, optical, electrical, and catalytical properties [4- 9]. 
Recently, concerns have been raised regarding the usage of silver products as they are 
shown to bear adverse effects on the environment and human health from repeated and 
prolonged applications [10- 14].

Increased incidences of environmental pollution caused by AgNPs are expected as 
the substance is ubiquitously employed in personal care products without proper guide­
lines [15]. Wastewater treatment plants from both domestic and industrial are common 
sources of AgNPs in aquatic ecosystems, signifying the inadequacy of the current treatment 
process in removing AgNPs from wastewater before its release [16,17].
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It was found that natural aquatic systems contain silver levels ranging from 
0.03 to 500 mg/L [17], and this dissolved Ag can undergo a range of chemical and physical 
transformations [18]. In England and Wales, the highest dissolved Ag concentration in 
rivers was found to be 19.8 ng/L [19], while in the total Ag concentration in Rhine River in 
Germany, the lowest AgNP concentrations predicted could range from 40 to 320 ng/L [20]. 
Similarly, AgNP concentrations in the rivers M euse and Ijssel in the Netherlands were 
found to be between 0.3 and 2.5 ng/L [21]. River Isar in Germany found AgNP concentra­
tions ranging from 2.0 to 8 .6  ng/L [22]. Amongst them, the lowest concentration of AgNPs 
in surface water (freshwater), ranging between 0 and 44 pg/L, was found in Denmark [23]. 
M eanwhile, abnormally high AgNP counts (17.9 x 106 to 45.1 x 106 AgNPs/L) were 
detected in Besos and Ebro Rivers in Barcelona [24].

Evidence has proven that AgNPs have significant effects on the ecosystem, especially 
when prolonging the release of Ag waste into the environment, leading to concentration 
alleviation [18,25,26]. The potential threats of AgNPs include bacteria, algae, fungi, in­
vertebrates, plants, and fish [27- 32]. Bioaccumulation and biomagnification in particular 
impose significant dangers to the environment and human health [19,33,34]. However, 
predicting AgNP-imposed risks remains difficult because they are differentially toxic to 
different organisms [20]. Furthermore, AgNPs are easily transferred to a diverse range 
of species in the aquatic ecosystem via the food web [35- 37]. Therefore, studying their 
distribution in aquatic environments is crucial for determining potential human health 
risks and developing safety guidelines, as well as assessing and mitigating any potential 
environmental impacts. Additionally, understanding their distribution can help researchers 
develop strategies to manage and maintain water quality and inform the development of 
safe and effective nanotechnology applications.

Bioaccumulation factor (BAF) and biota-sedim ent accumulation factor (BSAF) were 
commonly employed to quantify the transfer of pollutants across the trophic level of a 
food web. BAF implies the ability of aquatic organisms to accumulate metal from the 
surrounding water environment. A BAF value of above 100 indicates that fish populations 
found in the aquatic ecosystem would exhibit a high potential of accumulating metal [36,38]. 
The corresponding BSAF value expresses the ability of aquatic organisms to absorb or 
accumulate metal from river sediments [39]. Previous studies stated that a BSAF value 
exceeding 2  would indicate that the bio-pollutant could be transferred and accumulated in 
the aquatic organisms living within the environment [40,41]. To the best of our knowledge, 
information on the trophic transfer efficiency of Ag via the food web was previously scarce.

This study therefore investigated the distribution of AgNPs in the aquatic ecosystem of 
Skudai River, Johor. The BAF and BSAF values were calculated to estimate Ag accumulation 
behavior in the water and sediment samples collected from the four sampling stations. 
Both parameters are vital in estimating the transfer efficiency of Ag from such samples into 
the aquatic biota. Results obtained here would therefore illustrate that the distribution of 
Ag and AgNPs in aquatic environments was an indication of the trophic transfer of Ag 
through the food chain in the Skudai River ecosystem.

2. Materials and Methods
2.1. Chemicals and Reagents

Nitric acid (HNO3 ) 65% and perchloric acid (HQO 4 ) 65% were obtained from Thermo 
Fisher Scientific (Fisher Scientific UK), and hydrogen peroxide (H2 O2) 30% was obtained 
from Merck (Darmstadt, Germany). All chemicals purchased were of analytical grade.

2.2. Sample Collection

Field sample collection was conducted once a month over a one-year period from 
May 2018 to April 2019. Four stations were chosen, namely Bandar Putra, Lee Rubber, 
Impian Emas, and Kampung Pengkalan Rinting, along the main Skudai River, Johor, 
Malaysia (Figure 1). These catchments are urban areas full of residential, commercial, 
industrial, and infrastructure, and utilities could be the high potential source of pollution
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within the watershed area. The distance between these sampling stations ranged from 
5.3 km tr  7.5 1cm. Samples included river water (12 samples), sediments (t2  samples), 
plants (5 samples)t and fish (7 spacits). Three 250 mL p olyethylene bottles of water samples 
were collected using a water grab sampler. Sediment samples were obtained using a grab 
sampler and kept in sealed plastic bags. While aquatic weeds were randomly collected 
at tine river bank of Skudai R ver. Fish were purcha sed from lo cal fishermen ne air e ach 
sampling station. All samples were kept in ice immediately after acquisition and stored in 
a 4-8  0C refrigerator until analysis.

Figure 1. Location of sampling stations along Skudai River.

2.3. Preparation o f Samples

Samples of river water and sediments were transferred into 50 mL centrifuge tubes 
wrapped with aluminum foil for protection from direct light. Samples of p la n .  were 
washed r epea'tedfy with tap w ater and dis'tilled wa ter to p urigy any impu riti es. The n, the 
samples were separated by the root and aerial part and fuUy dried at room temper attire. 
The plant samplo was then ground to powder and transferred into 50 mL centrifuge tubes. 
The exact speoies of collected fishes were determmed and. recorded in Table 1. Each fish 
was dissected for its muscle, liver, heart, kidney, and gills. The obtained tissues were 
separated into individual centrifuge tubes based on fish and organ type before being 
frozen immediately.
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Table 1. The recorded examined fish species.

Sampling Station Scientific Name English Name

Bandar Putra
Anabas testudineus 

Oreochromis niloticus
Climbing Perch 

Nile Tilapia

Lee Rubber

Clarias macrocephalus 
Oreochromis niloticus 

Pangasianodon hypophthalmus 
Channa striata 

Barbus schwanenfeldii

Catfish 
Nile Tilapia 

Silver Catfish 
Snakehead Murrel 

Tinfoil Barb

Impian Emas Clarias macrocephalus 
Pangasianodon hypophthalmus

Catfish 
Silver Catfish

Pengkalan Rinting
Clarias macrocephalus 

Oreochromis mossambicus 
Pangasianodon hypophthalmus

Catfish 
Mozambique Tilapia 

Silver Catfish

All sample tubes were stored in a cold box prior to transport to the laboratory for 
analysis, where they were first processed via microwave-assisted digestion (MILESTONE 
START D, MODEL: SK-10). The weight of the samples and designated composition of 
HNO3 and H2 O2 were added to the samples (Table 2) before introducing into the microwave 
oven digestor. The settings of the microwave oven digestor are listed in Table 3 . After 
the digestion process was completed, the vessels were cooled to room temperature. The 
samples were then filtered into a 25 mL volumetric flask and marked up to the mark with 
deionized water.

Table 2. Analysis for acid digestion.

Sample Sample Weight (g) Acids Used

Water 5 7 mL HNO3 65% 
1 mL H2O2 30%

Sediment 0.25
6 mL HClO4 65% 
6 mL HNO3 65% 
1 mL H2O2 30%

Plants 0.5 7 mL HNO3 65% 
1 mL H2O2 30%

Fish 0.5 7 mL HNO3 65% 
1 mL H2O2 30%

Table 3. Setting for acid digestion for the microwave oven digestor (Milestone START D, 
Model: SK-10).

Step Time (min) Temp. (T1) Temp (T2)

1 15 200 °C 110 ◦ C

2 15 200 °C 1 O O O C

2.4. Analytical Method

To identify elemental contents and determine the silver concentration, samples were 
then introduced into an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) (PERKIN 
ELMER NEXION 350X). Water samples were further analyzed by using a high-resolution 
transmission electron microscope (HR-TEM 200KV) with an energy-dispersive X-ray spec­
trometer (EDX) (JEOL JEM-ARM 200F) to obtain the quantitative particle size and distribu­
tion and the shape and morphology of silver nanoparticles.
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2.4.1. Inductively Coupled Plasma Mass Spectrometer (ICP-MS)

Standards were prepared based on the concentration range needed. Samples were 
transferred into sample tubes and arranged on the sample rack. The sample information 
and the location of the samples were key to the software. Performance checks were 
performed to make sure that the instrument is in good condition. Blank and QC were 
analyzed before sample analysis was carried out (ICP-MS setting: Peristaltic pump speed, 
20 rpm; Nebulizer gas flow, 1.06; Vacuum pressure, 7.45 x 10- 6 ). Sample tubing was rinsed 
using ultrapure water after each sample analysis.

2.4.2. High-Resolution Transmission Electron Microscope (HR-TEM 200KV) with 
Energy-Dispersive X-ray Spectrometer (EDX)

The physical properties of AgNPs were examined using a combination of analytical 
techniques. HRTEM-EDX was used to investigate the morphology, elemental composition, 
and purity of the nanoparticles. To perform the analysis, a small amount of the water 
sample was applied to a carbon-coated copper grid, allowed to dry at room temperature, 
and then analyzed using a microscope operating at 200 kV. The TEM was used to analyze 
the shape and morphology of the nanoparticles, while EDX spectroscopy and elemental 
mapping were used to investigate the elemental distribution of the nanoparticles.

2.5. Data Analysis

The BAF and BSAF represented in Equations (1) and (2), respectively, were adopted to 
correlate the concentration of silver in the water or sediment to that of the fishes found at a 
sampling station, thus evaluating the degree of the ongoing silver pollution [42,43]. BAF 
and BSAF were calculated using Formulas (1) and (2):

BAF = Cfish/CWater, (1)

BSAF = Cfish/Csediment (2)

where Cfish (mg/kg) is the total concentration of Ag in the fish at a specific sampling station, 
and Cwater refers to the Ag concentration in the river water at the same station normalized 
against the 'normal' Ag concentration of 0.0002 mg/L [44]. For comparison purposes, the 
average concentration of Ag during the sampling period was also used in the calculation. 
For BSAF calculations, Csediment refers to the total concentration of Ag in the sediment at a 
sampling station.

3. Results
3.1. Concentration o fA g  in the Aquatic Environment

Analysis of water samples using ICP-MS revealed the fluctuating Ag concentrations 
at each station throughout the one-year data collection period (Figure 2a). Overall, the 
lowest concentration of Ag detected was 0.001 mg/L, whereas the highest was 0.505 mg/L. 
Figure 2b indicates the average Ag concentration by sampling station where water pollution 
by Ag was greatest at the Lee Rubber station (0.082 ±  0.04 mg/L), followed by Impian 
Emas (0.040 ±  0.02 mg/L), Bandar Putra (0.039 ±  0.01 mg/L) and Pengkalan Rinting 
(0.011 ±  0.003 mg/L).
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Figure 2. (a) Monthly concentration of Ag over a one-year period and (b) average concentration of 
Ag in Skudai River water samples by sampling stations.

3.2. Analysis o f  Silver Nanoparticles in ttee Aquatic Environment:

TEM-EDX analysis was employed to investigate the formation of AgNPs via agglom­
eration of Ag ions in water samples. This combination of TEM and EDX has successfully 
confirmed tine presence and distribution of Ag in all samples. M icrograph images in 
Figure 3 depict the tiny spherical or semi-spherical shape of the Ag nanoparticle, with the 
detected size of AgNPs ranging from 20 nm to 35 nm, demonstrating that agglomeration 
of Ag ions with other organic and inorganic materials found in the water had occurred. 
Additionally, by isolating the e lemental signatures of Ag from other elements, EDX was 
abSe to show the homogenous distribution of AgNPs in the -waters regardless of sampling 
localions (Figpse 4) . These observations further confirmed that nano-sized Ag particles 
were present in the Skudai River surface water.



Water 2023, 1 5 , 1349 7 of 19

Figure 3. TEM image displaying the nano-size of Ag in water samples.

Ag L 0 [ 16

Lee Rubber *
*  •

* ’ • . *  ,

-

i • *

■ ■ j  *

100 nm

Ag L 0

Bandar Putra

• *  •

• i 2

■ * , -

. - 100  nm ■

L a 9 l IB

Im pian Em as
*> •

100 nm

Pengkalan Rinting

100 nm

Figure 4. Elemental mapping of Ag by EDX.

3.3. Accumulation of Ag in Sediment Samples

Monthly sediment samples 'were also analyzed using; ICP-MS. The delta generated 
indicated that the amount of detectable Ag had varied dynamically throughout the year, 
with overall concentrations ranging from 0.036 to 28.115 mg/kg (Figure 5a). Average Ag 
concentrations according to the eempling station are ehown in Figure 51?. Bandar Putra 
sediment samples contained the highest levels of Ag (4.079 ±  2.19 mg/kg), followed by Lee 
Rubber (2.529 ±  0.70 mg/kg), Impian Emas (2.324 ±  0.47 mg/kg), and Pengkalan Rinting 
(0.873 ±  0.17 mg/leg.).
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Figure 5. (a) Monthly Ag concentrations in sediment samples over the one-year sampling period and 
(b) average Agconcentrations b y sampling station.

3.4. Accumulation o fA g  in Plant Samples

Plants samples were olso analyzed using ICP-MS. The data generated indicated that 
Ag ctin accumulate in plants with overall concentrations ranging from 0.235 to 4.859 ra g /k g  
(Figure 6 a). Average Ag concentrations by sampling statton are shown in Figure 6 b. Bandar 
Putra plants samples contained the highest levels of Ag (3.171 ±  1.09 mg/kg), followsd by 
Pengkalan Rinling (2.429 ±  S.72 mg/kg), and Impian Emas (2.260 ±  1.43 mg/kg), while 
Lee Rubber station has no data (due 0o inaccessible and limited equipment to collect the 
plant sample.

■ sampling 1

■ sampling 2

(b)

B andar Putra Im p ian  E m as Pengkalan  R in ting 

Sampling Stations

Bandar Putra Lee Rubber Impian Emas 

Sampling Stations

Pengkalan
Rinting

(a)
Figure 6. (a) Ag concentrations in plant samples over sampling period and (b) average Ag concentra­
tions by sampling station.

3.5. Accumulation o fA g  in Fish Organ

The data generated from ICP-M S indicated that the amount of detectable A g had 
varied dynamically throughout the organ and species, with overall concentrations by
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species and sampling stations ranging from 3.04 to 161.94 mg/kg (Figure 7a). Average 
Ag concentrations by species and! sampling station are shown in Figures rb and 7c re­
spectively. Overall, seven species were collected. Accumulation patterns of Ag varigd 
among rhe species. Oreochromis niloticus fishes had the htghest accumulative total of Ag 
(63.784 mg/kg) across all its tissues compored to Anabas testudineus (37.174 mg/kg), Clar- 
ias macrocephalus (33.222 mg/kg), Pangasianodog hypophthalmus (30.792 mg/kg), Barbus 
schwanenfeldu (22.176 mg/kg), Channa striata (16.5h6 mg/kg), and Oreochromis moosambicus 
(9.144 mg/kg) .

Figure 7. (a) Ag concentrations throughout the fish species and sampling stations, (b) overall 
concentrations by fish species, and (c) average Ag concentrations by sampling station.

3.6. Values fo r  BAF and BSAF

The BAF and BSAF values were calculated to estimate Ag the accumulation behavior 
in the water and sediment samples. Both parameters are vital towards estimating the 
transfer efficiency of Ag from such samples into the aquatic biota.
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BAF and BSAF were calculated on the basis of weight against concentration. All data 
showed non-significant changes according to ANOVA analysis (p > 0.05), as suggested 
by a previous study [43]. As listed in Table 4, Bandar Putra recorded the highest average 
and relative BAF values, followed by Lee Rubber, Pengkalan Rinting, and Impian Emas. 
Interestingly, the standardized relative BAF value at Impian Emas was higher than that 
of Pengkalan Rinting despite its much lower average BAF value. On the other hand, 
BSAF estimates showed that sediments sampled from the Lee Rubber station imposed the 
highest bioaccumulation risks, followed by samples gathered from Bandar Putra, Pengkalan 
Rinting, and Impian Emas. Previous studies have stated that a BSAF value exceeding 2  

would indicate that the bio-pollutant could be transferred and accumulated in the aquatic 
organisms living within the environment [40,41]. Regardless, the overriding conclusion 
implied by BAF and BSAF calculations suggested that Skudai River was indeed polluted 
by Ag and AgNPs.

Table 4. List of BAF and BSAF values for each sampling station.

Sampling Station

BAF BSAF

Average Ag Concentration 
in Sampled Surface Water 1

Relative Limit of Ag 
Concentration 2

Bandar Putra 7570.95 1,476,334.75 6.03
Lee Rubber 3733.11 1,530,575.59 10.09

Impian Emas 703.49 140,698.66 1.01
Pengkalan Rinting 2385.52 131,203.74 2.50

Note(s): 1  Derived from the average concentration of Ag in water samples as shown in Figure 2b. 2  Limit of Ag 
concentration based on National Standard Water Quality, printed in Environmental Quality Report, endorsed by 
Department of Environment, 2006 (0.0002 mg/L).

4. Discussion
4.1. The Presence o fA g  in the Aquatic Environment

The Ag concentrations presented in this study were higher compared to previously 
published estimates. Figure 2  indicated that different concentrations of Ag were observed 
in multiple locations along Skudai River. The average levels recorded at urban residential 
areas (Bandar Putra and Impian Emas) were significantly lower than those of the industrial 
area (Lee Rubber). The most likely source of Ag in residential areas is discharge effluents 
from nearby wastewater treatment plants, where inadequate wastewater treatment prac­
tices would then lead to its release into the local stream. These observations were in good 
agreement with previous reports, where more than 5% of the initial amounts of Ag entering 
wastewater treatment plants would have remained in the effluents released. Additionally, 
household products that contain AgNPs as an active ingredient may also contribute to the 
leaching of Ag into the water drainage system, which can ultimately lead to its release into 
the local stream [45,46] .

Furthermore, Figure 2 showed that the Ag concentrations were highly detected at 
the Lee Rubber and Impian Emas sampling stations from November 2018 to January 2019. 
This period coincided with the annual North-East Monsoon season, where heavy rain was 
expected along the West Coast of Peninsular Malaysia including Johor. The increased Ag 
levels could have therefore been caused by greater water discharge to the selected areas. A 
study by Syafiuddin et al. 2018 also attributed the high Ag concentrations they reported 
in rural or industrial areas to the same factor [47]. An alternative explanation is that the 
increased stream flow instigated by heavier precipitation eventually led to the deposition 
of minerals, including Ag, from elsewhere to the sampling station areas. Additionally, 
research conducted by Deycard et al. 2017 indicated that due to the shortcomings of the 
current process employed by wastewater treatment plants, the efficiency of Ag removal 
decreases with the increment of average rainfall [46]. This too could have factored into the 
sudden increments seen in Ag concentrations.
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Moreover, Ag and AgNPs could enter the aquatic environment through human activi­
ties such as manufacturing, leaching, and mining along the main river. This is particularly 
concerning as heavy rainfall can lead to a flushing effect that may cause an increase in Ag 
levels in the water [48- 51]. Discharge effluents from industrial processes are long-identified 
sources of heavy metals in river systems [52,53]. This exposure may occur over several 
phases of the Ag lifespan, from its synthesis and manufacturing, distribution, end-product 
use, and end-of-life disposal of everyday Ag-containing consumer products [41- 44]. Ag 
released into the environment via industrial wastewater streams and effluents are emit­
ted into the environment and remain there for extended periods by leaching into the 
groundwater or subsoil from landfills [45,54,55].

Figure 5 indicated a notable difference in Ag concentrations in the sediments sampled 
from all stations. Bandar Putra displayed a higher concentration of sedimental Ag com­
pared to the others. At this sampling station, the sediment samples were found to contain 
more natural organic matter, a factor that greatly influences the stability and bioavailability 
of nanoparticles [56]. The high likelihood that the AgNPs in the river water could have 
incorporated with the organic matter and thus settled on the riverbed sediments [57]. This 
interaction is encouraged by the availability of Ag+ cations, which react with the oxygen 
(O2) groups of sediment material to induce the chemical transformation of AgNPs, a pro­
cess known as oxidation dissolution [58]. Previous studies have also demonstrated the 
existence of electrostatic forces between the positively charged dissolved Ag and negatively 
charged organic matter, which serves as yet another reason behind the high Ag-adsorbing 
capability sediments [59,60].

In the environment, AgNPs may stay in suspension, aggregate or agglomerate, and 
dissolve or react with the different species present in the aquatic system [61- 63]. Riverbed 
sediments are considered a significant sink for released nanoparticles [57,58]. This could be 
the reason that sediment (Figure 5) has a higher concentration of Ag compared to surface 
water (Figure 2) . Natural organic materials (NOM s) on the surface of sediments such as 
fulvic and humic acids react with AgNPs, creating a protective coating on the surface of 
AgNPs before settling as sediments [64,65]. AgNPs mainly sink to the surface sediment 
(0-1 cm), a fraction that accounts for 70% by weight of the total amount of Ag. Residual 
AgNPs either stay in the water phase or accumulate in biofilms or aquatic organisms. Once 
Ag enters a freshwater aquatic environment, it is immediately absorbed by the sediments 
or suspended particles at the discharge site and becomes immobilized [6 6 - 6 8 ]. A small 
amount of Ag will be kept in solution by colloidal and complexed materials, before being 
transported downstream towards lakes, estuaries, or the sea. Here, Ag is delivered to 
organisms in the soil, water, and sediments. Over an extended period, these AgNPs may 
act as sources of ionic silver [63].

Figure 6  showed the accumulation of Ag in plants where these aquatic weeds were 
collected randomly at Skudai River's bank. Though the plan was to obtain three samples 
of the same aquatic weed species from each sampling station, the study could not proceed 
as planned due to accessibility issues. Nevertheless, it was found that these aquatic weeds 
can accumulate silver (Ag). These Ag nanoparticles (AgNPs) can enter and accumulate 
in aquatic plants through their roots or leaves [56,69,70], The cell wall of the root cells 
was the primary site for AgNPs to enter plant cells, while smaller-sized AgNPs can pass 
through the pores of the cell wall [71,72]. AgNPs can also penetrate plant leaves through 
stomata [73,74]. Aquatic macrophytes have been shown to accumulate large amounts of 
metals when exposed to metallic ions or nanoparticles, which can pose a threat to the 
aquatic ecosystem's food webs as they can serve as a point of entry for different kinds of 
anthropogenic toxicants.

The study's findings reveal that the Lee Rubber station had the highest average 
concentration of silver (Ag) in Skudai River water samples, while Bandar Putra station had 
the highest average concentration of Ag in sediment, plant, and fish samples. To explain 
this, the study examined the details of the results. The concentration of silver (Ag) was 
highest at Lee Rubber with an average of 0.08 mg/L. Lee Rubber is located in an industrial



Water 2 0 2 3 ,15,1349 12 of 19

area which numerous factories in the vicinity utilizing Ag as their raw material, surrounded 
by a few squatter settlements, a sewerage plant, a housing estate, and the towns of Kulai 
and Senai. The study suggests that the presence of Ag in the river water is likely due to 
industrial and residential activities and wastewater treatment, which are common sources 
of AgNPs in aquatic ecosystems [16,45,75]. Previous studies have shown that the current 
wastewater treatment process cannot effectively remove AgNPs from the wastewater before 
its release into the river [17]. Therefore, it is expected to find a high concentration of Ag in 
the sample water at Lee Rubber.

On the other hand, the sediment in Bandar Putra had the highest average concentration 
of Ag, with a significant increase detected in August, which is believed to be caused by 
anthropogenic activities. However, the specific activities remain unidentified. Plant data 
were not available for Lee Rubber due to inaccessibility, but it is predicted that they may 
have high accumulations of Ag due to the high concentration of surface water and sediment 
in the area. Previous research works indicated that AgNPs released can enter the plant 
rhizosphere, where they are inevitably taken up by plants and enter the food chain [76,77]. 
Bandar Putra also had the highest accumulation of Ag in fish samples; however, since the 
fish were purchased from local fishermen and were of random and different species for 
each sampling station, it is difficult to make a fair comparison of average Ag concentrations 
by station.

This present study showed that the levels of Ag varied significantly among fish species 
(Figure 7 ). Accumulation of such metals varied over the sampling period, with Ag dis­
playing different affinities to different fish tissues. Fish living in polluted waters tend to 
contain high concentrations of heavy metals in their tissues. Generally, this accumula­
tion was shown to be attributable to environmental conditions, geographical distribution, 
species-specific factors, biotic characteristics (size, age, sex, and physiological conditions of 
organisms), and abiotic parameters (metal concentration, time of exposure, way of metal 
uptake, site-specific water quality, i.e., water temperature, pH, hardness, or salinity) [78- 80]. 
Moreover, Ag+ ions have a great propensity to bioconcentrate in organisms since their 
chemical properties allow for the efficient uptake of these ions via cell membrane ion 
transporters [26,62].

A previous study at the Asakawa River in Tokyo, Japan, found that Ag was accu­
mulated in the entrails of C. auratus langsdorfi, reaching a concentration of 12 Mg/g [81]. 
Accumulation of Ag in the fish tissue begins with the absorption of AgNPs via the respira­
tory system. Water received through the gills circulates the fish body via the blood system 
before agglomerating in the liver, kidney, or muscle tissue [82].

4.2. Nano-Size o fA g  in the Aquatic Environment

As shown in Figures 3 and 4, TEM-EDX confirmed the presence of nano-sized Ag in 
the samples. The spherical colloids were the dominant structure during the growth stage. 
However, the shape and size can be altered during environmental transformations. With 
prolonged irradiation, triangular nano-prisms might appear and later disappear, gradually 
displaced by large irregular aggregations [83,84].

AgNPs released from commercial textiles during washing and from outdoor facades 
after rainfall events [85,86] would likely transform into agglomerates once dissolved in 
the aqueous solution [87- 91]. Other than that, the combination of oxidation and reduction 
for Ag under light encourages the increased agglomeration of AgNPs as well. Dissolv­
ing organic materials (DOMs), irradiation, and pH are essential in driving the reductive 
reformation of AgNPs. Other factors, including redox potential, dissolved oxygen, and 
temperature, could also affect the process [83,92,93] . Numerous studies have reported that 
Ag+ can be chemically reduced to AgNPs under high-energy irradiation. In the environ­
ment, free Ag+ can be reduced by DOMs to form AgNPs under sunlight irradiation and 
through a charging—discharging mechanism [92,94].
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4.3. Bioaccumulation o fA g  in the Aquatic Ecosystem o f Skudai River

Bioaccumulation factor (BAF) implies the ability of aquatic organisms to accumulate 
silver from the surrounding water environment. A BAF value of above 100 indicated 
that fish populations found in the aquatic ecosystem would exhibit a high potential of 
accumulating Ag [36,38]. Most researchers specifically aim to obtain a wide range of aquatic 
vertebrates and invertebrates during the capturing exercise to represent this data. However, 
in this study, the fish samples were wildly and randomly collected from the sampling 
stations. Thus, the BAF value was instead calculated only on a station-by-station basis to 
signify the level of accumulation.

In addition, the corresponding BSAF value expresses the ability of the aquatic or­
ganisms to absorb or accumulate metal from river sediments [39]. Table 2 indicated that 
fishes from Bandar Putra, Lee Rubber, and Pengkalan Rinting are classified as macro­
concentrators, as their BSAF values were higher than 2. In contrast, fishes collected at 
Impian Emas could only be classified as micro-concentrators. This classification is due 
to the innately higher storage levels of AgNPs detected at macro-concentrator sites, as 
reported in Figure 7a. The BSAF values also show that sediments found along the riverbed 
could efficiently become a primary reservoir for nanoparticulate Ag, exposing invertebrates 
and vertebrates akin to the danger of Ag [32].

By contrast, the average Ag concentration within sediment samples gathered from 
Pengkalan Rinting was significantly lower than that of the other sampling stations. The 
station is situated near the end of Skudai River and the mouth of the sea. Thus, there is a 
greater possibility that AgNPs stored in the sediments there would have been washed out 
to the ocean rather than remaining around the locale. Nevertheless, both the BAF and BSAF 
values calculated at Pengkalan Rinting were still significant. This implied that the release of 
Ag from organic sediment layers into the water would in any way reach the fishes, resulting 
in eventual metal accumulation. Despite outwardly low Ag concentrations, should the 
natural environment be particularly rich in organic matters— as would the brackish waters 
of the Pengkalan Rinting delta—the high redox potential of surrounding sediments would 
promote the rather than curb the release of Ag ions into the water [95,96] .

4.4. Trophic Transfer o fA g  through the Aquatic Food Chain

These results highlight the ecosystem health risk posed by the Ag compound, which 
can be transferred through entire food webs (Figure 8). The accumulation of Ag in natural 
ecosystems is most likely due to cross-correlation factors and uptake routes. Ag taken up 
from the aquatic environment either via the water phase or food could result in toxicity [80]. 
Heavy metals absorbed by small organisms such as bacterioplankton, phytoplankton 
and zooplankton followed by their unintentional uptake by larger fish due to their wa­
terborne nature could have also contributed to Ag accumulation [97]. There are several 
sources of evidence that Ag and AgNPs can be transferred in the food chain. Examples 
include the transfer of AgNPs in a simple freshwater food web from sediment-dwelling 
worms (T. tubifex) to pelagic fish (Danio rerio) [98], from protozoa to rotifer [97], and algae 
(Pseudokirchneriella subcapitata) to zooplankton (Ceriodaphnia dubia) [99].

The findings from this study mirrored those in the previous study, which suggested 
that the factors affecting the trophic transfer of Ag were environmental transformations 
of its compounds such as AgNPs, Ag sedimentation, uptake, and the accumulation of Ag 
in plants, all of which affect the internal fate and localization of Ag in the fish [98]. The 
association of nanoparticles with sediments might be a critical process in transferring intact 
particles within aquatic food webs. Meanwhile, the accumulation of Ag and AgNPs in 
primary producers such as phytoplankton or plants could be available to the next level of 
predators in the food chain, leading to broader ecological effects in the higher stiles of the 
chain [97]. Indeed, plants play a crucial role as producers in the ecosystem, sustaining the 
entire food chain. AgNPs accumulated in plant tissues can be transferred to consumers 
through the food chain, causing lethal effects on non-tolerant species. Their roles as the 
primary producers and a source of food for waterfowl, fish, and small invertebrates, and
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d wellings for several tiny organisms, meant that they too could have contributed towards 
the concentration of Ag within the aquatic ecosystem [100,101].

Figure 8. Trophic transfer ofA g through the aquatic food wet).

There was a  study showed that various species had taken up large quantities of Ag 
from the amounts released into aquatic and terrestrial ecosystems [48]. Therefore, there 
is a  possibility that Ag will enter and pass through aquatic food webs, transfer between 
ind ividual s of different species, and have minor or significant effects on natural commu­
nities, erganism t, and higher trophic levels [102- 104]. An example of an adverse effecr 
of the accumulation of metals is that accumulated Ag might cause structural lesions and 
functional disturbances in various fish organs [80]. Notably, natural organic matter (NOM) 
possibly enhances nanotoxicity by promoting the accumulation of either Ag particles or 
Ag ions in organisms [102,103]. For example, AgNPs could damage the gills and guts of 
adult D. rerio as their minute size allows the particles to pass through Che organs1 mucosnl 
barrier [105]. Furthermore, synthetic AgNPs in D. rerio were neurotoxic, embryotoxic, and 
cardietoxic end lhd to oxMativv stress, causing f lobal gene expreseion profile alterations. 
Theme results suggested that the risks posed by Ag (AgNPs and ionic Ag) Co ecotystems 
increased with long-term exposure ftom months to years [106]. Resultantly, bioaccumule- 
tion of Ag and trophin transfer through the food chain can threaten the environment and 
human health [107]]

5. Conclusions

.ilver f  ompounds are widely used in inddstries gnd are released into the environment 
during manufacturing and cither activities. Silver and silver nanoparticleh (AgNPs) can 
end up in aquatic ecosyetems, where Chey can eccumulafe in animals at Mgher levels of 
the food chain, including humano. Studies have shown that there is a high potential risk 
of Ag contamination in Skudai River, which suggests an Ag pollution situation that lias 
surpassed the ctanger level. However, the toxic mechanisms of Ag or AgNPs to aquatic 
organisms are still not fully understood. Moreover, the detection of Ag in the water samples 
analyzed indicates a necessity for better wastewater treatment. Therefore, to address 
these emerging polluiants, further ftudies that consider environmental factors, foodw eb 
complexity, and the differences between nanomateri als arc reyuired to facilitate ecologically 
relevant toxicity assessment and Co better understand the impaat of nanomaterials on 
natural communities and human health. Additionally, effective treatment techniques can be
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employed to eliminate or reduce their presence before discharge. Adopting environmentally 
friendly methods, such as using plant extracts for AgNP synthesis, and restricting the 
utilization of Ag and AgNPs in consumer goods can assist in reducing their discharge into 
the environment. Regulating the concentration of Ag in wastewater and implementing 
penalties for non-adherence can further mitigate their effects. Finally, promoting public 
awareness and responsible disposal habits can also aid in minimizing their release.
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