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Abstract: The integration of microarray technologies and machine learning methods has become
popular in predicting the pathological condition of diseases and discovering risk genes. Traditional
microarray analysis considers pathways as a simple gene set, treating all genes in the pathway
identically while ignoring the pathway network’s structure information. This study proposed an
entropy-based directed random walk (e-DRW) method to infer pathway activities. Two enhancements
from the conventional DRW were conducted, which are (1) to increase the coverage of human
pathway information by constructing two inputting networks for pathway activity inference, and
(2) to enhance the gene-weighting method in DRW by incorporating correlation coefficient values
and t-test statistic scores. To test the objectives, gene expression datasets were used as input datasets
while the pathway datasets were used as reference datasets to build two directed graphs. The within-
dataset experiments indicated that e-DRW method demonstrated robust and superior performance
in terms of classification accuracy and robustness of the predicted risk-active pathways compared to
the other methods. In conclusion, the results revealed that e-DRW not only improved the prediction
performance, but also effectively extracted topologically important pathways and genes that were
specifically related to the corresponding cancer types.

Keywords: directed random walk; pathway-based analysis; cancer classification

1. Introduction

The accurate prediction of prognosis and the metastatic potential of cancer is a major
challenge in clinical cancer research. Through the evolution of high-throughput tech-
nologies, deoxyribonucleic acid (DNA) microarray analysis can classify tumor samples
overriding the traditional diagnostic methods. This technology allows for the extraction
of a huge amount of molecular information, which aids in the discovery of tumor-specific
biomarkers. However, the reproducibility of individual gene biomarkers has been chal-
lenging, as the identified gene markers in one dataset failed to predict the same disease
phenotype obtained in other datasets [1]. This discrepancy is usually due to the cellular
heterogeneity within tissues, the inherent genetic heterogeneity across patients, and the
measurement error in microarray platforms [2]. Furthermore, microarray analysis of gene
expression data generally produces plenty of genes from patients with the same diseases,
hence, leading to a high dimension small sample size problem. All of these factors often
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decrease the prediction performance and reproducibility of individual gene biomarkers in
independent cohorts of patients.

To address the unreliable or inconsistent prediction of gene biomarkers in datasets,
biological pathway data were introduced to identify robust pathway biomarkers in func-
tional categories [3–6]. As gene products are known to function coordinately in functional
modules, the mutual interest between the pathway data and gene expression data can
extract function-related genes to produce consistent and reproducible biomarkers [7]. Such
biomarkers at the functional level can reduce the impact of noise in the microarray data
by allowing for a more accurate biological interpretation of the disease-canonical pathway
correlations [2]. In fact, several studies [3,4,8,9] have shown that pathway markers are
more reliable compared to single gene markers as they provide crucial biological insights
into the underlying processes that give rise to various disease phenotypes. Furthermore,
pathway-based classifiers often achieve comparable or better classification performance
compared to conventional gene-based classifiers [4,5].

In cancer classification, a robust gene weight merit is vital to reflect the importance
of genes from different aspects and establish significant genes with related diseases [10].
Several studies in pathway-based methods typically use the t-test as the gene weighting
method to measure the gene expression levels for further cancer classification. Consider that
those existing pathway-based methods including directed random walk (DRW), significant
DRW, and pathway activity inference using condition-responsive genes (PAC method) all
targeted on the t-test as the single statistical measurement to weigh each gene in the gene
expression data. However, the lack of a comprehensive gene weighting method could affect
the classification performance of pathway-based methods [10,11].

To combat the aforementioned issue, this study proposed an entropy-based directed
random walk (e-DRW) on two separated biological networks that enhances the accuracy of
cancer classification. Two inputting networks were proposed for the random walking of e-
DRW, which comprises 328 KEGG pathways collected from the KEGG database [12] and 208
pathways gathered from the Pathway Interaction Database (PID) [13]. The representation
of two biological networks (KEGG-PID) is known as the directed pathway network. An
improved gene weighting strategy using point biserial correlation (PBC) coefficients and
the T-test was proposed in e-DRW. The gene weighting method modeled the combined
effect of the statistical measurement of the gene expression levels with the class label
(normal, cancer). The weight initialization of genes and the scoring of pathways were
further enhanced by the application of the entropy metric to calculate the pathway activity
score. The proposed method was implemented in the R platform with version 4.2.1 in 64-bit
using Windows 10 (refer the supplementary e-DRW R package for more details). Figure 1
shows the workflow of e-DRW. The steps involved in e-DRW include data pre-processing
and the construction of biological networks, normalization based on z-scores, differential
expression analysis, entropy-based directed random walk, entropy-based pathway activity
inference, and classification.
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2. Materials and Methods

This section presents the materials and methodology used in e-DRW. Based on Figure 1,
each of the steps involved in the workflow of e-DRW will be described thoroughly.

2.1. Data Pre-Processing and Construction of Biological Networks

The first step in e-DRW is data pre-processing and the construction of biological
networks. Six gene expression datasets were obtained from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus (GEO) database, which are lung [14],
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stomach [15], liver [16], kidney [17], thyroid [18], and breast [19] cancer datasets. The col-
lected datasets undergo data pre-processing to produce the cleaned gene expression data.
There are two phases involved in data pre-processing: (i) data cleaning and imputation,
and (ii) the normalization of the gene expression data. In the first phase, the unwanted
and empty values of the attributes were removed. The unwanted attributes include patient
biological information and dataset information that is not applicable in cancer classification
whereas empty values of attributes refer to the missing values that appeared across the
rows in the gene expression dataset. Then, rows with incomplete values of attributes were
imputed with mean values to resolve the inconsistencies in data. The completed dataset
following the application of the mean imputation was used for inference. However, the
rearrangement of data was run through before proceeding to the next phase. The normal-
ization step in the second phase typically included thresholds or flooring to remove poorly
detected probes and log2 transformation to normalize the distribution of probes across the
intensity range of the experiment. Gene Pattern was used for dataset pre-processing to
remove platform noise and genes that have little variation [20]. Table 1 shows the details of
the datasets after data preprocessing.

Table 1. Gene expression datasets after pre-processing.

Cancer GEO ID Platform ID
Number of Genes Number of Cancerous

Samples
Number of

Normal Samples
Total Number of

SamplesRaw Cleaned

Lung GSE10072 GPL96 22283 12986 58 49 107
Stomach GSE13911 GPL570 54675 12419 38 31 69

Liver GSE17856 GPL6480 25075 13802 43 44 87
Kidney GSE15641 GPL96 22283 11593 69 23 92
Thyroid GSE33630 GPL570 54675 12986 60 45 105
Breast GSE3494 GPL96 22283 12986 60 176 236

On the other hand, a directed pathway network was constructed based on the pathway
information obtained from the KEGG database and PID database. First, each KEGG path-
way was converted into a directed graph using the NetPathMiner [21] software package. A
total of 328 human pathways were merged to form the KEGG network, covering 6667 nodes
and 116,773 directed edges. Subsequently, each PID pathway was converted into another
directed graph using the PaxtoolsR [22] software package. A total of 208 human pathways
were merged to form the PID network, covering 2817 nodes and 39,289 directed edges.
Each node in the graph represented a gene, while each directed edge represented how the
genes interacted and controlled each other. The direction of the edge was determined by the
type of interaction between the two genes found in the KEGG and PID pathway databases.

2.2. Normalization Based on Z-Scores

The second step in e-DRW is normalization based on z-scores. The collected gene
expression datasets underwent normalization based on the z-score to produce the nor-
malized gene expression data. This step aimed to normalize the gene expression values
over all samples to a scale of mean zero and variance one [2,23]. Normalization based on
z-scores can provide a way to standardize data across the gene expression dataset. This is
an important step to achieving good classification performance before evaluating the data
on machine learning algorithms [24]. The formula of normalization based on z-scores is
shown as below:

z(gi) =
gene(gi)− X(gi)

S(gi)
(1)

where z(gi) is the normalized gene expression values for gene i over all samples; gene(gi) is
the gene expression values for gene i over all samples; X(gi) is the mean of gene expression
values for gene i; S(gi) is the standard deviation of the gene expression values for gene i;
and i is the number of genes in the gene expression data.
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2.3. Differential Expression Analysis

The third step in e-DRW is differential expression analysis. t-test statistics with equal
variances [25] and the point biserial correlation (PBC) coefficient [26] were calculated for
each gene in the gene expression data. This step aimed to calculate the statistical difference
between the normal and disease samples. The formula for calculating the t-test statistics
with equal variances of each gene is shown below:

t(gi) =
X1 − X2

S×
√(

1
N1

)
+
(

1
N2

) (2)

where t(gi) is the t-score of the t-test statistics with equal variances, X1 is the mean for
the normal sample; X2 is the mean for the tumor sample; S is the standard deviation of
the two samples; N1 is the number of normal samples; and N2 is the number of tumor
samples. At the same time, PBC was performed to calculate the correlation coefficient for
each gene. PBC measures the relationship between two variables (genes) using the formula
shown below:

ppb(gi) =
M1 −M2

S
√

pq (3)

where ppb(gi) is the PBC coefficient for each gene gi; M1 is the mean for normal samples;
M2 is the mean for the tumor sample, S is the standard deviation of the normal and tumor
samples; p is the proportion of cases in normal samples; and q is the proportion of cases in
the tumor samples.

This study employed a combination of PBC and t-test scores (PCT scores) as a gene-
weighting method. The weighted expressions of the member genes reflected two factors:
(1) the degree of the differential expression of genes between the means of the normal and
cancer group; and (2) the correlation between a gene expression and class label (normal,
cancer). Based on these considerations, a new robust gene-weighting method was proposed
in this study. The normalized expression values of gene gi in sample k are defined as:

Z(gi) = t(gi)2 + |p(gi)| (4)

where t(gi) is the t-score of gene gi calculated using a two-tailed t-test between two pheno-
types, while ρ(gi) is the absolute PBC between gene gi and the class label. Z(gi) represents
the weighted normalized expression (PCT scores) of gene gi in sample k, reflecting the
differential expression degree of gene gi and its correlation with the phenotype. Larger ex-
pression values Z(gi) can be related to higher differential expression and a larger correlation
with the phenotype.

2.4. Entropy-Based Directed Random Walk (e-DRW)

The fourth step in e-DRW is the calculation of the genes’ weight in the directed graph.
Before implementing e-DRW, the initial weight of the genes was first calculated using the
formula shown below:

Wo =
absolute(Z(gi))−maximum(Z(gi))

maximum(Z(gi))−minimum(Z(gi))
(5)

where Wo is the initial weight of genes; absolute(Z(gi)) is the absolute values of PCT score;
maximum(Z(gi)) is the maximum values of PCT score; and minimum(Z(gi)) is the minimum
values of the PCT score. Then, the entropy [27] of each gene was used as the weight
parameter to calculate the distribution of each node in the directed graph. Furthermore,
the directed graphs for the KEGG and PID networks were converted to an entropy edge-
weighted adjacency matrix (network entropy) to enhance the calculation of the genes’
weight in both networks. The calculated node entropy for each gene, KEGG, and PID
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network entropy were then implemented in e-DRW for the pathway activity inference.
e-DRW is defined as:

Ht+1 = (1–r)ET Ht + rH0 (6)

where Ht represents the node entropy vector that holds the probability at the specific node
at time step t. H0 is the initial entropy probability vector; ET is an entropy edge-weighted
adjacency matrix developed from the directed graphs (with edges); r denotes the restart
probability ranges from 0.1 to 0.9; and Ht+1 denotes the final entropy probability vector.

Considering the bi-random walk of e-DRW on two inputting networks (KEGG and
PID networks), the random walking of e-DRW was implemented on the two networks
successively to obtain the separate results. The random walk processes are illustrated by
the following equations:

KEGG network : HG
t+1 = (1–r)GEHt + rH0 (7)

PID network : HP
t+1 = (1–r)PEHt + rH0 (8)

where GE represents the entropy edge-weighted adjacency matrix of the KEGG network, and
PE represents the entropy edge-weighted adjacency matrix of the PID network. The separate
results were then applied for further pathway activity inference and cancer classifications.

2.5. Entropy-Based Pathway Activity Inference

The fifth step in e-DRW is entropy-based pathway activity inference. The normalized
gene expression data were first split into three subsets whereby 60% of the datasets was
used as the training set, 20% used as the validation sets, and another 20% used as the test
sets. The three subsets were then utilized for entropy-based pathway activity inference.
Genes with p-values less than 0.05 for each pathway in the pathway data were chosen to
construct the pathway activities. Entropy-based pathway activity inference for the training,
validation, and test sets for the KEGG and PID networks is defined as:

a(Pj) =
∑

nj
i=1 H∞(gi)× PCTscore(gi)× Z(gi)√

∑
nj
i=1(H∞

(
1−gi

sum(1−gi)

)
)2

(9)

where a(Pj) is the pathway activity (or expression value vector); H∞ is the output of genes
(or weight vector calculated from e-DRW); PCTscore(gi) is the summation of PBC between
gene gi and class label (normal and tumor samples) and the t-test statistics of gene gi
from a two-tailed t-test with equal variances in the expression values between two classes.
Z(gi) is a normalized value vector of gene gi across the whole dataset, and H∞

(
1−gi

sum(1−gi)

)
is the entropy weight of gene gi. The calculated KEGG and PID pathway expression
profiles for the training, validation, and test sets were then combined respectively for the
pathway selections. The top 50 pathways ranked by the t-test statistics for the training,
validation, and test sets were selected to construct the final pathway expression profiles for
further classification.

2.6. Classification

The final step in e-DRW is classification. Within-dataset experiments were imple-
mented for the six cancer datasets. The R caret [28] package was utilized to obtain the
classification accuracy. Three classifiers were selected to evaluate the performance of e-
DRW, which were Naïve Bayes (NB), K-nearest neighbors (KNN), and logistic regression
(GLM). e-DRW implemented stratified 10-fold cross validation on the training set to evalu-
ate the performance of the classifier. The top 50 pathways in the training dataset were used
as candidate features to build the model. Subsequently, pathways were added sequentially
to train the model. The performance of the classifier was measured by evaluating the area
under the receiver operating characteristic curve (AUC). The added pathway marker was



Genes 2023, 14, 574 7 of 13

maintained in the feature set if the AUC increased, but was removed if otherwise [2]. This
process was repeated for the top 50 pathway markers to optimize the classifier and to yield
the best feature set. The performance of the optimized classifier was evaluated on the test
set using pathway markers from the best feature set. This process was repeated 10 times to
ensure unbiased evaluation and to estimate the variation of the AUC. As the final step, the
mean AUC across 10 classifiers was estimated to represent the overall performance of the
classification method.

3. Results

This section presents the classification performance within-dataset experiments. For
comparison with other pathway activity inference methods, five pathway-based classi-
fication methods were chosen, namely, the DRW method [2], sDRW method [29], iDRW
method [30], PAC method [4], and principal component analysis (PCA method) [7]. The
experimental setting was the same for the DRW, sDRW, iDRW, and PAC methods. The PCA
method was implemented as the pathway-based classification method by applying the
proposed KEGG network to calculate the pathway expression profiles. Classification accu-
racy and robustness of the predicted risk-active pathways were chosen as the performance
measurements of cancer classification.

3.1. Classification Performance on Within-Dataset Experiments

Table 2 presents the mean AUCs of e-DRW with varying restart probabilities (0.1–0.9)
across the six cancer datasets using three different classifiers (NB, KNN, LR).

Table 2. Mean AUC of e-DRW.

Restart
Probabilities Classifiers

Datasets

Lung Stomach Liver Kidney Thyroid Breast

0.1 NB 0.878505 0.846377 0.87931 0.866304 0.939048 0.762712
KNN 0.918692 0.858066 0.855172 0.838043 0.946667 0.751695

LR 0.864486 0.795652 0.871264 0.893478 0.875238 0.761017
0.2 NB 0.917757 0.866667 0.872414 0.820652 0.949524 0.75678

KNN 0.929907 0.915942 0.870115 0.834783 0.917143 0.762288
LR 0.860748 0.797101 0.851724 0.846739 0.912381 0.758051

0.3 NB 0.966355 0.86087 0.885057 0.802174 0.957143 0.761017
KNN 0.946729 0.933333 0.931034 0.858696 0.954286 0.760169

LR 0.873832 0.797101 0.918391 0.868478 0.939048 0.761017
0.4 NB 0.935514 0.926087 0.87931 0.873913 0.96 0.755932

KNN 0.948598 0.908696 0.855172 0.883696 0.950476 0.762712
LR 0.914953 0.842029 0.871264 0.926087 0.898095 0.751695

0.5 NB 0.962617 0.905797 0.83908 0.83913 0.950476 0.752542
KNN 0.980374 0.886957 0.855172 0.897826 0.954286 0.769068

LR 0.899065 0.831884 0.837931 0.871739 0.931429 0.755085
0.6 NB 0.969159 0.917391 0.874713 0.863043 0.937143 0.758898

KNN 0.971028 0.955072 0.873563 0.829348 0.868571 0.75678
LR 0.909346 0.868116 0.862069 0.891304 0.86 0.758475

0.7 NB 0.969159 0.849275 0.868966 0.804348 0.941905 0.761864
KNN 0.961682 0.83913 0.906897 0.795652 0.94 0.747034

LR 0.903738 0.792754 0.851724 0.823913 0.900952 0.760593
0.8 NB 0.961682 0.897101 0.918391 0.856522 0.942857 0.754237

KNN 0.930841 0.892754 0.905747 0.88913 0.921905 0.751271
LR 0.87757 0.785507 0.827586 0.861957 0.932381 0.755085

0.9 NB 0.931776 0.894203 0.928736 0.86413 0.950476 0.751695
KNN 0.919626 0.926087 0.910345 0.906522 0.950476 0.747034

LR 0.909346 0.857971 0.931034 0.894565 0.900952 0.753814

Bold values: the highest values. Refer to Supplementary Table S1 for more details.
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Based on Table 3, the KNN classifier showed the highest mean AUCs across four
cancer datasets, which were the lung cancer dataset, stomach cancer dataset, liver cancer
dataset, and breast cancer dataset. Hence, the KNN classifier was chosen to evaluate the
classification performance of the other methods. For a fair and effective comparison with
other methods, within-dataset experiments similar to those used in Liu et al. (2013) [2] were
implemented to evaluate the classification performance. Figure 2 illustrates the comparison
of the classification performance for the six methods on the within-dataset experiments.

Table 3. Mean AUC of e-DRW.

Risk Pathways
Datasets

Lung Stomach Liver Kidney Thyroid Breast

PI3K-Akt signaling pathway
√

*
√ √ √ √

Pathways in cancer
√ √ √ √ √

Human papillomavirus infection
√ √ √

Calcium signaling pathway
√ √ √

ECM-receptor interaction
√ √

Lipid and atherosclerosis
√ √

Apelin signaling pathway
√ √

Focal adhesion
√ √

Hippo signaling pathway
√ √

Wnt signaling pathway
√ √

Small cell lung cancer
√ √

Neuroactive ligand–receptor interaction
√ √

Integrin-linked kinase signaling
√ √

Adrenergic signaling in cardiomyocytes
√ √

cGMP-PKG signaling pathway
√ √

* Detected significant pathways.
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Based on Figure 2, the proposed e-DRW method obtained mean AUCs of 0.980374 for
the lung cancer dataset, 0.955072 for the stomach cancer dataset, 0.931034 for the liver cancer
dataset, 0.906522 for the kidney cancer dataset, 0.954286 for the thyroid cancer dataset, and
0.769068 for the breast cancer dataset. By comparing the mean AUCs with other methods,
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e-DRW achieved the highest mean AUCs across all datasets, except for the lung cancer
dataset, which was slightly lower than the iDRW (0.981259) method. This indicates that
e-DRW-based pathway markers are quite competent in discriminating between different
disease phenotypes. It also demonstrated the best overall classification performance on the
within-dataset experiments when compared with other methods.

3.2. Robustness of Predicted Risk-Active Pathways

The detection of robust risk-active pathways is important in cancer studies. Risk-active
pathways detected across 10 experiments for each cancer dataset are provided in Table S2.
Genes in the risk-active pathways were extracted and provided in Table S3. Table 3 lists the
top 15 most predicted cancer-related pathways involved in various biological processes
studied by e-DRW across the six datasets.

Based on Table 3, pathways specific to the phenotype of classification were identified.
Among these pathways, the PI3K-Akt signaling pathway and pathways in cancer identified
in most cancer datasets reported the relations of these pathways with cancer [2,31–33].
Furthermore, the human papillomavirus infection pathway and calcium signaling pathway
are known cancer pathways, as reported in multiple studies [34–39]. The ECM–receptor
interaction pathway and focal adhesion pathway also suggest their important roles in lung
and thyroid cancer based on pertinent studies [40,41]. In addition, several extensively
researched cancer-related pathways were identified as risk-active pathways in multiple
cancers such as the lipid and atherosclerosis pathway, Apelin signaling pathway, Hippo
signaling pathway, and Wnt signaling pathway [42–49]. Furthermore, the predictions of
the small cell lung cancer pathway, neuroactive ligand–receptor interaction pathway, and
integrin-linked kinase signaling pathway were consistent with several studies [50–55]. Rele-
vant studies have validated the coactive effect of adrenergic signaling in the cardiomyocyte
pathway and the cGMP-PKG signaling pathway with cancers [56–58].

4. Discussion

In the literature, multiple existing pathway-based methods incorporate pathway
topological information to identify important genes within pathways. For instance, Guo
et al. [3] employed the mean or median expression value of the member genes to infer the
pathway activity. Bild et al. [7] used the first principal component of the expression profile
of member genes to evaluate the activity of a given pathway (PCA method). Lee et al. [4]
proposed pathway activity inference using only a subset of genes in the pathway, called
the condition responsive genes (CORGs), in which the combined expression levels can
accurately discriminate the phenotypes of interest (PAC method). However, these methods
simply consider pathways as simple gene sets but ignore significant individual genes and
interactions between genes, which are essential to infer a more robust pathway activity [1].

A comprehensive pathway topology is important to clarify the roles that the genes play
in the pathway and weight the genes more precisely [2]. Several pathway-based methods
utilize pathway topology information collected from pathway databases for analysis. For
example, Liu et al. [2] constructed the global-directed pathway network, which covers
300 pathways collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database. Seah et al. [29] built a directed graph using 300 pathway datasets
obtained from the KEGG pathway database. Kim et al. [30] selected 327 human pathways
to construct a directed gene–gene graph for pathway activity inference. Lee et al. [4]
collected 472 canonical metabolic and signaling pathways from MsigDB v1.0 for cancer
classification. However, the limitations of these methods lie in the coverage of human
pathway information. The complete biological pathway information not only enables
a more accurate prediction of disease status, but also paves the way to unveiling novel
functional pathways or complexes [59–62].

This study proposed an entropy-based pathway activity inference scheme to identify
reproducible pathway biomarkers for clinical cancer applications. Previous literature has
revealed that individual gene markers are less reliable compared to pathway markers,
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and thus are unable to effectively capture the biological interpretation of gene expression
in functional categories [3–6]. The proposed entropy-based pathway activity inference
method conducted a bi-random walk of e-DRW on two separated networks for pathway
activity inference. A robust gene-weighting method was proposed that incorporates PBC
and the t-test to calculate the weight of each gene. Considering the effectiveness of entropy
as weight variables, entropy was implemented as a weight parameter to enhance the
weight initialization scheme in e-DRW [63]. The entropy weight metric was also applied in
entropy-based pathway activity inference to enhance e-DRW pathway activities for cancer
classification.

Based on the classification performance, the mean AUCs of the e-DRW method were
significantly higher and more robust across the experiments. The reliable performance
of the e-DRW pathway activities could be attributed to the construction of the directed
pathway network and gene-weighting method. The proposed biological networks provide
larger pathway topology for the random walking of e-DRW on the KEGG and PID networks.
Furthermore, the gene-weighting method based on PBC and the t-test can greatly magnify
the signals of essential genes whose expression levels may have a large impact on the
pathway while weakening the differential expression of genes that only appear downstream
or have a minor impact on the system. Therefore, the e-DRW approach could alleviate
the noise caused by sample heterogeneity or technical measurements, resulting in more
reproducible pathway activities.

Moreover, the mean AUCs of e-DRW were better in terms of cancer classification due
to higher accuracy compared to other pathway-based analysis methods. Results on the
top 15 known cancer-related pathways showed that the performance of most pathways
was very close to the best performance. This indicates that the proposed e-DRW was even
robust on many cancer-related pathways. Additionally, we found that the proposed e-DRW
could achieve a satisfactory performance for all datasets through the PI3K-Akt signaling
pathway and pathways in cancer. Overall, e-DRW was more effective in pathways and
gene prediction as it was more robust compared to the other methods.

5. Conclusions

In cancer studies, an accurate prediction of cancer is crucial for the diagnosis and
prognosis of clinical therapy. An e-DRW on two separated networks for cancer classification
was proposed. The two enhancements based on Liu et al.’s work [2] and the proposed
e-DRW were proven to be effective in inferring pathway activities and accurate cancer
classification. The proposed enhancements included (1) the construction of the directed
pathway network (KEGG and PID networks), and (2) gene-weighting based on the PBC
and t-test. Two biological networks (KEGG and PID networks) were constructed to increase
the coverage of human pathway information. A gene-weighting method in e-DRW incorpo-
rating the t-test statistics scores and correlation coefficient values to weigh each gene in the
directed pathway network was also proposed. This weighting strategy not only reflects the
degree of the differential expression of genes between the normal and cancer groups, but
also considers the correlation coefficient values between genes in the gene expression data.
Additionally, the weight initialization of genes and the scoring of pathways were further
enhanced by the calculation of gene expression entropy, which implicitly increased the
accuracy of cancer classification. Finally, stratified 10-fold cross-validation was utilized to
train the classifier and classify the significant pathways detected by e-DRW. In conclusion,
the proposed approach was more effective and feasible for cancer classification compared
to other pathway-based methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14030574/s1, Table S1: The complete mean AUCs of the
e-DRW with varying restart probabilities (0.1–0.9) across the six cancer datasets. Table S2: Pathway
markers detected across 10 experiments for each cancer dataset. Table S3: The genes in the risk active
pathways. e-DRW R package: R source code of e-DRW for analysis.
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