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Abstract: The Curve Number (CN) rainfall–runoff model is a widely used method for estimating
the amount of rainfall and runoff, but its accuracy in predicting runoff has been questioned globally
due to its failure to produce precise predictions. The model was developed by the United States
Department of Agriculture (USDA) and Soil Conservation Services (SCS) in 1954, but the data and
documentation about its development are incomplete, making it difficult to reassess its validity.
The model was originally developed using a 1954 dataset plotted by the USDA on a log–log scale
graph, with a proposed linear correlation between its two key variables (Ia and S), given by Ia = 0.2S.
However, instead of using the antilog equation in the power form (Ia = S0.2) for simplification,
the Ia = 0.2S correlation was used to formulate the current SCS-CN rainfall–runoff model. To date,
researchers have not challenged this potential oversight. This study reevaluated the CN model by
testing its reliability and performance using data from Malaysia, China, and Greece. The results of
this study showed that the CN runoff model can be formulated and improved by using a power
correlation in the form of Ia = Sλ. Nash–Sutcliffe model efficiency (E) indexes ranged from 0.786 to
0.919, while Kling–Gupta Efficiency (KGE) indexes ranged from 0.739 to 0.956. The Ia to S ratios
(Ia/S) from this study were in the range of [0.009, 0.171], which is in line with worldwide results that
have reported that the ratio is mostly 5% or lower and nowhere near the value of 0.2 (20%) originally
suggested by the SCS.

Keywords: newly calibrated CN methodology; revised CN model; new runoff predictive model

1. Introduction

Floods are natural disasters caused by a large amount of water that overflows a land
beyond its normal level. One of the main causes of flooding is the excess rainfall that is
not absorbed by the ground or a land surface, which is also known as the runoff amount.
When the runoff amount exceeds the capability of the existing flood control infrastructure,
overflows of the water will occur, leading to flooding events. Once flooding occurs, it will
threaten the lives of the residents, especially those who live in the lower elevated regions.
Moreover, the flood will also lead to a huge amount of financial loss, which includes the
damage brought by the flood to the victims and financial costs for the government to
recover the flood-stricken regions and indemnify the victims of the flood. In addition
to impacting human beings, animals will also lose their shelter due to flooding. Thus,
a better understanding of the relationship between the rainfall and the runoff amount
is crucial to produce a better runoff prediction model. With a better prediction of the
runoff amount, government agencies will be able to efficiently plan for the management of
flood-related issues. For instance, the government can plan a sufficient amount of flood
prevention infrastructure, such as the retention pond, the drainage system, the reservoir,
and others, according to the predicted runoff amount with the aim of coping with the
possible flood issues.
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The change in the runoff depth, or the amount of water that flows over the surface
of the land, can be influenced by a number of factors, including climate change, changes
in land use, and anthropogenic interventions [1–5]. Some studies have found that both
climate change and human activities can contribute to changes in runoff, with climate
change having a greater impact in the 1980s and human activities having a greater impact
in the 2000s [4]. Other studies have focused specifically on the impact of land use changes,
such as urbanization, on runoff depth [3,5]. These studies have found that land use
changes, such as converting dryland agriculture to an impervious surface, can increase
runoff depth, while converting dryland agriculture or an impervious surface to grass or
forest can decrease runoff depth [3]. Additionally, human disturbance such as vegetation
restoration projects can also affect the runoff amount [2] while changes in a forest area can
also have a significant impact on the change in the runoff regime [1–3].

To estimate the rainfall–runoff amount, the United States Department of Agriculture
(USDA) and Soil Conservation Services (SCS) developed the Curve Number (CN) rainfall–
runoff model in 1954. The CN model was derived based on the maximum rainfall and
runoff data that are collected from less than 200 watershed data in 23 different states in the
USA. However, the data and documentation about the initial development of the method
are not complete, and many datasets have been lost, which poses a great challenge in
reassessing the validity of what was used to formulate the SCS’s CN rainfall–runoff model.
The SCS developed the method based on data mainly obtained from watersheds monitored
with rain and streamflow gauges in the US. [6–10]. With the data and effort from SCS, the
SCS’s CN model was developed as follows:

Q =
(P− Ia)

2

P− Ia + S
(1)

where
Q = Runoff depth (mm).
P = Rainfall depth (mm).
Ia = The initial abstraction amount (mm).
S = Maximum potential water retention of a watershed (mm).
Besides developing the model, the SCS also suggested that Ia = λS, in which λ is the

initial abstraction coefficient ratio to relate the Ia and S values. As in 1954, there is a limited
amount of rainfall data; thus, this equation was flimsily justified based on daily rainfall
and runoff data. The only surviving evidence is documented in a different edition of
the Natural Resources Conservation Services’s (NRCS) National Engineering Handbook,
Section 4 (NEH-4) [8–10].

In addition to the model, the SCS also proposed a fixed constant of 0.2 as the value for
the λ, for the equation Ia = λS. Thus, the linear correlation with the form of Ia = 0.2S was
introduced to simplify the SCS’s CN model and the calculations. In NRCS NEH-4, there
is a note mentioning that the reason for proposing the λ as 0.2 is because 50% of the data
points fall between the range of 0.095 < λ < 0.38 [10]. With the substitution of Ia = 0.2S into
the SCS’s CN model, Equation (1) will eventually be simplified into the conventional SCS
runoff forecast model. The conventional (simplified) SCS rainfall–runoff prediction model
is as follows:

Q =
(P− 0.2S)2

P + 0.8S
(2)

where the restriction of P > 0.2S must be obeyed, or else there will be no runoff (Q) occurring.
Since the inception of the CN runoff model in 1954, it has gained high acceptance

in hydrology studies. The model was also frequently applied to hydrologic problems for
which it was not originally designed [11]. The conventional model is commonly introduced
in textbooks, certified hydrological manuals, and even incorporated in many software
as well as programs since 1954 [12]. The model is also integrated into many USDA SCS
systems and hydrology-related models [13]. Since the conventional model is frequently
applied to other hydrologic models, the accuracy and the reliability of the model itself can
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be a major factor that determines the performance of the related software and the reliability
of any handbook that is related to the model.

Throughout the years, there are researchers who have questioned the reliability and
the accuracy of the hypothesis that proposed the fixed value of 0.2 as the value of λ. Based
on the results obtained from different studies based on different regions, different ranges
of λ value had been proposed. For example, the US researchers had suggested a range of
0.02 < λ < 0.07 and λ = 0.05 was the best overall value for American watersheds. On the
other hand, Australian studies reported that the range of the λ should be around 0.2 or
lower [14,15]. This suggested that the λ value will differ accordingly to a different region;
thus, the SCS’s hypothesis of fixing the λ value as 0.2 became ambiguous and led to the
tendency of the CN runoff model to underpredict or overpredict the runoff amount. Some
researchers have overlooked the fact that the λ value is specific to a particular region or
watershed and have even directly adopted λ = 0.05 in their studies, even though it was a
result from the US [7]. Therefore, it is crucial to develop a model calibration methodology
based on the specific rainfall–runoff characteristics of a watershed for SCS practitioners.

In the past six decades, many studies had been carried out to challenge the SCS’s
hypothesis, which fixed the λ value at 0.2. There were also studies that tried to determine
the optimal λ value for the linear modelling that can improve the accuracy and reliability
of the SCS’s CN model.

Reviewing the graphs in Figure 1 (graphs obtained from three different sources), the
data points are all plotted on a log–log scale graph. However, the linear correlation with
the form of Ia = λS was used to formulate and simplify Equation (1) into (2). This can
be a mathematical error or an oversight in the past which leads to the inaccuracy of the
model’s runoff predictive ability. Since the SCS’s field data points were plotted on a log–log
scale graph, the relation between the two key variables (S and Ia) should be in the power
correlation instead of a linear correlation.
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To date, SCS curve number rainfall–runoff-related studies either evolved around its
basic model (Equation (1)) calibration or added new variable(s) to create a runoff model
variant. No published work has explored other possible correlations between Ia and S
and assessed the impact to its rainfall–runoff mechanism yet. Equation (2) exists in all
hydrology textbooks; it also led to curve number derivation and has been applied in many
designs while many types of software incorporated Ia = 0.2S in their algorithms. If Ia and S
correlate otherwise, it will change the whole model and the way SCS curve number theory
is taught. If the fundamental core theory of the SCS curve number rainfall–runoff model
changed, the model and all its related downstream information will have to be re-derived.

2. Materials and Methods

2.1. Validity of the Linear Correlation (Ia = 0.2S) and Introduction of Ia = Sλ

A previous study reassessed the use of the linear correlation of “Ia = 0.2S” based on
the 1954 SCS original dataset and rejected the validity of the linear correlation model of the
form Ia = 0.2S, at alpha level = 0.01. Instead of a constant of λ = 0.2, the study proved that
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the best linear model for the 1954 SCS original dataset should be Ia = 0.112S [16], which
is also in line with the best regressed linear equation of Ia = 0.111S reported in another
study [17]. As the linear correlation of Ia = 0.2S was reported as not statistically significant
when reevaluated using the original 1954 SCS field data, the SCS rainfall–runoff predictive
model Equation (1) should be recalibrated before it is used.

As supported by the power law, if the independent variables and dependent variables
were linearly correlated to each other on a log–log scale graph, then a power regression
equation will be able to correlate both the variables, in terms of the normal scale. Since the
best-fitted linear equation for the 1954 SCS original dataset was reported as Ia = 0.112S or
Ia = 0.111S in the past two studies [16,17], the best fitting model for the same datasets in
a normal scale should be in the power model with the form of Ia = S0.112 or Ia = S0.111 to
simplify Equation (1).

Since Equation (2) had been proven to be insignificant at the alpha level of 0.01 by
past studies [16,17], rederiving the model will be compulsory to ensure the precision of
the model’s runoff predictions. There is no new evidence to suggest a different correlation
between Ia and S due to the SCS’s incomplete documentation and missing datasets. Thus,
this study adopted the model calibration technique developed in our past studies and
thoroughly assessed the use of the power correlation equation in the general form of Ia = Sλ

to simplify the SCS’s CN base model, Equation (1), and recalibrate the runoff prediction
model based on the regional rainfall–runoff dataset using inferential statistics.

2.2. Study Site and Models’ Performance

In this study, the reliability and performance of the recalibrated rainfall–runoff model
were tested using datasets from different locations in Malaysia and datasets from two
previous studies in China and Greece. In Malaysia, the Department of Irrigation and
Drainage’s Hydrological Procedure no. 11 (DID-HP 11) collected 474 rainfall–runoff data
pairs from 1964 to 2016 from watersheds throughout Malaysia, while the Hydrologi-
cal Procedure no. 27 (DID-HP 27) collected 227 rainfall–runoff data pairs from 1970 to
2000 [18,19]. The study also combined the DID-HP 11 and 27 datasets (consisting of 701
data pairs collected from 1970 to 2016) in the analysis. In addition, 72 rainfall–runoff
data pairs collected at the Kerayong watershed in Kuala Lumpur, Malaysia, and 93 data
pairs from the Kayu Ara watershed in the Petaling Jaya area of Malaysia were included
to test the performance of the recalibrated model [20,21]. Data from two journals were
also used in this study: 29 rainfall–runoff data pairs (1994 to 1996) from the Wang Jia Qiao
watershed in the Zigui County of Hubei Province, China, [7] and 76 rainfall–runoff data
pairs from Attica, Greece [22]. Figure 2 shows the locations from which the rainfall–runoff
data were collected.

For purposes of the study, the statistically significant total abstraction value (S), the
initial abstraction ratio coefficient (λ), and the corresponding 99% Confidence Interval
(CI) for both S and λ will be derived via the Bootstrapping method—BCa procedure (with
2000 samples) at alpha = 0.01, by using the IBM Predictive Analytics software (PASW)
version 18.0 (commonly known as SPSS)—as the values will be later used for the calculation
of the Curve Number (CN) value.

The main reason for applying the bootstrap BCa technique is because of its robustness
and data-distribution-free nature, which is suitable for rainfall–runoff data analysis. Addi-
tionally, the bootstrap BCa analytical module is available in SPSS, which is conveniently
used to carry out the necessary analysis for this study. The BCa technique also has the
ability to correct biases when identifying the confidence interval of the variable of interest
at a specific alpha level for further statistical assessments [21,23–26]. Two normality tests
(Kolmogorov–Smirnov and Shapiro–Wilk) are also available in SPSS with the bootstrap BCa
confidence interval to identify whether the mean or median CI should be chosen to identify
the optimal S and optimal λ for each dataset. If the dataset is not normally distributed, the
median CI will be chosen for variable optimization and vice versa.
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Figure 2. Three country locations (seven rainfall–runoff datasets) of this study. (The information of
all the catchment locations is summarized in Appendix E.)

To make sure the overall prediction results were not biased against any of the datasets,
the calibration of the SCS runoff model in identifying the optimum value of λ and S based
on each P–Q data pair was set to fulfil the model prediction bias at zero level. With the zero
bias optimization constraint, the supervised numerical algorithm is proceeded to identify
the optimum λ value and optimum S value, within the bootstrap BCa 99% confidence
interval. The performance and the predictive accuracy of the models were later assessed for
each dataset based on the Nash Sutcliffe Index (E). The Nash Sutcliffe Index is a hydrology
model efficiency indicator, in which E = 1 means the model is an ideal model for the
prediction, while E < 0 shows the model performance is unacceptable [27–29]. The model
bias value of 0 indicates that the model is an ideal, error-free model. Both the Nash Sutcliffe
Index and Bias can be calculated via Equations (3) and (4) as shown below:

E = 1−
∑n

i=1

(
Qpredicted −Qobserved

)2

∑n
i=1

(
Qpredicted −Qmean

)2 (3)

BIAS =
∑n

i=1

(
Qpredicted −Qobserved

)
n

(4)

There is another metric, known as the Kling–Gupta Efficiency (KGE), that has been
proposed to evaluate the performance of rainfall–runoff models. This metric is derived
from the Nash Sutcliffe Index and comprises three components: correlation, variability bias,
and mean bias [30]. The KGE is frequently used by hydrologists to calibrate and assess the
accuracy of rainfall–runoff models [30]. It can be calculated using the following equation:

KGE = 1−

√
(r− 1)2 +

(
σsim
σobs
− 1
)2

+

(
µsim
µobs
− 1
)2

(5)

where
r = linear correlation between observations and simulations
σsim = standard deviation of the simulations
σobs = standard deviation of the observations
µsim = mean of simulations
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µobs = mean of observations
Similar to the E Index, a value of 1 for the KGE indicates a perfect match between

observed and simulated data [30]. A KGE value greater than -0.41 suggests that the model
is performing better than the mean flow benchmark [30].

Unlike in our past studies, the general formula for S was rearranged from Equation
(1) with Ia = λS to determine the value of S using the values of P and Q data pairs with a
closed-form expression for S [7,14,15,21,29]. However, with the introduction of the power
model Ia = Sλ, the general formula for S does not have a closed-form expression in this
study, so a numerical analysis technique will be applied to obtain the value of S. (The
derivation and simplification of the general formula for S based on the power regressed
model are summarized in Appendix A.) As a result, the simplified S general formula
obtained was as follows:

(2Sλ + Q− 2P)
2
= 4SQ + Q2 (6)

The numerical analysis technique will need to be carried out on Equation (6) to
identify the optimal λ and S value, denoted by Sλ, according to the P and Q data pairs
of the respective study sites. Besides the Sλ values obtained from Equation (6) via the
numerical analysis technique, the S0.2 values for each of the P–Q data pairs for all the study
sites were also determined based on the S general equation that was introduced in the
previous study, where the linear correlation was applied, with the form of Ia = 0.2S to
simplify and formulate the current SCS runoff predictive model [6,7,14–17,21,29]. (The S
general Equation that was used to obtain the S0.2 values was summarized in Appendix B.)
The S general equation that was used to obtain the S0.2 values was shown as follows:

S0.2 = 5
(

P + 2Q−
√

4Q2 + 5PQ
)

(7)

Once the Sλ and S0.2 values were obtained with Equations (6) and (7) according to
the corresponding P and Q data pairs, the best correlation between Sλ and S0.2 and the
corresponding best correlation equation can be mapped via the SPSS model regression
module for a study site. When the optimal λ value is different from the conventional value
of λ = 0.2, a correlation between the newly found λ value and 0.2 must be used to calculate
the curve number again [7,11,14,16,21,29]. Therefore, it is important to identify the best
correlation between Sλ and S0.2 and then convert the Sλ back to the equivalent S0.2 value to
derive the conventional SCS curve number (CN0.2) value that SCS practitioners are familiar
with for routine application. The best correlation between Sλ and S0.2 is determined by the
highest adjusted R square value (R2

adj), the lowest standard error of the estimate, and a
model with a significant p value, which can be determined in SPSS through the regression
module [31,32]. (The approach is summarized in Appendix C.)

For example, the best correlation equation from SPSS between Sλ and S0.2 for the
Kerayong watershed, Malaysia, was identified in SPSS as follows:

S0.2 = 3.223 S0.199
0.355 (8)

As introduced by the SCS, the equation to calculate the SCS curve number value is
shown below:

CN0.2 =
25, 400

254 + S0.2
(9)

CN0.2 = Conventional Curve Number, Curve number of λ = 0.2.
S0.2 = Total abstraction amount of λ = 0.2 (mm).
At the same time, Equation (9) can be rearranged into Equation (10):

S0.2 = 254
(

100
CN0.2

− 1
)

(10)
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By substituting the best correlation equation (Equation (8)) back to the SCS curve
number (Equation (9)), the conventional curve number for the study site can be calculated
accordingly:

CN0.2, Kerayong =
25, 400

254 +
[
3.223 (S0.199)

0.355
] (11)

The correlation equation that correlates both Sλ and S0.2 will be very crucial as it
will directly affect the overall performance of the rainfall–runoff model derived from the
power regressed model. The correlation equation is also the key to convert Sλ back to its
equivalent S0.2 value for the calculation of CN0.2 for SCS practitioners [29,32].

3. Results
3.1. Study Site and Models’ Performance

In this study, the S and λ values were calculated for every dataset based on each
corresponding P and Q value. Then, both the Kolmogorov–Smirnov and Shapiro–Wilk
tests were carried out to test the normality of each dataset. Both λ and S were not normally
distributed (ρ < 0.001) for all the datasets except for Wang Jia Qiao watershed in China.
The Kolmogorov–Smirnov and Shapiro–Wilk tests on the λ values showed a significance
level of 0.319 and 0.2, which means that the λ values were normally distributed while S
values were not normally distributed for Wang Jia Qiao’s dataset (ρ < 0.01). This normality
analysis in this study later helps in determining the optimal S value and λ value for each
dataset based on the power regression correlation (Ia = Sλ) within the 99% Confidence
Interval of both S and λ values, accordingly [7,21,29,33,34]. Once the optimal S value and λ

value were obtained for each corresponding dataset, the runoff prediction model can be
formulated (refer to Appendix C section for model formulation guide) and the performance
for each model can be analyzed. Table 1 shows the inferential statistics, which include the
Nash Sutcliffe index (E), optimal S (S), optimal λ, initial absorption (Ia), and the ratio of Ia
to S, for each corresponding dataset.

Table 1. Inferential Statistics of all the datasets, including DID-HP 27, DID-HP 11, the combination of
DID-HP 27 and DID-HP 11, Kerayong, Kayu Ara, Attica, and Wang Jia Qiao.

Dataset & Location E N Bias (mm) KGE Sλ (mm) Ia = Sλ (mm) Ia/S

DID HP 11, Malaysia 0.823 474 2.35 0.805 139.48 3.71 0.027
DID HP 27, Malaysia 0.919 227 0.65 0.956 165.94 2.33 0.014

DID HP 11+27, Malaysia 0.875 701 2.535 0.863 143.99 3.19 0.022
Kayu Ara, Malaysia 0.810 94 0 0.865 24.79 2.20 0.089
Kerayong, Malaysia 0.888 73 0 0.818 9.08 1.55 0.171

Attica, Greece 0.786 77 0 0.798 23.73 1.85 0.078
Wang Jia Qiao, China 0.795 29 0 0.739 386.57 3.57 0.009

All models were optimized under a bias value = 0 constraint, except for DID HP 11,
DID HP 27, and DID HP 11+27, as those models were unable to obtain bias = 0 within their
99% BCa CI. Therefore, those models were optimized to obtain the maximum E Index. The
E and KGE indexes showed good results for all datasets, with the E index ranging from
0.786 to 0.919 and the KGE index ranging from 0.739 to 0.956. The initial absorption (Ia) for
each corresponding dataset was determined using the newly proposed power correlation
of Ia = Sλ. The ratios of Ia to S values were calculated to benchmark against past study
results. The Ia to S ratios (Ia/S) for each study site were in the range of [0.009, 0.171], which
is in line with past results that reported that the ratio of Ia to S was mostly 5% or lower and
nowhere near the value of 0.2 (20%) as initially suggested by the SCS to simplify the SCS
runoff predictive framework into Equation (2) [6,7,11–17,21,22,29,32–34].

The best-fitted correlation equation that correlates Sλ to S0.2 for each dataset was
modelled via SPSS. To measure the fitness of the correlation equation to the datasets, the
adjusted coefficient of determination (R2

adj) for each corresponding equation was also
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identified, together with the ρ-value. The SCS practitioner(s) was taught to choose the CN
value from the NEH handbook according to the land use or land cover condition of the
watershed and to calculate the S value from Equation (9) or (10) directly; however, it is no
longer applicable as the linear correlation of Ia = 0.2S was proven invalid [7,16,17,21,29,33,34].
Thus, the best-fitted correlation equation between Sλ and S0.2 proposed herewith should
be used by the SCS practitioners, in which the optimal S value of each dataset must be
converted back to the equivalent S0.2 value via the mapped correlation equation (Table 2)
prior to calculate the CN0.2 value of a watershed [7,21,29,32–34] from Equation (9) or (10),
as shown in the aforementioned example to derive Equations (8) and (11). SCS practitioners
no longer have to decide and choose the CN value from any handbook; they can derive the
CN value of a specific watershed according to the regional rainfall–runoff conditions.

Table 2. Adjusted coefficient of determination (R2
adj) and ρ-value of all the datasets’ correlation equa-

tions, including DID-HP 27, DID-HP 11, the combination of DID-HP 27 and DID-HP 11, Kerayong,
Kayu Ara in Malaysia, Attica in Greece, and Wang Jia Qiao in China. Power correlation models were
identified as the best correlation model in SPSS with the lowest standard error of estimate.

Dataset & Location Correlation Equation R2
adj p-Value

DID HP 11, Malaysia S0.2 = S0.265
0.878 0.977 <0.001

DID HP 27, Malaysia S0.2 = S0.166
0.874 0.997 <0.001

DID HP 11+27, Malaysia S0.2 = S0.234
0.880 0.998 <0.001

Kayu Ara, Malaysia S0.2 = 4.263 S0.246
0.438 0.893 <0.001

Kerayong, Malaysia S0.2 = 3.223 S0.199
0.355 0.849 <0.001

Attica, Greece S0.2 = 5.057 S0.194
0.357 0.846 <0.001

Wang Jia Qiao, China S0.2 = S0.214
0.702 0.975 <0.001

3.2. Derivation of Curve Number and Its Confidence Interval

The Bootstrapping BCa 99% CI for the S value of each dataset and the correlation
between Sλ and S0.2 were determined using SPSS in this study. The BCa 99% CI for the
corresponding CN0.2 value of each dataset can then be calculated once the respective
correlation equation between Sλ and S0.2 from Table 2 is substituted into Equation (9) or (10)
to derive the equivalent CN0.2 range (refer to derivation steps in Appendix C), as shown in
Table 3. Table 2 lists the best regressed correlation equation identified in SPSS while Table 3
summarizes the Bootstrapping BCa 99% CI for the S value and the calculated CN0.2 value
range of each dataset in this study.

Table 3. Bootstrapping BCa 99% CI for the S value and CN0.2 value of all the datasets’ correlation
equations, including DID-HP 27, DID-HP 11, the combination of DID-HP 27 and DID-HP 11, Kayu
Ara, Kerayong, Attica, and Wang Jia Qiao.

Datasets BCa 99% Confidence Interval

S & Curve Numbers S0.2 (mm) CN0.2

Dataset & Location Lower Upper Lower Upper

DID HP 11, Malaysia 100.99 139.48 76.88 81.54
DID HP 27, Malaysia 118.65 165.94 74.46 79.62

DID HP 11+27, Malaysia 115.01 143.98 76.21 79.60
Kayu Ara, Malaysia 20.75 331.07 82.43 94.04
Kerayong, Malaysia 8.77 397.55 90.40 97.33

Attica, Greece 23.73 314.15 86.57 94.19
Wang Jia Qiao, China 289.86 553.69 75.08 82.60

4. Discussion

4.1. Validity of the Linear Correlation (Ia = 0.2S) and Introduction of Power Regression (Ia = Sλ)

The Soil Conservation Services Curve Number (SCS CN) method is a widely used
method for predicting runoff from precipitation in hydrology studies. It is based on the
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assumption of a linear relationship between infiltration and soil moisture storage, which is
used to estimate the amount of runoff that will occur during a storm event. However, the
accuracy and consistency of the SCS CN method have been questioned by many researchers
due to concerns about the underlying assumptions and the limited range of conditions
under which it has been tested.

Two past studies assessed the linear correlation proposed by the SCS and concluded
that Ia = 0.2S was statistically invalid even to its own dataset [16,17]. In 1954, the SCS
introduced the linear correlation (Ia = 0.2S) to simplify the SCS rainfall–runoff model into
the conventional SCS runoff prediction Equation (2) that is in use until today. However,
worldwide studies reported runoff prediction accuracy and consistency issues with the
model [6,7,11–17,21,22,29–34]. This simplification may have introduced an inherent risk
of Type 2 error into the SCS CN model. (A Type 2 error, also known as a false negative,
occurs when a statistical test fails to reject the null hypothesis when it is actually false.) In
the context of the SCS CN model, this means that the model may incorrectly predict the
runoff amount. The risk of Type 2 error in the SCS CN model has potential implications for
downstream derivations and extended applications of the model in hydrology. Researchers
and practitioners who use the SCS CN model should be aware of this risk and carefully
evaluate the assumptions and limitations of the model in order to ensure the accuracy and
reliability of their results.

The 1954 SCS original dataset was plotted on a log–log scale graph, but the SCS
adopted a linear correlation to correlate both S and Ia directly to simplify its model frame-
work without taking the antilog form [8–10]. In the authors’ opinion, it is possible that the
antilog correlation form was not used in the past due to technical limitations in simplifying
Equation (1) with Ia = S0.2 without the use of computers, or the fundamental mathematical
mistake was overlooked. Two past studies reassessed the correlation between S and Ia
according to the 1954 SCS original dataset and reported that the best correlation equation
should be Ia = 0.111S or Ia = 0.112S on the log–log scale graph [16,17]. As such, the antilog
form or the power regression equations of Ia = S0.111 or Ia = S0.112 will be better correlation
equations to the SCS original dataset as compared to what the SCS had proposed (Ia = 0.2S).
This finding necessitated the development of a revised form of the SCS rainfall–runoff
model that incorporates the power correlation between Ia and S in the general form of
Ia = Sλ to simplify Equation 1 and rederive a new SCS runoff predictive model. The cal-
ibration of the SCS rainfall–runoff model (Equation (1)) can be performed based on the
newly proposed power regressed model according to the regional or watershed specific
rainfall–runoff dataset to improve the runoff prediction accuracy.

The SCS CN basic model is in the form of Q = f(P, λ, S), so there are only two key
parameters for optimization. In contrast to previous studies that calibrated the SCS CN
model with the Ia = λS equation according to watershed-specific rainfall–runoff datasets
using inferential statistics and reported that λ = 0.2 was not statistically significant at the
alpha = 0.05 level for modeling runoff [7,16,21,29,33,34], the novelty of this study is to
calibrate the SCS CN model with Ia = Sλ and formulate new CN runoff prediction models.
To date, no other researchers have attempted to do this.

This study preserved its fundamental framework without adding any new parameters
in order to study the possibility of using Ia = Sλ to calibrate and formulate the runoff
predictive model. It is noteworthy to highlight that although Equation (2) was able to
achieve attractive E and KGE index values (Appendix D, Table A2) in certain datasets, the
λ value of 0.2 was not significant even at α = 0.05 level for any dataset in this study. As
such, the conventional SCS simplified model (Equation (2)) is not statistically significant for
modelling any rainfall–runoff in this study. All SCS models have a tendency to underpredict
runoff in this study. Additionally, the Ia value of all SCS models violated a requirement
from the SCS CN theory which states that there will be no runoff when the rainfall depth
(P) is less than the Ia value. Table A2 tabulates the total count of rainfall–runoff data pairs
where the recorded P value is less than the SCS model’s Ia value. In contrast, none of the
newly formulated power models have this issue.
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4.2. Application of the Power Regression Model at Different Study Sites

In this study, datasets were collected from Malaysian watersheds (DID-HP 11 and
DID-HP 27, Kerayong and Kayu Ara watershed in Kuala Lumpur area) while two past
study datasets were adopted from the Attica watershed in Greece and the Wang Jia Qiao
watershed in China. The analytical results showed that the power regression model is
able to obtain high runoff predictive ability at all study sites consistently (Appendix D,
Table A1) when compared to the conventional SCS runoff predictive model (Equation (2)).
The calculated ratio values of Ia to S (Ia/S) for all the study sites were in the range of
[0.009, 0.171] (Table 1) which is in line with past results whereby the ratios were mostly
5% or lower and nowhere near to the value of 0.2 (20%) as initially suggested by the
SCS [6,7,11–17,21,22,29,32–34]. It is in line with the results of the largest scale of field tests
on the SCS CN model, which analyzed more than half a million rainfall events across
24 states in the USA and reported that Ia/S values were mostly below 5% to achieve better
runoff modeling results in American watersheds [17,29,32]. Using the revised CN model
may allow for more accurate and reliable predictions of runoff in different types of soils and
hydrological conditions. This can be particularly useful for water resource management,
as it allows for more informed decision making about the availability of water for various
uses and the potential for flood hazards. It is important for researchers and practitioners to
be aware of the revised form of the SCS rainfall–runoff model and to consider its use in
their work.

4.3. Application of Machin-Learning Techniques to the Rainfall Runoff Model

In recent decades, there has been a significant increase in the use of machine learning
in hydrology studies in Latin America and the Caribbean (LAC) [35–38]. Researchers have
introduced various machine-learning techniques, such as long short-term memory (LSTM),
Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Perceptron (MLP), Wavelet
Neural Network (WNN), Ensemble Prediction Systems (EPS), Support Vector Machine
(SVM) and Support Vector Regression (SVR), and Artificial Neural Networks (ANN), to
improve the accuracy and performance of predictive models [35]. Hybrid machine-learning
approaches, such as ANFIS and WNN, have also been found to have improved accuracy and
performance for long-term and short-term rainfall–runoff models [35]. Machine learning
can also be used to overcome the issue of lacking time series data for flow hydrographs due
to the absence of gauged stations by utilizing flood modelling methods such as the reverse
flood routing model, HEC-RAS, and GIS flood maps [38]. It is possible that machine-
learning techniques can be combined with the newly proposed rainfall–runoff model from
this study.

5. Conclusions

This study proposed a new correlation model to improve the accuracy of the SCS (Soil
Conservation Service) rainfall–runoff predictive model, using inferential statistics. The key
findings of the study are as follows:

1. The linear correlation hypothesis (Ia = 0.2S) proposed by the SCS was found to be
statistically invalid, even in the 1954 original dataset. Therefore, it is important to
revise the current conventional SCS runoff prediction model to better prepare for
the challenges posed by climate change conditions. The use of Ia = 0.2S to simplify
equation (1) into the conventional SCS runoff model (equation 2) may have been an
oversight in 1954. The power correlation equation (Ia = S0.111 or Ia = S0.112) should
be used to simplify the 1954 SCS runoff model equation (1) and derive the runoff
predictive model, as the original SCS dataset was plotted on a log–log graph.

2. The newly proposed power regression model (Ia = Sλ) demonstrates good runoff
prediction ability at different study sites, including those in Malaysia, Greece, and
China. The calibrated SCS rainfall–runoff model based on the proposed power regres-
sion model is promising for modelling the rainfall–runoff characteristics of different
watersheds in different countries. The ratio of Ia to S for all study sites is mostly 5% or
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lower, which is in line with past worldwide study results and much lower than the
value of 0.2 (20%) as suggested by the SCS.

3. There is concern about the use of the original form of the SCS CN model in educa-
tion, as it may teach students an oversimplified and potentially inaccurate model for
predicting runoff, which could have serious consequences for fields such as water
resource management, environmental science, and civil engineering. There is also
concern about the widespread use of the original form of the model in educational
materials, such as textbooks, software, and government agency handbooks and train-
ings, which may perpetuate the use of an oversimplified and potentially inaccurate
model for predicting runoff.

4. The proposed methodology has several limitations, including the need for a minimum
sample size of at least 20 data pairs to obtain meaningful inferential results and the
reliance on the bootstrap BCa method to produce confidence intervals for key variable
optimization and the formulation of a new runoff predictive model. The statistical
software used must also include the bootstrap BCa method as an option. There
are several areas of research that have not been explored in this manuscript due to
financial and time constraints. Future studies will examine the potential impacts of
the proposed model on flood risk, financial losses caused by flooding, and its potential
for downstream development and wider application.
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Appendix A

Referring to Section 1, the SCS-CN rainfall–runoff model was successfully rearranged
into the S general formula, as the S general formula will be the main approach to obtain the
S values, based on the available P-Q datasets.

The SCS-CN rainfall–runoff model is defined as followed:

Q =
(P− Ia )

2

(P− Ia + S)

where
Q = Runoff depth (mm).
P = Rainfall depth (mm).
Ia = The initial abstraction amount (mm).
S = Maximum potential water retention of a watershed (mm).
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The S general formula was derived based on the conventional SCS CN rainfall–runoff
model, where the hypothesis of the linear correlation between Ia and S was applied with the
form of Ia = 0.2S. The conventional SCS CN rainfall–runoff model was defined as followed:

Q =
(P− 0.2S)2

P + 0.8S

where the restriction of P > 0.2S must be obeyed, or else there will be no runoff (Q) occurring.
As shown in Figure 1 in Section 1, the original datasets were plotted in a log–log scaled

graph; thus, instead of a linear regressed model, a power regressed model is more suitable
to be applied to the SCS CN model to capture the original datasets, according to the power
law. In this study, the power regressed model (Ia = Sλ) had substituted the linear regressed
model (Ia = λS); thus, the simplification of the SCS CN model will be carried out, as the
attempt to obtain a closed form for the S general formula, similar to the previous study.
In this derivation, the power regressed model is included in the SCS CN rainfall–runoff
model and followed by the simplification of the model to obtain the closed-form S general
formula for the new calibrated runoff model:

New found correlation in Power form : Ia = Sλ

Q =
(P−Sλ)

2

(P−Sλ+S)

Q
(

P− Sλ + S
)
= (P − Sλ)

2

QP−QSλ + SQ = P2 − 2PSλ + S2λ

QP− P2 = S2λ − 2PSλ + QSλ − SQ
QP− P2 = S2λ + (Q− 2P)Sλ − SQ

QP− P2 = S2λ + (Q− 2P)Sλ +
(

Q−2P
2

)2
− SQ−

(
Q−2P

2

)2

QP− P2 = (Sλ + Q−2P
2 )

2 − SQ−
(

Q−2P
2

)2

(Sλ + Q−2P
2 )

2
= SQ + QP +

(
Q−2P

2

)2
− P2

(Sλ + Q−2P
2 )

2
= 1

4

(
4SQ + 4PQ + Q2 − 4PQ + 4P2 − 4P2

)
(Sλ + Q−2P

2 )
2
= 1

4

(
4SQ + Q2

)
(2Sλ + Q− 2P)

2
= 4SQ + Q2 (A1)

Since there is no further simplification of the model that can be proceeded, the simplest
form for the S general formula will be Equation (A1).

As for now, there is no closed form for the S general formula obtained from the new
calibrated model; therefore, the numerical analysis techniques will be used to obtain the
S value based on S general formula. (Equation (A1) is also known as Equation (6) in
this article.)

Appendix B

Several attempts had been made by the researchers in the previous research studies to
obtain the S general formula, where the linear correlation with the form of Ia = λS is still
intact with the SCS CN rainfall–runoff model. The rearrangement of the SCS CN rainfall
runoff model, eventually the S general formula, was as follows [7]:

Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ− P2 +
[
P− (λ−1)Q

2λ

]2

λ
(A2)
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To obtain the S0.2 values, the λ for Equation (A2) was set to be 0.2. When λ = 0.2,
eventually the Equation (A2) can be simplified as follows:

S0.2 =

[
P− (0.2−1)Q

2(0.2)

]
−
√

PQ− P2 +
[
P− (0.2−1)Q

2(0.2)

]2

0.2

S0.2 = 5

[P +
(0.8)Q

0.4

]
−

√
PQ− P2 +

[
P +

(0.8)Q
0.4

]2


S0.2 = 5
(
[P + 2Q]−

√
PQ− P2 + [P + 2Q]2

)
S0.2 = 5

(
[P + 2Q]−

√
PQ− P2 + P2 + 4PQ + 4Q2

)
S0.2 = 5

(
P + 2Q−

√
4Q2 + 5PQ

)
(A3)

Equation (A3) represents the S general equation where the λ = 0.2, which helps to
obtain the S0.2 values based on the P and Q values accordingly. Equation (A3) was also the
same as the previous research study from Hawkins [6,7,17].

Thus, with Equation (A3), the value for S0.2 can be obtained for each P–Q data pair
from all the study sites. Then, only the correlation between the S0.2 and Sλ for each study
site can be determined via SPSS, and, later, the correlation equation will be substituted
back into the SCS CN curve number model to derive the CN0.2 values for each dataset.
(Equation (A3) is also known as Equation (7) in this article.)

Appendix C

Since the power regressed model was introduced into the SCS CN rainfall runoff
model in this study, the calibration and the derivation of the CN0.2 value has to be adjusted
as well as shown below:

CN0.2 formula : CN0.2 =
25, 400

254 + S0.2

The CN0.2 value derivation and the calibration steps were summarized as follows:

1. Given that the effective rainfall (Pe) = P − Ia and Ia = λS, the SCS runoff model
(Q = P−Ia

P−Ia+S ) can be rearranged as follows:

Q =
Pe

2

Pe + S

where S = Pe
2

Q − Pe and λ = Ia
S .

2. For each P–Q data pair (Pi, Qi), calculate corresponding λi and Si values via numerical
analysis techniques.

3. Perform bootstrap BCa procedure, Shapiro–Wilk, and Kolmogorov–Smirnov tests
in SPSS (version 18.0 or an equivalent statistics software) for (λi, Si) to check on the
normality of both λi and Si. Check the Shapiro–Wilk and Kolmogorov–Smirnov test
results of Si and λi to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for Si and λi optimization.
(b) Otherwise, refer to the median BCa confidence interval for Si and λi optimiza-

tion.

4. Based on the normality of λi and Si, calculate the optimal value for λi and Si, denoted
by λoptimum and Soptimum.
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5. Substitute the λoptimum and Soptimum value into Q = P−Ia
P−Ia+S , where Ia = Sλ, to formu-

late the new SCS CN rainfall–runoff model and calibrate the model according to the
given P–Q datasets.

6. Given (Pi, Qi) data pairs, compute Si values and λoptimum with (2Si
λ + Q− 2P)2

=

4SiQ + Q2 (Equation (A1) or (6)) via Excel’s numerical iteration. To date, there is no
closed form for the S general equation formula.

7. Given (Pi, Qi) data pairs and λ = 0.2, compute S0.2i values with Equation (A3) or (7).
8. Correlate S0.2i and Si to obtain a correlation equation between S0.2i and Si via SPSS (or

an equivalent statistics software).
9. Substitute the S correlation equation from step 9 into the SCS curve number formula

CN0.2 = 25,400
S0.2+254 to derive CN0.2 value for the watershed of interest.

Note: Refer to the example discussion from Equations (8)–(11) in the article.

Appendix D

In Section 3.1, the performance of the newly calibrated predictive models was tabulated
in Table 1 for each of the study sites. Tables A1 and A2 below show the comparison of
runoff predictions for those recalibrated models and the conventional SCS CN rainfall
runoff models (Equation (2)).

Table A1. Power models’ runoff prediction comparison for each study site.

Datasets
New SCS (Power) Model

Remark
E BIAS KGE

DID HP 11, Malaysia 0.823 2.347 0.805 Ia < min rainfall data
DID HP 27, Malaysia 0.919 0.647 0.956 Ia < min rainfall data

DID HP 11+27, Malaysia 0.875 2.531 0.863 Ia < min rainfall data
Kayu Ara, Malaysia 0.810 0 0.865 Ia < min rainfall data
Kerayong, Malaysia 0.888 0 0.818 Ia < min rainfall data

Attica, Greece 0.786 0 0.798 Ia < min rainfall data
Wang Jia Qiao, China 0.795 0 0.739 Ia < min rainfall data

Table A2. Conventional SCS CN models’ runoff prediction comparison for each study site.

Datasets
SCS Model (Equation (2))

Remark
E BIAS KGE

DID HP 11, Malaysia 0.839 −6.104 0.759 Ia > 60 rainfall data (12.7%)
DID HP 27, Malaysia 0.910 −4.085 0.895 Ia > 6 rainfall data (2.6%)

DID HP 11+27, Malaysia 0.879 −4.451 0.863 Ia > 68 rainfall data (9.7%)
Kayu Ara, Malaysia 0.805 −1.162 0.831 Ia > 6 rainfall data (6.5%)
Kerayong, Malaysia 0.891 −0.885 0.843 Ia > 2 rainfall data (2.8%)

Attica, Greece 0.780 −1.846 0.784 Ia > 5 rainfall data (6.6%)
Wang Jia Qiao, China 0.482 1.586 0.418 Ia > 4 rainfall data (13.8%)

Note: ń = 0.2 is not significant at α = 0.05 level for any dataset. SCS CN theory requires Ia < rainfall depth (P).

It is noteworthy to highlight that Equation (2) was not significant even at α = 0.05
level for any dataset in this study. As such, it is not statistically significant to model any
rainfall–runoff in this study. The Ia value of all SCS models violated a requirement from
the SCS CN theory that Ia < the rainfall depth (P). Table A2 tabulates the total count of
rainfall–runoff data pairs where the recorded P value is less than the SCS model’s Ia value.
In contrast, none of the newly formulated power models have this issue. The conventional
SCS runoff model (Equation (2)) has a model bias ranging from -6.104 to 1.586 in this study,
indicating inconsistency in its runoff predictions with an underprediction concern. In the
context of climate change, the conventional SCS runoff predictive model is not reliable for
accurately estimating runoff amounts.
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Appendix E

In Section 2.2, this study had mentioned that there will be six study sites from three
countries in the study, which are from Malaysia, Greece, and China. The geographic
coordinates of each catchment area that was included in those study sites had been obtained
and tabulated in Table A3.

Table A3 shows the geographic coordinates of each catchment area that was included
in the study sites from three different countries.

Table A3. The geographic coordinates of each catchment area that was included in the study sites
from three different countries.

No. Catchment Locations Latitude Longitude

1 Attica, Greece 38◦ 4′ N 23◦ 50′ E
2 Wangjiaqiao, China 31◦ 8′ N 111◦ 41′ E

Peninsula Malaysian Catchments
1 Kayu Ara, Malaysia 3◦ 8′ N 101◦ 37′ E
2 Kerayong, Malaysia 3◦ 6′ N 101◦ 42′ E
3 Parit Madirono di Weir 1◦ 41′ N 103◦ 16′ E
4 Sg. Johor di Rantau Panjang 1◦ 46′ N 103◦ 44′ E
5 Sg. Sayong di Jam. Johor Tenggara 1◦ 48′ N 103◦ 40′ E
6 Sg. Kahang di Bt.26 Jln. Kluang 2◦ 15′ N 103◦ 35′ E
7 Sg. Lenggor di Bt.42 Kluang/Mersing 2◦ 15′ N 103◦ 44′ E
8 Sg. Muar di Buloh Kasap 2◦ 33′ N 102◦ 45′ E
9 Sg. Serting di Jam.Padang Gudang 3◦ 06′ N 102◦ 28′ E

10 Sg. Triang di Jam. Keretapi 3◦ 14′ N 102◦ 24′ E
11 Sg. Bentong di Kuala Marong 3◦ 30′ N 101◦ 54′ E
12 Sg. Lepar di Jam. Gelugor 3◦ 41′ N 102◦ 58′ E
13 Sg. Kuantan di Bukit Kenau 3◦ 55′ N 103◦ 03′ E
14 Sg. Lipis di Benta 4◦ 01′ N 101◦ 57′ E
15 Sg. Cherul di Ban Ho 4◦ 08′ N 103◦ 10′ E
16 Sg. Kemaman di Rantau Panjang 4◦ 16′ N 103◦ 15′ E
17 Sg. Dungun di Jam. Jerangau 4◦ 50′ N 103◦ 12′ E
18 Sg. Berang di Menerong 4◦ 56′ N 103◦ 03′ E
19 Sg. Telemong di Paya Rapat 5◦ 10′ N 102◦ 54′ E
20 Sg. Lebir di Kg. Tualang 5◦ 16′ N 102◦ 16′ E
21 Sg. Nerus di Kg. Bukit 5◦ 17′ N 102◦ 55′ E
22 Sg. Chalok di Jam. Chalok 5◦ 26′ N 102◦ 50′ E
23 Sg. Lanas di Air Lanas 5◦ 47′ N 101◦ 53′ E
24 Sg. Besut di Jambatan Jerteh 5◦ 44′ N 102◦ 29′ E
25 Sg. Pelarit di Titi Baru 6◦ 35′ N 100◦ 12′ E
26 Sg. Buloh di Kg. Batu Tangkup 6◦ 33′ N 100◦ 17′ E
27 Sg. Kulim di Ara Kuda 5◦ 26′ N 100◦ 30′ E
28 Sg. Kerian di Selama 5◦ 13′ N 100◦ 41′ E
29 Sg. Plus di Kg. Lintang 4◦ 56′ N 101◦ 06′ E
30 Sg. Raia di Keramat Pulai 4◦ 32′ N 101◦ 08′ E
31 Sg. Kampar di Kg. Lanjut 4◦ 20′ N 101◦ 06′ E
32 Sg. Bidor di Bidor Malayan Tin Bhd. 4◦ 04′ N 101◦ 14′ E
33 Sg. Sungkai di Sungkai 3◦ 59′ N 101◦ 18′ E
34 Sg. Slim At Slim River 3◦ 49′ N 101◦ 24′ E
35 Sg. Bernam di Tanjung Malim 3◦ 40′ N 101◦ 31′ E
36 Sg. Selangor di Rasa 3◦ 30′ N 101◦ 38′ E
37 Sg. Gombak di Damsite 3◦ 14′ N 101◦ 42′ E
38 Sg. Batu di Kg. Sg. Tua 3◦ 16′ N 101◦ 41′ E
39 Sg. Lui di Kg. Lui 3◦ 10′ N 101◦ 52′ E
40 Sg. Langat di Dengkil 2◦ 59′ N 101◦ 47′ E
41 Sg. Linggi di Sua Betong 2◦ 40′ N 101◦ 55′ E
42 Sg. Melaka di Pantai Belimbing 2◦ 20′ N 102◦ 15′ E
43 Sg. Kesang di Chin Chin 2◦ 17′ N 102◦ 29′ E
44 Sg Sembrong di Bt 2 Air Hitam, Yong Peng 2◦ 4′ N 103◦ 22′ E
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45 Sg Segamat di Segamat 2◦ 31′ N 102◦ 51′ E
46 Sg Sayong di Johor Tenggara 1◦ 48′ N 103◦ 35′ E
47 Sg Muar di Bt 57 Jln GemasRompin 2◦ 25′ N 102◦ 30′ E
48 Sg Lepar di Jam Gelugor 3◦ 43′ N 102◦ 56′ E
49 Sg Lenggor di Bt 42 KluangMersing 2◦ 12′ N 103◦ 41′ E
50 Sg Kuantan di Bkt Kenau 3◦ 53′ N 103◦ 8′ E
51 Sg Kepis di Jam Kayu Lama 2◦ 41′ N 102◦ 20′ E
52 Sg Kemaman di Rantau Panjang 4◦ 15′ N 103◦ 16′ E
53 Sg Kecau di Kg Dusun 4◦ 22′ N 102◦ 6′ E
54 Sg Kahang di Bt 26 Jln Kluang 2◦ 10′ N 103◦ 31′ E
55 Sg Johor di Rantau Panjang 1◦ 37′ N 103◦ 54′ E
56 Sg Cherul di Ban Ho 4◦ 10′ N 103◦ 8′ E
57 Sg Berang di Menerong 4◦ 57′ N 103◦ 0′ E
58 Sg Bentong di Jam K Marong 3◦ 31′ N 101◦ 55′ E
59 Sg Bekok di Bt 77 Jln Yong Peng/Labis 2◦ 7′ N 103◦ 6′ E
60 Sg Sungkai di Sungkai 4◦ 2′ N 101◦ 18′ E
61 Sg Raia di Keramat Pulai 4◦ 35′ N 101◦ 14′ E
62 Sg Pari di Jln Silibin, Ipoh 4◦ 36′ N 101◦ 4′ E
63 Sg Semenyih di Sg Rinching 2◦ 56′ N 101◦ 50′ E
64 Sg Selangor di Rasa 3◦ 27′ N 101◦ 27′ E
65 Sg Plus di Kg Lintang 4◦ 56′ N 101◦ 9′ E
66 Sg Pelarit di Wang Mu 6◦ 34′ N 100◦ 13′ E
67 Sg Melaka di Pantai Belimbing 2◦ 20′ N 102◦ 14′ E
68 Sg Lui di Kg Lui 3◦ 9′ N 101◦ 54′ E
69 Sg Linggi di Sua Betong 2◦ 37′ N 101◦ 60′ E
70 Sg Langat di Dengkil 2◦ 58′ N 101◦ 38′ E
71 Sg Kurau di Pondok Tg 4◦ 59′ N 100◦ 32′ E
72 Sg Kulim di Ara Kuda 5◦ 23′ N 100◦ 32′ E
73 Sg Kerian di Selama 5◦ 12′ N 100◦ 38′ E
74 Sg Kinta di Weir G, Tg Tualang 4◦ 21′ N 101◦ 3′ E
75 Sg Kesang di Chin Chin 2◦ 17′ N 102◦ 31′ E
76 Sg Durian Tunggal di Bt 11 Air Resam 2◦ 19′ N 102◦ 17′ E
77 Sg Cenderiang di Bt 32 Jln Tapah 4◦ 15′ N 101◦ 10′ E
78 Sg Bidor di Bidor Malayan Tin Bhd 4◦ 2′ N 101◦ 11′ E
79 Sg Bernam di Tg Malim 3◦ 46′ N 101◦ 3′ E
80 Sg Selangor di Rantau Panjan 3◦ 27′ N 101◦ 27′ E

Sabah State, Malaysian Catchments
1 Sg Tawau di Kuhara 4◦ 16′ N 117◦ 53′ E
2 Sg Kalabakan di Kalabakan 4◦ 27′ N 117◦ 23′ E
3 Sg Kalumpang di Mostyn Bridge 4◦ 38′ N 118◦ 9′ E
4 Sg Talangkai di Lotong 4◦ 43′ N 116◦ 26′ E
5 Sg Mengalong di Sindumin 4◦ 59′ N 115◦ 34′ E
6 Sg Kuamut di Ulu Kuamut 5◦ 4′ N 117◦ 26′ E
7 Sg Lakutan di Mesapol Quarry 5◦ 7′ N 115◦ 37′ E
8 Sg Segama di Limkabong 5◦ 7′ N 118◦ 7′ E
9 Sg Sook di Biah 5◦ 15′ N 116◦ 8′ E
10 Sg Baiayo di Bandukan 5◦ 26′ N 116◦ 8′ E
11 Sg Apin-Apin di Waterworks 5◦ 29′ N 116◦ 15′ E
12 Sg Kegibangan di Tampias P.H. 5◦ 41′ N 116◦ 22′ E
13 Sg Papar di Kaiduan 5◦ 46′ N 116◦ 5′ E
14 Sg Papar di Kogopon 5◦ 42′ N 116◦ 2′ E
15 Sg Labuk di Tampias 5◦ 43′ N 116◦ 51′ E
16 Sg Moyog di Penampang 5◦ 54′ N 116◦ 6′ E
17 Sg Tungud di Basai 6◦ 3′ N 117◦ 18′ E
18 Sg Tuaran di Pump House 1 6◦ 9′ N 116◦ 14′ E
19 Sg Sugut di Bukit Mondou 6◦ 11′ N 117◦ 14′ E
20 Sg Kadamaian di Tamu Darat 6◦ 15′ N 116◦ 27′ E
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21 Sg Wariu di Bridge No.2 6◦ 19′ N 116◦ 29′ E
22 Sg Bongan di Timbang Batu Sabah 6◦ 26′ N 116◦ 48′ E
23 Sg Bengkoka di Kobon 6◦ 37′ N 117◦ 2′ E

Sarawak State, Malaysian Catchments
1 Sg Kayan di Krusen 1◦ 4′ N 110◦ 29′ E
2 Sg Kedup di New Meringgu 1◦ 3′ N 110◦ 33′ E
3 Sg Entebar di Entebar 1◦ 0′ N 111◦ 32′ E
4 Sg Ai di Lubok Antu 1◦ 2′ N 111◦ 49′ E
5 Sg Sabal Kruin di Sabal Kruin 1◦ 8′ N 110◦ 53′ E
6 Sg Sarawak Kanan di Pk Buan Bidi 1◦ 23′ N 110◦ 6′ E
7 Sg Sarawak Kiri di Kg Git 1◦ 21′ N 110◦ 15′ E
8 Sg Tuang di Kg Batu Gong 1◦ 20′ N 110◦ 26′ E
9 Sg Sekerang di Entaban 1◦ 19′ N 111◦ 37′ E

10 Sg Layar di Ng Lubau 1◦ 29′ N 111◦ 35′ E
11 Sg Sebatan di Sebatan 1◦ 48′ N 111◦ 20′ E
12 Sg Katibas di Ng Mukeh 1◦ 50′ N 112◦ 37′ E
13 Sg Sarikei di Ambas 1◦ 58′ N 111◦ 30′ E
14 Btg Rajang di Ng Ayam 1◦ 56′ N 111◦ 53′ E
15 Sg Oya di Setapang 3◦ 1′ N 112◦ 35′ E
16 Btg Mukah di Selangau 2◦ 54′ N 112◦ 5′ E
17 Sg Sibiu di Sibiu (Atc) 3◦ 13′ N 113◦ 9′ E
18 Sg Limbang di Insungai 4◦ 44′ N 114◦ 59′ E
19 Sg Trusan di Long Tengoa D 4◦ 35′ N 115◦ 20′ E
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