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Abstract: The capacitated vehicle routing problem (CVRP) is regarded as an NP-hard problem.
Moreover, the CVRP is described as a model that can be used in many applications such as transport,
logistics, and distribution. The exact algorithms can find exact optimal solutions on the small-sized
problem instances; however, for large-sized instances it is difficult to find the exact optimal solutions in
polynomial time. This reason motivated the researchers to present heuristic/metaheuristic algorithms
to solve large-sized problem instances within a reasonable computational time. One of the good
algorithms that deal with the CVRP is the ant colony optimization (ACO) algorithm. Several ACO
algorithms have been suggested in the literature, such as the ant system (AS) algorithm, ant colony
system (ACS) algorithm, and so on. On the other hand, ACO is designed to solve the path problem
that finds the best way. However, this algorithm still lacks exploratory mechanisms, which results in
premature convergence and stagnation issues. Therefore, we propose to develop an enhanced ACS
(EACS) algorithm for solving the CVRP based on subpaths. In our proposed algorithm, we propose
to utilize the K-nearest neighbour (KNN) algorithm for finding the best initial solution and then
enhance the diversity mechanism of the proposed algorithm by avoiding the generation of the same
solution using subpaths. This uses the diversity of the generated solution to find a better solution
with a shorter route in a reasonable amount of computational time. Furthermore, we propose to apply
the three-opt algorithm to the completed subtour and the k-opt algorithm to the subpath gained from
the experience of the subpath. Finally, to verify the effectiveness of the proposed EACS algorithm,
the algorithm is tested on some CVRP instances and is compared with one of the state-of-the-art
methods, namely, the enhanced simulated annealing algorithm. The comparative study showed a
better performance of our EACS compared to the enhanced simulated annealing algorithm.

Keywords: ant colony system algorithm; capacitated vehicle routing problem; K-nearest neighbour
algorithm

1. Introduction

The capacitated vehicle routing problem (CVRP) is a widely recognized problem that
was first observed in [1]. The problem aims to minimize the total costs (i.e., the distance
traveled by the vehicles) needed for servicing a group of customers. The best solution
that could be derived for this problem could allow its application in different fields of
transportation, distribution, and logistics. The CVRP generalizes the benchmark traveling
salesman problem (TSP) [2]. Hence, it is regarded as an NP-hard problem. Therefore, no
polynomial-time algorithm can be used to solve them exactly [3]. In the past 50 years since
the existence of this problem, several exact, heuristic, and metaheuristics algorithms have
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been proposed to solve it. One such algorithm, i.e., ant colony optimization (ACO), was
initially proposed in [4]. The ACO algorithm was inspired by the actual behavior of ants
who are searching for food. While looking for food away from its nest, it was noted that
the ant put a chemical compound, pheromone, on the path. A pheromone trail is a form
of communication among all ants that will attract the other ants to use the same route to
travel. Thus, a higher number of pheromones will boost the probability of selecting the
following way to travel. Furthermore, the ACO can be used for solving the path problems
for determining the best route where all components of the algorithm are compatible with
the properties of the problems wherein the ant nests are regarded as depots, artificial ants
are considered as vehicles, food acts as the customer, trails form the routes, and pheromone
concentration can present the best route for optimizing the total distance [5].

Many algorithms are included in the ACO family of algorithms, like the ant colony
system (ACS), ant system (AS), etc. The ACS algorithm is inspired by nature wherein
the ants scout for food in their neighborhood. Thus, this is a probabilistic algorithm
and is a member of the swarm intelligence method [6–9]. Recently, in [10], the authors
compared all types of ACO algorithms and noted that the ACS algorithm developed the
properties of its components through an amended transition rule, the presentation of
a local pheromone update, and the global pheromone update is only the best solution.
However, this algorithm still suffers from a lack of exploration mechanisms that leads
to the issues of premature convergence and stagnation [11,12]. Therefore, this study
addresses the exploration problem in the ACS algorithm, one of the main issues with the
metaheuristic algorithm, by providing an answer to the question: what can be done to
address the exploration problem in the ACS algorithm for solving the CVRP? Additionally,
in comparison to one of the modern approaches in the literature, it also produces positive
results. The following objectives are proposed in this research work to answer this question:

(i) To utilize the K-nearest neighbour (KNN) algorithm for finding the initial solution;
(ii) To enhance the diversity mechanism of the ACS algorithm by avoiding the genera-

tion of the same solution using subpaths. This uses the diversity of the generated
solution to find a better solution with a shorter route in a reasonable amount of
computational time;

(iii) To apply the three-opt algorithm to the completed subtour and k-opt algorithm to the
subpath gained from the experience of the subpath;

(iv) To verify the effectiveness of the proposed EACS algorithm, the algorithm is tested
on some CVRP benchmark instances and is compared with one of the state-of-the-art
methods, namely, the enhanced simulated annealing algorithm. The comparative
study showed a better performance of our EACS compared to the enhanced simulated
annealing algorithm.

This paper has been arranged as follows: Section 2 introduces the literature review of
the problem as well as the previous studies dealing with ACO algorithms whereas Section 3
explains the materials and methods applied in the study. Section 4 reports and discusses
the results noted in the study; Section 5 describes the theoretical analysis and presents
a critical explanation of the performance of the EACS algorithm proposed in the study.
Finally, Section 6 presents the conclusions of the study.

2. Literature Review

The purpose of the literature review covered in this study is to discuss works that are
relevant to the CVRP. The problem was introduced in 1959 by Dantzig and Ramser [1] and
until now, for the past 50 years, many researchers have investigated the problem and have
proposed several heuristics and metaheuristic algorithms for solving it. We shall report
a brief review on the literature pertaining to the problem using different algorithms and
report a more detailed review of the literature using the ACO algorithm.

An improved hybrid firefly algorithm was proposed in [13] for the CVRP and was
implemented on 82 instances. An improved simulated annealing algorithm along with a
crossover operator was developed in [14] to solve the CVRP. An improved genetic algorithm
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using fuzzy C-means clustering was proposed to solve the CVRP that showed promising
results [15]. In [16], one simple genetic algorithm (GA) and four different hybrid GAs were
proposed to solve the asymmetric distance-constrained vehicle routing problem (VRP). A
set of eight crossover operators in genetic algorithms have been applied to the CVRP and a
relative study among them is reported in [17]. A modified football game algorithm (MFGA)
is proposed to solve the VRP with the time window in [18].

Along with recognizing the most recent versions of ACO algorithms, it is also impor-
tant to recognize the issues they still must suggest remedies. Recently, some studies have
used the subpaths to enhance the effectiveness of the local search to support the mechanism
of exploitation to enhance the ACS algorithm [19]. Furthermore, the subpaths are used
for updating the global pheromone based on the number of subpaths through which all
solutions pass away. In other words, these studies have used subpaths to serve as the
mechanism of exploitation. The problem statement of this research work is as follows: the
ACS algorithm reduces the pheromone on the visited path after building a full path for each
ant to avoid revisiting the same path again [7]. However, this algorithm is still suffering
from a lack of exploration mechanism that leads to the issues of premature convergence
and stagnation [20,21]. Therefore, there is an urgent need to enhance the design of the
ACS algorithm and to introduce an enhanced algorithm based on subpaths to provide a
low probability for reselecting nodes. This again reconstructs the already visited subpaths
and becomes lower when the length of an already visited subpath increases to prevent
revisiting a subpath.

The problem has many applications like the distribution and transportation of items
and people, transportation services, waste collection, and so on. These problems have an
economic relevance, particularly in developed countries. Additionally, the economic aspect
and saving expenses can motivate companies and researchers to decide the best technique
for resolving as well as improving transport efficiency. The CVRP also refers to the process
of designing the best and the shortest possible route that connects one location to other
geographically distributed locations, for example, school, warehouse, store, university,
customer, city, etc. [22–24].

Previous Studies Dealing with ACO Algorithms

The aim of this section is to discuss works that are relevant to the ACO algorithm
and how it has evolved over time. Along with recognizing the most recent versions of
ACO algorithms, it is also important to recognize the issues that still need remedies to be
suggested. The ACO is described as a swarm intelligence metaheuristic technique that
is developed based on the behavior of ants when they search for their food in nature. In
ACO, the ants indicate the procedures involved in the building of stochastic solutions; the
solutions are constructed in an iterative and probabilistic method that aims to construct
complete solutions from smaller ingredients. Regarding the ACO, the ants often select their
path based on the pheromones and how they become attracted to each path. The ACO
algorithm is constructed using an iterative technique that mimics the common effort of the
ants. The primary components involved in the ACO were the initialization, construction
of ant solutions, application of a local search, and updating of the pheromones [21,25].
There are different kinds of ACOs but only the commonly used ones in the literature are
mentioned in this study.

The AS was the first algorithm studied out of various ACO algorithms. It is a prototype
of numerous ACO extensions. The AS algorithm was firstly suggested in [26]. This
algorithm consists of two phases, i.e., creation of a solution and pheromone update. The
creation includes the application of a probabilistic choice rule used by the ant. This rule is
called the random proportional rule. In this algorithm, the likelihood of an ant moving from
one node to the other depends on the pheromones and heuristic values. In the pheromone
updating phase, the first step involves a decrease in the pheromone values on all arcs by
a fixed factor. This step helps the algorithm to overcome the bad decisions made in the
past and, simultaneously, if the arc is not selected by the ants, the related pheromone value
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reduces exponentially with the number of iterations. After the compound has completely
evaporated, the pheromone is deposited by the ants on all arcs that they visited when
they were searching for their food [27]. Many researchers studied the elitist strategy of AS
(EAS) that was modified AS [4]. In this EAS algorithm, the pheromone is deposited in the
best global solution for all iterations used by the other ants. The pheromone compound is
evaporated using the same technique as used in the AS process; however, the use of the
elitist strategy helps in deriving better routes than those generated by the AS using a lower
iteration number. Moreover, the best route is reinforced by adding more of the pheromone
compound to the arcs depending on the length of the route and a new parameter is defined
as the weight that is included in the best tour [28,29].

Thereafter, the researchers investigated the rank-based AS (ASrank) that was suggested
in [30]. In the ASrank, every ant deposits a specific amount of the pheromone compound
that decreases with its rank. Like the EAS, the best ant so far deposits the maximal amount
of pheromone through the iteration. In the first step, the pheromone is updated in the
ASrank and all ants are sorted based on their tour length. The rank of the ants is used for
weighing the concentration of the pheromones that would be deposited by the ants based
on their rank. Through the iterations, the algorithm allowed only the best-ranking ants and
the ants that generated the best tour to deposit the pheromone compound ([31,32]).

Many researchers also studied the MAX–MIN (MMAS) algorithm which was seen to be
an enhanced version of the original AS [33]. However, it is different from the basic algorithm
as follows. Firstly, it used a greedier search process that allowed proper exploitation of all
accumulated experiences. Secondly, the MMAS used a wide variety of pheromone trail
values that prevented the issue of premature stagnation that frequently occurred during
the search technique. Thirdly, the primary value of the pheromone trails was marked as
the upper pheromone trail limit after accounting for some pheromone evaporation, in such
a manner that the tour exploitation is increased when the search is initiated. Lastly, in the
MMAS algorithm, the pheromone trails were reinitialized every time the system did not
generate a better tour for a specified number of successive iterations. It was noted that in
the MMAS algorithm, the pheromone trails were updated based on the tour developed
by the ants after accounting for the pheromone evaporation, like the AS technique [34].
Thereafter, the new pheromone compound is deposited depending on the best-so-far tour.
The algorithm allowed only two of the ants to add the pheromone, i.e., either the best-so-far
ant or the iteration best ant. In this MMAS algorithm, the lower and upper limits [τmin
and τmax] of the pheromone compound on any of the arcs were used to prevent search
stagnation ([35–37]).

3. Materials and Methods

This section includes all concepts and techniques used in this research work.

3.1. Mathematical Model of the CVRP

The CVRP is shown to be an NP-hard problem [27]. The CVRP is associated with
a set of pathways related to a fleet of vehicles that starts from one depot. However, the
multi-depot CVRP is associated with a set of pathways related to fleet of vehicles that starts
from some depots with a specified number of clients (or customers) in various geographical
locations. It includes a maximal load capacity for all vehicles. The CVRP is a variation of
the vehicle routing problem (VRP) that includes the capacity constraints associated with all
vehicles. In this context, the main objective of both VRP and CVRP is to minimize the total
traveling costs (or distance). The route design considers visiting each customer by a single
vehicle such that all customer demand is fulfilled.

(i) The uniformed vehicle fleet needs to originate from a single station (or depot);
(ii) Every order by a customer cannot be separated and must be served by only one vehicle.
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The CVRP is described as a problem that aims to determine the optimal route that
can visit each customer and satisfy their demands, subject to different constraints. All
components in the CVRP are described as follows: a complete graph G = (V, E) where
n = |V| is the number of nodes, V = {1, 2, . . . , n} denotes a set of nodes (customers),
and E = {(i, j) : i, j ∈ V : i 6= j} represents edges that connect the nodes. D =

(
dij
)

is the
distance matrix among the nodes including a depot while the Euclidean distance between

two nodes I and j can be calculated as dij =
√(

xi − xj
)2

+
(
yi − yj

)2. It must be noted that
every edge (i, j) ∈ E is related to the cost cij, C =

(
cij
)
. The distance and cost matrices are

related to E. The function C : E→ Z+ is the cost function and node 0 represents the depot
and the demand of the depot is q0 = 0. The remaining nodes represent the customers and
every customer i has a non-negative demand and the function q : V → Z+ represents the
demand function; m is the number of vehicles that are identical and present in the depot [37]
based on the additional constraint that the total demand of a route cannot surpass the
vehicle capacity ([19,38]). Figure 1 depicts an example of routes for the CVRP with three
vehicles as follows.
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(A) Assumptions

(i) Customer demand, qi, is known 0 < qi ≤ Q;
(ii) Limited vehicle capacity.

(B) Variables and parameters

(i) V: A set of customers is represented as V = {v0, v1, v2, . . ., vn} where n is the
number of customers;

(ii) cij: Transportation cost from nodes (customers) i to j;
(iii) D: Length of the route (total distance that is travelled by the vehicle) should not

surpass a particular defined constraint;
(iv) Q: Capacity of each vehicle;
(v) m: Number of vehicles;
(vi) v0: Main distribution centre refers to the depot node where a tour starts and ends;
(vii) K: Set of identical vehicles; K = {k0, k1, k2, . . ., km} is based on the main distribution

centre, v0.

Dantzig and Ramser [1] proposed the first mathematical model for the CVRP ([6,39])
which is described below:

Let xk
ij =

{
1 i f vehicle k goes f rom i to j
0 otherwise

Minimize Z =
n

∑
i=0

n

∑
j=0
j 6=i

m

∑
k=1

cijxk
ij (1)
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Based on the following constraints:

m

∑
k=1

n

∑
j=1

xk
ij ≤ m; i = 0 (2)

n

∑
i=0

xk
ij −

n

∑
j=0

xk
ji = 0; k ∈ K (3)

m

∑
k=1

n

∑
i=0
j 6=i

xk
ij = 1; j ∈ {1, . . . , n} (4)

m

∑
k=1

n

∑
j=0
i 6=j

xk
ij = 1 ; i ∈ {1, . . . , n} (5)

n

∑
j=1

xk
0j ≤ 1; ∀k ∈ K (6)

n

∑
i=1

xk
i0 ≤ 1; ∀k ∈ K (7)

n

∑
j=1

n

∑
i=0
i 6=j

qjxk
ij ≤ Q; ∀k ∈ K (8)

n

∑
k=1

∑
i∈S

∑
j∈S
i 6=j

xk
ij ≤ |S| − 1; ∀S ⊂ V\{1} (9)

Equation (1) describes the objective functions used for minimizing the total distance
travelled by a vehicle under constraint as shown in (2)–(8). Constraint (3) ensures that the
number of vehicles entering a customer is the same as the number of vehicles leaving the
same customer. Constraints (4) and (5) are applied for observing the customers who receive
the service only once. On the other hand, Constraints (6) and (7) ensure that each vehicle
that is used starts and ends at a depot and travels only once to offer its service. The main
equation that is used for solving the CVRP problem is presented in (8) where it assigns the
vehicle’s capacity for transporting different items. The sub-tour elimination constraints (9)
guarantee that the solution contains no sub-tour.

3.2. Three-Opt Local Search Algorithm

A basic heuristic local search algorithm can be used for solving the TSP and network
problems, like deleting the three edges of a tour or network and reconnecting them to
three alternative edges for forming a network of all probable edges for determining
the optimal tours. The researchers repeated this technique for different sets of three
edges. It must be noted that there are many ways of connecting the nodes so that the
tour can be restarted while also respecting the constraints of the problem [40]. In [32],
all possible enhanced solutions by two-opt and three-opt are presented but we report
only the possible solutions by three-opt in Figure 2 since we are applying three-opt in
our proposed algorithm.
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3.3. K-Nearest Neighbour (KNN) Algorithm

The K-nearest neighbour (KNN) algorithm is an effective technique that can be used
for solving combinatorial optimization problems (COPs) like the CVRP. The KNNs are
non-deterministic, i.e., they make random decisions which increases their robustness. This
is a good technology that is used in the stochastic search for solving complex problems
that need a bigger time space for determining the optimal solution. It is also seen to be a
vital technique that is used for finding the optimal solutions. The KNN is regarded as a
good technique that is used for solving hard problems with high computational complexity,
particularly in the field of computer science. This technique has several applications like
traffic optimization, the distribution of packages, and the selection of the tour where the
aim of tour optimization for the VRP and TSP helps in decreasing the costs and visiting the
locations with constraints ([41–43]). The steps of the KNN algorithm are as follows:

(i) Load the training and testing data in the first step of the KNN algorithm;
(ii) Choose a value of K (nearest data point);
(iii) For every point included in the test data, the given steps must be implemented;

(a) Using the Euclidean distance rule, estimate the distance between the test data
and every row of the training data;

(b) The distance values are sorted in ascending order;
(c) The KNN algorithm selects the topmost K rows of the sorted values;
(d) Assign a class to the test point depending on the most recurring class of rows.

3.4. Proposed Enhanced Ant Colony System (EACS) Algorithm

The ACS algorithm consists of four main steps—initialization, solution creation, lo-
cal search, and pheromone update. The steps of the EACS algorithm are presented by
proposing an enhancement mechanism based on the subpaths that achieve finding the best
solutions for the proposed objectives. The enhancement is made in the step of building
the solution which is characterized by the transition of the ant through the transitional
equation that has a significant impact on achieving a balance between exploitation and
exploration mechanisms. In the same context, this equation has been enhanced by using
two mechanisms. The first one is related to the diversification by introducing a new term
that supports the exploration mechanism of the transition equation from node to node. The
second one is related to the intensification by selecting the best subpaths previously saved
in a table that supports the exploitation mechanism for the transitional equation from node
to subpath. The steps of our proposed EACS are as follows.

Step I (Initialization): Initialize the pheromone primary matrix, distance matrix, num-
ber of ants that are to be used, and control parameters—α, β, ρ, τ0, ηij, (Q ≥ 0). The total
demand of items carried by each vehicle must not surpass the vehicle’s capacity, Q. ηij is
the inverse of the distance between nodes i and j. The initial pheromone amount for every
edge (i, j) depends on the following function: τ0 = 1

lKNN
where τ0 > 0 represents the initial

value describing the pheromone effect and lKNN refers to the cost generated by the KNN.
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Step II: (i) (Solution creation): The transition rule equation used in the ACS algorithm
was significant as it allowed the algorithm structure to enhance the solutions. This was
attributed to the fact that based on the traditional formulation mentioned in Table 1, the
ants move from one node to the other. Hence, it should be properly used for improving the
transition and preventing any incorrect move to an unacceptable node since it could lead
to a waste of effort and prove to be expensive. The transition rule is enhanced by using the
two formulations described in Table 1.

Table 1. Transitional rules before and after enhancement.

Traditional Formulation ([38,39]) Formulation after the Enhancement

S(j) =


arg maxl∈U

{
[τil ]

α[ηil ]
β
}

, i f qi ≤ Q

pk
ij =

[τij]
α
[ηij]

β

∑l∈U [τil ]
α [ηil ]

β j ∈ U, otherwise

1- SC(j) =


arg maxl∈U

{
[τil ]

α[ηil ]
β[ξil ]

γ
[

ϕk
il

]δ
}

, i f qi ≤ Q

pk
ij =

[τij]
α
[ηij]

β
[ξij]

γ
[

ϕk
ij

]δ

∑l∈U [τil ]
α [ηil ]

β [ξil ]
γ j ∈ U, otherwise

2- SP(r) =


arg maxl∈G

{[
τPil

]α[
ηPil

]β[
ξPil

]γ}, i f qi ≤ Q

pk
ir =

[τPir ]
α
[ηPir ]

β
[ξPir ]

γ

∑l∈G [τPil ]
α
[ηPil ]

β
[ξPil ]

γ r ∈ G, otherwise

After improving the transition rule, Step 1 implements the transition rule node by node
for deriving new solutions. On the other hand, the second formulation was dependent on
the movement between the node to subpaths for generating solutions. The first formulation
is dependent on the subpaths because it helps in diversifying the solutions when travelling
from one node to the next after the addition of a new term that supports the exploration
mechanism since all terms in the initial transition rule support the exploitation mechanism
implemented for this purpose. Then, all subpaths are saved after each iteration in the table
while the repetitive subpaths are excluded for improving the diversification. Thereafter, the
second formulation is applied in the intensification mechanism after determining the best
solution while travelling from the node to the subpath. The best subpaths are stored after
every iteration in different tables wherein all subpaths are utilized rather than depending
on the nodes (i.e., the conventional formulation). The paths initiate at a particular node and
stop at different specified nodes. The total distance and total pheromone concentration are
calculated. Moreover, determine the amount of pheromone that is saved for every subpath
of the path. Then, the transition rule is applied after they are considered as a single edge.
The enhancement in the transition rule depends on the transition between the nodes or the
transition to the subpath in the following manner (Equation (10)):

S =

{
SC(j) i f h > a
SP(j) i f h < a

(10)

Here, SC(j) is the transition equation of node-by-node, SP(j) is the transition equation
from node to subpath, h is the coefficient for utilizing the subpaths, and α ∈ (0, 1) is a
random number. In the traditional transitional rule, a tour is carried out from one node
to another wherein each ant successively adds new nodes until it visits all nodes. Here,
if the ant k is present at node i, it moves to the next node, j, from the set of legal nodes,
U (i.e., the set of unvisited nodes). The justification for suggesting this enhancement is
because the ACS algorithm suffers from a lack of diversity so there is a need for improving
the transitional rule which has derived from a set of terms with its associated coefficients
that has been enhanced by most related studies ([44,45]) that used the terms to support
exploitation. While this research work introduced a new term ϕk

il for this transitional rule
in the enhanced ACS algorithm through which the passage of the same subpaths that were
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visited in previous solutions is avoided, this supports the exploration mechanism and, thus,
the diversity is increased. The transitional rule became the following (Equation (11)):

SC(j) =

 arg maxl∈U

{
[τil ]

α[ηil ]
β[ξil ]

γ
[

ϕk
il

]δ
}

i f qi ≤ Q

J otherwise
(11)

Here, ϕk
il =

1
ψk

il
, ψk

il is the maximum number of continuously visited nodes from the

beginning of the solution k that exist partly or completely on one of the recorded previous
subpaths so that the more the number of nodes in the chosen subpath ψk

il increases, the
value of ϕk

il decreases. Therefore, the probability of choosing it later decreases and the
probability of exploring other subpaths then increases. Furthermore, (i, l) refers to the edge;
l is the city that was not yet visited by ant k. If qi ≤ Q, the exploitation mechanism was
selected; however, if Q ≥ qi, the exploration was selected. J is the random variable that is
specified based on the probability transition rule between different nodes pk

ij [38] that was
applied on the subpaths in the following manner (Equation (12)):

J : pk
ij =

 [τij]
α
[ηij]

β
[ξij]

γ
[

ϕk
ij

]δ

∑l∈U [τil ]
α [ηil ]

β [ξil ]
γ i f j ∈ U

0 otherwise
(12)

Here, τij is amount of pheromone on the edge Eij, ηij is the inverse of the distance
between nodes i and j, ξij is the savings between nodes i and j, and α, β, γ, and δ are the
control parameters. In the mechanism of building the solution by using the subpaths, we
convert the terms of the transitional equation so that it depends on the subpaths and not on
the edges as we select the best subpaths to build the solution sequentially. The transition
rule based on subpaths is given as below (Equation (13)):

SP(r) =

{
arg maxl∈G

{[
τPil

]α[
ηPil

]β[
ξPil

]γ
}

i f qi ≤ Q
Jr otherwise

(13)

Here, Jr is the random variable that is defined based on the probability of the transition
rule from the node to a subpath pk

ir which is applied according to the subpaths in the
following manner (Equation (14)):

Jr : pk
ir =


[τPir ]

α
[ηPir ]

β
[ξPir ]

γ

∑l∈G

[
τPil

]α[
ηPil

]β[
ξPil

]γ i f r ∈ G

0 otherwise
(14)

Here, G represents the set of nodes of the subpaths that start at node i. Between the
start and end nodes, these subpaths include many other unvisited nodes. These subpaths
have a common feature where they start at one node and differ in other nodes and end at a
different node while travelling between different paths.

Step II: (ii) (Local pheromone update): It includes the update of local pheromone
to limit its concentration for exploring unused routes to produce different solutions and
avoids the fall in a locally optimal, thus making the route less attractive for the next ants.
Equation (15) shows the process of this stage.

τij(t + 1) = (1− ρ) · τij(t) + ρτ0 (15)

Here, ρ ε [0, 1] is a parameter, known as the evaporation coefficient, whose value is
described in Table 2. τ0= (LKNN)

−1 represents the primary pheromone level of edges and
LKNN is the length of the tour generated by the KNN.
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Table 2. Parameter settings used in our algorithm.

Parameters Value

β 2
q0 0.90
α 2
ρ 0.90
τ0 (LKNN)−1

γ 2
σ 5
No. of iterations, N 1000
Q As in the CVRPLIB
No. of vehicles, m As in the CVRPLIB
No. of ants, n = m As in the CVRPLIB

Step III: (Local search): In this section, the nodes are changed to enhance the route of
all vehicles and, hence, to enhance the solutions that have been built by all ants through
improving the quality of the solution of every ant. Alternatively, when utilizing the local
search, the best local enhanced solutions might have a major chance to find the best solution.
So, the local search is utilized for improving the solutions. Although this can be conducted
in many ways, the most popular techniques include the use of two-opt and three-opt local
search methods. In the two-opt method, two edges are eliminated from the tour and then
the eliminated two edges are reconnected. The two edges can only be reconnected such
that the validity of the tour is guaranteed and it is shorter. It is seen that the three-opt
algorithm is operated similarly; however, rather than eliminating two edges, the algorithm
removes three edges. This means that there are two techniques of reconnecting the three
edges. In this study, we focused on using the large CVRP data, hence, we apply the three-
opt technique for completing their subtour and k-opt was applied to various subpaths
derived based on the experience of subpaths from the earlier iterations. This considered
the installation of node 1 at last in every subpath. This ensures the enhancement of the
best picture of the paths. In this phase, we apply the local search technique for improving
the best solutions and thereby improving the best subpaths. This experience can help in
successive iterations. This could be maximized after improving the subpaths where we can
use them for global update.

Step IV: (Global pheromone update): A global update is carried out after every iteration
wherein the pheromone values are updated based on the solution quality in the existing
iteration. It can be performed by decreasing the pheromone values for all solutions using
the evaporation procedure. This increases the pheromone value which helps in deriving
the best solutions. On the other hand, in the EACS algorithm, the best elitist ants present in
the iteration can lay the pheromone compound on the ribs where they travelled. A global
updating rule may be described as follows (Equation (16)).

τij(t + 1) = ρτij(t) + ∆τij + ∆τ∗ij (16)

where

τij =
σ−1

∑
µ=1

∆τ
µ
ij , ∆τ

µ
ij =

{
(σ− µ) Q

Lµ
i f the µ-th best ant travels on edge (i, j)

0 otherwise
(17)

and ∆τ∗ij =

{
σ Q

L∗ i f edge(i, j) is part o f the best solution f ound
0 otherwise

(18)

where µ = ranking index, ∆τ
µ
ij refers to the increased trail level on the edge (i, j) that are

affected by µ-th best ant, Lµ = tour length of µ-th best ant, ∆τ∗ij represents the increase in
the trail level on the edge (i, j) triggered by elitist ants, σ = no. of elitist ants, L∗ = tour length
of the best solution, and t = iteration counter while ρ ∈ (0, 1] is the parameter used for
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regulating the decrease in τij. The global update section collects all experience of the earlier
iterations and updates the pheromone level of the best solution using another coefficient
that differs from other coefficients used for the specific solutions that were not as effective
as the elitist solutions. In the algorithm proposed in this study, the experience of the
distinctive subpaths derived using the earlier iterations was retained for their later use.
They could be used for developing solutions that were based on the experience of paths
and helped in generating better results in less time. The pseudocode of the proposed EACS
algorithm was presented as in Algorithm 1.

Algorithm 1: EACS algorithm
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Input : α, β, ρ, τ, η, Q 
Output : Best Solution 
 
Build initial solution using KNN algorithm as described in Step I. 
Assign 𝜏𝑖𝑗 = 𝜏0 = 1/𝐿𝑁𝑁  
For t = 1: max iteration 
 For ant = 1: ant number 
  If a < h 
   Construct solution node by node as described in Step II (i). 
   For node = 1: N 
    If qt < Q 
     Use Equation (11) to select next node 
    Else 
     Use Equation (12) to select next node 
    End 
   End 
  Else 
   Construct solution subpath by subpath 
   For node = 1: N 
    If qt < Q 
     Use Equation (13) to select next subpath 
    Else 
     Use Equation (14) to select next subpath 
    End 
   End 
  End 
  Update local pheromone using Equation (15) as described in Step II (ii). 
  Apply local search using 3-opt algorithm  
 End 
 Subpaths are tested 
 Apply local search using k-opt algorithm as described in Step III. 
 Apply global update using Equations (16)–(18) as described in Step IV. 
End 
Report Best Solution 
 

4. Results and Discussion 
4. Results and Discussion

The results of the proposed EACS algorithm on benchmark CVRP data have been
presented on a few statistical criteria. Furthermore, we compared the effectiveness of the
proposed algorithm before and after the enhancement. We also compared the proposed
algorithm with a state-of-the-art technique.
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4.1. Statistical Criteria Used in the Study

The statistical criteria have included several statistical measures that have been used
in this section to calculate the solutions for the CVRP instances that involve two types
of solutions called best-known solution (BKS) and optimal solution (OPT). The statistical
techniques used in the study include the calculation of the best solution (BS), average
solution (AS), worst solution (WS), percentage of best gap (BG), percentage of average gap
(AG), percentage of worst gap (WG), average time (AT), and standard deviation (SD) of
10 runs for each problem instance. In addition, the instances of the CVRP used in this study
are taken from the CVRPLIB (http://vrp.galgos.inf.puc-rio.br/index.php/en/) accessed
on 15 July 2023.

4.2. Parameter Tuning

The parameter tuning process is carried out for determining the best parameters that
can help in improving the efficiency of the algorithm. It is noted that the grid search
process is a simple optimization technique that carries out an exhaustive search process and
manually derives a precise set of parameter regions for the classification technique. The
benefit of the grid search technique is that the parameter settings are thoroughly created.
For that, every dataset will be used to test all datasets [46]. Grid search has three steps
which are given below.

(i) Deriving the specific parameter settings depending on the specified cost limit. For
example, the cost limit of five means the no. of specific settings for every parameter is
five. Hence, for the despotic classifier with three parameters and a cost limit of five,
the grid search process produces 5 × 5 × 5 = 125 mixtures of parameter settings.

(ii) Assessing every specific parameter setting.
(iii) Identification of the optimal parameter settings.

We report our parameters that are used in our proposed algorithm in Table 2.

4.3. Implementation of the EACS Algorithm on the CVRP Dataset

We have presented the results after applying the proposed EACS algorithm using the
CVRP dataset. We have encoded our algorithm using MATLAB (R2018b (9.5.0.944444) on a
64 bit (win64) PC with Intel (R) Core (TM) i7-3770 CPU @ 3.40 GHz under MS Windows
10 and 8 GB RAM. We tested the application of the algorithm using different statistical
measures; the best criterion was derived after solving the equations using the CVRP dataset
wherein the lowest value was derived using the objective function of the CVRP model
during repetition with the help of the proposed EACS algorithm. On the other hand, the
worst criteria indicated the maximal value that could be derived from the objective function
for the CVRP model during repetition with the help of the proposed EACS algorithm. One
other criterion that was used included the average, i.e., mean of the objective function for
the CVRP model during repetition with the help of the proposed EACS algorithm. Then,
CPU time in seconds. Finally, SD denotes how far these values are far from the value in
the centre. Moreover, to evaluate the solutions obtained through the proposed algorithm,
Equation (19) was utilized to determine the percentage of gap (Gap) between the optimal
solution and the best solution.

Gap =
S− C∗

C∗
× 100 (19)

Here, S is the obtained solution and C* is the OPT/BKS reported in the CVRPLIB. If
the value of the gap is zero, then the solution is optimal; if the gap is close to zero, then
it is a good solution; and if the gap is away from zero, then it is not a good solution. For
example, as for the instance CMT1 from the CVRP dataset, this instance has an optimal
solution in the CVRP dataset and its value is 524.61. When implementing our proposed

http://vrp.galgos.inf.puc-rio.br/index.php/en/
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EACS algorithm on this instance, we obtained BS value 524.61 after 10 runs. To evaluate
this solution, we find the gap as follows:

Gap =
524.61− 524.61

524.61
× 100 = 0.00

Table 3 shows the results of the EACS algorithm in the case of a CVRP dataset, called
CMT, which contains 14 instances, out of which 13 instances have OPT and 1 instance has
BKS. The results show that the algorithm could obtain 12 OPTS out of 13 OPTS and 1 BKS
out of 1 BKS. The average of the best solutions is 983.54 while the average of solutions
in CVRPLIB is 976.03; that means the average percentage of the best gap is 0.72 with an
average SD of 21.91 and the average time is 249.53 s, which is a reasonable time.

Table 3. Results of the EACS algorithm on the “CMT” case.

No. Instance Solution in
CVRPLIB

Type of
Solution BS WS AS BG WG AG SD AT(s)

1 CMT1 524.61 OPT 524.61 594.23 531.57 0.00 13.27 1.33 22.01 25.44
2 CMT2 835.26 OPT 835.26 940.47 845.78 0.00 12.60 1.26 33.27 49.83
3 CMT3 826.14 OPT 826.14 969.38 840.46 0.00 17.34 1.73 45.30 117.17
4 CMT4 1028.42 OPT 1028.42 1028.42 1028.42 0.00 0.00 0.00 0.00 256.98
5 CMT5 1291.29 OPT 1291.29 1291.29 1291.29 0.00 0.00 0.00 0.00 802.21
6 CMT6 555.43 OPT 555.43 595.82 563.03 0.00 7.27 1.37 16.06 27.93
7 CMT7 909.68 OPT 909.67 909.67 909.67 0.00 0.00 0.00 0.00 60.33
8 CMT8 865.94 OPT 865.94 865.94 865.94 0.00 0.00 0.00 0.00 107.81
9 CMT9 1162.55 OPT 1162.55 1302.09 1188.49 0.00 12.00 2.23 54.88 281.36
10 CMT10 1395.85 OPT 1395.85 1706.14 1426.88 0.00 22.23 2.22 98.12 548.20
11 CMT11 1042.11 OPT 1147.27 1174.83 1159.53 10.09 12.74 11.27 8.64 653.23
12 CMT12 819.56 OPT 819.56 909.57 828.56 0.00 10.98 1.10 28.47 230.60
13 CMT13 1541.14 No 1541.14 1541.14 1541.14 0.00 0.00 0.00 0.00 209.67
14 CMT14 866.37 OPT 866.37 866.37 866.37 0.00 0.00 0.00 0.00 122.64

Average 976.03 983.54 1049.67 991.94 0.72 7.74 1.61 21.91 249.53

The results of the proposed EACS algorithm on the case “Set P” of CVRP dataset have
presented in Table 4, which has 23 instances, and the type of solutions is OPT. The results
show that the EACS algorithm obtained 21 OPTS out of 23 OPTS and the average of BS is
591.48 which is the same as the average of solutions in CVRP. That means the average of
the BG is 0.52, with the average SD being 8.88 and the average time being 157.61 s, which is
a reasonable time.

Table 4. Results of the EACS algorithm on the “Set P” case.

No. Instance Solution in
CVRPLIB

Type of
Solution BS WS AS BG WG AG SD AT(s)

1 P-n16-k8 450 OPT 450 450 450.00 0.00 0.00 0.00 0.00 2.54
2 P-n19-k2 212 OPT 212 224 213.20 0.00 5.66 0.57 3.79 16.85
3 P-n20-k2 216 OPT 216 216 216.00 0.00 0.00 0.00 0.00 12.88
4 P-n21-k2 211 OPT 211 218 211.70 0.00 3.32 0.33 2.21 20.47
5 P-n22-k2 216 OPT 216 226 217.70 0.00 4.63 0.79 3.65 15.86
6 P-n22-k8 603 OPT 603 603 603.00 0.00 0.00 0.00 0.00 1398.34
7 P-n23-k8 529 OPT 529 529 529.00 0.00 0.00 0.00 0.00 21.37
8 P-n40-k5 458 OPT 458 482 460.40 0.00 5.24 0.52 7.59 12.75
9 P-n45-k5 510 OPT 510 560 515.00 0.00 9.80 0.98 15.81 32.31
10 P-n50-k7 554 OPT 554 603 571.20 0.00 8.84 3.10 22.51 34.30
11 P-n50-k8 631 OPT 631 662 634.10 0.00 4.91 0.49 9.80 32.64
12 P-n50-k10 696 OPT 719 741 735.30 3.30 6.47 5.65 6.53 431.94
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Table 4. Cont.

No. Instance Solution in
CVRPLIB

Type of
Solution BS WS AS BG WG AG SD AT(s)

13 P-n51-k10 741 OPT 741 788 745.70 0.00 6.34 0.63 14.86 48.09
14 P-n55-k7 568 OPT 568 568 568.00 0.00 0.00 0.00 0.00 24.99
15 P-n55-k10 694 OPT 694 694 694.00 0.00 0.00 0.00 0.00 26.98
16 P-n55-k15 989 OPT 989 989 989.00 0.00 0.00 0.00 0.00 32.81
17 P-n60-k10 744 OPT 744 799 754.50 0.00 7.39 1.41 22.17 42.91
18 P-n60-k15 968 OPT 968 1025 973.70 0.00 5.89 0.59 18.03 61.54
19 P-n65-k10 792 OPT 792 874 807.90 0.00 10.35 2.01 33.54 64.51
20 P-n70-k10 827 OPT 898 915 908.10 8.59 10.64 9.81 6.71 1002.21
21 P-n76-k4 593 OPT 593 593 593.00 0.00 0.00 0.00 0.00 74.70
22 P-n76-k5 627 OPT 627 718 644.50 0.00 14.51 2.79 36.93 108.62
23 P-n101-k4 681 OPT 681 681 681.00 0.00 0.00 0.00 0.00 105.45

Average 587.39 591.48 615.57 596.35 0.52 4.52 1.29 8.88 157.61

4.4. Evaluating the Effectiveness of Our EACS Algorithm

We have assessed the effectiveness of the ACS algorithm after its enhancement with
the help of the subpath. This assessment was carried out in the following manner.

4.4.1. Comparison between the ACS and EACS Algorithms

We have compared the performance between ACS and EACS algorithms based on the
gap (accuracy) mentioned in Equation (19). Table 5 shows the comparative results.

Table 5. Comparison between ACS and EACS algorithms on the “CMT” case.

Instance Solution in CVRPLIB
ACS Algorithm EACS Algorithm

BS BG AT(s) BS BG AT(s)

CMT1 524.61 524.61 0.00 114.04 524.61 0.00 25.44
CMT2 835.26 838.18 0.35 88.91 835.26 0.00 49.83
CMT3 826.14 839.92 1.67 282.87 826.14 0.00 117.17
CMT4 1028.42 1044.29 1.54 546.61 1028.42 0.00 256.98
CMT5 1291.29 1321.07 2.31 863.89 1291.29 0.00 802.21
CMT6 555.43 560.24 0.87 44.43 555.43 0.00 27.93
CMT7 909.68 925.09 1.69 107.97 909.67 0.00 60.33
CMT8 865.94 877.00 1.28 139.46 865.94 0.00 107.81
CMT9 1162.55 1167.04 0.39 334.98 1162.55 0.00 281.36
CMT10 1395.85 1424.70 2.07 688.65 1395.85 0.00 548.20
CMT11 1042.11 1152.80 10.62 750.10 1147.27 10.09 653.23
CMT12 819.56 840.72 2.58 224.36 819.56 0.00 230.60
CMT13 1541.14 1551.35 0.66 301.19 1541.14 0.00 209.67
CMT14 866.37 868.40 0.23 116.27 866.37 0.00 122.64

Average 995.39 1.88 328.84 983.54 0.72 249.53

The comparison was confirmed in the previous section that relied on evaluation
metrics for the EACS algorithm, has outstanding performance, and is superior to ACS
algorithm. This is reflected positively to optimize the solutions of the CVRP instances
within a reasonable computational time. For example, the Bgs of the instances CMT3,
CMT4, CMT5, CMT7, CMT8, CMT10, CMT11, and CMT12 are 1.67, 1.54, 2.31, 1.69, 1.28,
2.07, 10.62, and 2.58, respectively, using the ACS algorithm. These Bgs have been reduced
to 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 10.09, and 0.00, respectively, using the EACS algorithm.
For the average of AT for all “CMT” instances, the ACS algorithm takes 328.84 s whereas
the EACS algorithm takes 249.53 s.

Furthermore, a comparison between ACS and EACS algorithms was conducted on
the CVRP “P-n-k” case and is reported in Table 6. The exploration issue in the ACS
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algorithm had a negative impact on its efficiency, robustness, and strong convergence
so the performance negatively affected the obtained results. For example, the BG of the
instances P-n16-k8, P-n19-k2, P-n20-k2, P-n22-k8, P-n23-k8, P-n60-k15, P-n65-k10, and
P-n70-k10 were 22.89, 11.32, 10.19, 7.63, 19.85, 12.81, 5.68, and 8.83, respectively, using the
ACS algorithm. Conversely, the EACS algorithm dealt with the exploration issue by using
subpaths and thus it was able to increase the diversity, which reflected positively on the
performance of the algorithm and thus achieved 21 OPTS out of 23 OPTS of the “P-n-k”
instances from CVRP dataset. In terms of implementation time, the traditional algorithm
ACS found solutions for these instances within 189.44 s; the EACS algorithm resolved those
cases within 114.132 s.

Table 6. Comparison between ACS and EACS algorithms on “P-n-k” case.

Instance Solution in CVRPLIB
ACS Algorithm EACS Algorithm

BS BG AT(s) BS BG AT(s)

P-n16-k8 450 553 22.89 12.70 450 0.00 2.54
P-n19-k2 212 236 11.32 55.80 212 0.00 16.85
P-n20-k2 216 238 10.19 28.53 216 0.00 12.88
P-n21-k2 211 211 0.00 90.57 211 0.00 20.47
P-n22-k2 216 216 0.00 78.17 216 0.00 15.86
P-n22-k8 603 649 7.63 1241.34 603 0.00 398.34
P-n23-k8 529 634 19.85 34.35 529 0.00 21.37
P-n40-k5 458 474 3.49 16.22 458 0.00 12.75
P-n45-k5 510 523 2.55 36.30 510 0.00 32.31
P-n50-k7 554 579 4.51 47.26 554 0.00 34.30
P-n50-k8 631 677 7.29 77.33 631 0.00 32.64
P-n50-k10 696 783 12.50 511.58 719 3.30 431.94
P-n51-k10 741 802 8.23 69.18 741 0.00 48.09
P-n55-k7 568 593 4.40 43.08 568 0.00 24.99
P-n55-k10 694 742 6.92 38.52 694 0.00 26.98
P-n55-k15 989 1099 11.12 42.54 989 0.00 32.81
P-n60-k10 744 830 11.56 51.82 744 0.00 42.91
P-n60-k15 968 1092 12.81 85.33 968 0.00 61.54
P-n65-k10 792 837 5.68 63.57 792 0.00 64.51
P-n70-k10 827 900 8.83 1218.17 898 8.59 1002.21
P-n76-k4 593 603 1.69 141.34 593 0.00 74.70
P-n76-k5 627 649 3.51 168.35 627 0.00 108.62
P-n101-k4 681 691 1.47 205.13 681 0.00 105.45

Average 635.26 7.76 189.44 591.48 0.52 114.13

4.4.2. Comparison between ACS and EACS Algorithms Based on the Efficiency Criteria

For comparing the efficiency of the algorithms, one of the three formulations is used
which are given below [47].

(i) Minimum number of times\iteration to find new solutions given by the following
formula:

λmin = mins {λs + 1} (20)

(ii) Mean number of times\iteration to find new solutions given by the following formula:

λmean = ∑S−1
S=1

λs + 1
S

(21)

(iii) Maximum number of times\iteration to find new solutions given by the following
formula:

λmax = maxs {λs + 1} (22)



Symmetry 2023, 15, 2020 16 of 24

Here, λ = time (seconds) or no. of iterations carried out for determining new solutions;
λs+1 = time (seconds) or no. of iterations conducted for determining new solutions that start
from a solution number, s; S = solution index; S + 1 = new solution index. We have used
the first formula, i.e., Equation (20), to compare the efficiency of the algorithms. So, the
algorithm is more robust if λmin is less than other algorithms. Table 7 shows the comparison
between the ACS and EACS algorithms based on the efficiency criteria on the “CMT” case.

Table 7. Comparison between ACS and EACS algorithms using efficiency criteria on the “CMT” case.

Instance
Efficiency Criteria

ACS EACS

CMT1 56.40 30.50
CMT2 68.50 24.88
CMT3 74.50 29.13
CMT4 86.00 29.00
CMT5 98.33 35.20
CMT6 65.00 25.38
CMT7 73.00 56.40
CMT8 84.75 16.67
CMT9 86.50 52.00
CMT10 95.00 57.00
CMT11 78.33 4.43
CMT12 96.50 72.75
CMT13 93.00 29.75
CMT14 76.33 32.20

Based on the results reported in Table 7, the EACS algorithm gives lower values for the
efficiency measure, which means that it discovers a new solution in a shorter time, unlike
the traditional ACS algorithm which gives high values for an efficiency measure, especially
if the size of the instance (n) is large. For example, for the instances CMT4, CMT5, and
CMT13 of sizes 150, 199, and 120, respectively, the efficiency rates of the ACS algorithm are
86.00, 98.33, and 93.00, respectively, while the efficiency rates of the EACS algorithm are
29.00, 35.20, and 29.75, respectively.

Another comparison between ACS and EACS algorithms using the evaluation metrics
has been presented in Table 8 on “P-n-k” data of CVRP.

Table 8. Comparison between ACS and EACS algorithms using efficiency criteria on the “P-n-k” case.

Instance
Efficiency Criteria

ACS EACS

P-n16-k8 76.00 36.00
P-n19-k2 74.75 29.75
P-n20-k2 25.13 3.50
P-n21-k2 47.00 6.33
P-n22-k2 45.00 12.50
P-n22-k8 62.67 10.50
P-n23-k8 25.00 5.50
P-n40-k5 33.00 14.50
P-n45-k5 24.00 6.25
P-n50-k7 39.67 24.80
P-n50-k8 36.75 15.60

P-n50-k10 32.60 14.00
P-n51-k10 42.00 22.00
P-n55-k7 48.67 38.53

P-n55-k10 40.00 18.00
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Table 8. Cont.

Instance
Efficiency Criteria

ACS EACS

P-n55-k15 58.80 9.50
P-n60-k10 36.00 11.00
P-n60-k15 40.50 20.20
P-n65-k10 65.25 10.67
P-n70-k10 52.67 7.50
P-n76-k4 48.50 31.20
P-n76-k5 57.00 34.75

P-n101-k4 55.80 37.33
P-n16-k8 76.00 36.00

The results in Table 8 show that the enhanced EACS algorithm has an outstanding
performance compared to the traditional ACS algorithm based on the efficiency criteria.
The efficiency results of the ACS algorithm are higher than that of those by the EACS
algorithm. For example, the results of the instances P-n55-k15, P-n60-k10, P-n60-k15, P-
n65-k10, and P-n70-k10 using the ACS algorithm are 58.80, 36.00, 40.50, 65.25 and 52.67,
respectively, while the results of those instances using the EACS algorithm are 9.50, 11.00,
20.20, 10.67, and 7.50, respectively.

4.4.3. Comparison of EACS Algorithm with a State-of-the-Art Algorithm

In this section, our EACS algorithm is compared with one of the state-of-the-art methods
that solved the CVRP. In [47], a simulated annealing algorithm based on the population
(PSA) was proposed to solve the CVRP and was implemented on some well-known instances
from the CVRP dataset. Table 9 reports the results of this comparison.

Table 9. Comparison between EACS algorithm and PSA [47].

No. Instance Solution in CVRPLIB
Best Solutions by

PSA EACS

1 A-n32-k5 784 784 784
2 A-n33-k5 661 661 661
3 A-n33-k6 742 750 742
4 A-n37-k5 669 669 669
5 A-n37-k6 949 972 949
6 A-n39-k6 831 831 837
7 A-n45-k6 944 958 944
8 A-n45-k7 1146 1146 1146
9 A-n46-k7 914 939 914
10 A-n48-k7 1073 1073 1073
11 A-n55-k9 1073 1073 1073
12 A-n60-k9 1354 1380 1354
13 A-n65-k9 1174 1174 1179
14 A-n80-k10 1763 1837 1763
15 B-n31-k5 672 672 672
16 B-n34-k5 788 788 788
17 B-n38-k6 805 820 805
18 B-n39-k5 549 549 549
19 B-n41-k6 829 831 829
20 B-n43-k6 742 742 748
21 B-n44-k7 909 937 909
22 B-n45-k5 751 751 751
23 B-n45-k6 678 678 678
24 B-n50-k7 741 750 741
25 B-n50-k8 1312 1358 1312
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Table 9. Cont.

No. Instance Solution in CVRPLIB
Best Solutions by

PSA EACS

26 B-n56-k7 707 707 707
27 B-n66-k9 1316 1316 1316
28 B-n67-k10 1032 1062 1032
29 B-n68-k9 1272 1272 1272
30 B-n78-k10 1221 1250 1221
31 P-n16-k8 450 450 450
32 P-n19-k2 212 212 212
33 P-n20-k2 216 216 216
34 P-n21-k2 211 211 211
35 P-n22-k2 216 216 216
36 P-n22-k8 603 603 603
37 P-n40-k5 458 458 458
38 P-n45-k5 510 510 515
39 P-n50-k7 554 561 554
40 P-n50-k10 696 716 696
41 P-n51-k10 741 769 741
42 P-n55-k7 568 581 568
43 P-n55-k10 694 721 694
44 P-n60-k10 744 784 744
45 P-n60-k15 968 989 968
46 P-n65-k10 792 804 792
47 P-n70-k10 827 842 827
48 P-n76-k4 593 602 593
49 P-n76-k5 627 638 641
50 P-n101-k4 681 705 681
51 E-n22-k4 375 381 375
52 E-n23-k3 569 569 569
53 E-n30-k3 534 549 534
54 E-n33-k4 835 835 835
55 E-n51-k5 521 521 521
56 E-n76-k7 682 697 682
57 E-n76-k8 735 753 735
58 E-n76-k10 830 830 830
59 E-n76-k14 1021 1046 1021
60 E-n101-k8 815 833 815

Notably, the values in boldfaces are obtained by our proposed EACS algorithm that
indicate better results than those obtained by the PSA [47]. Figures 3–6 show the no. of
OPT obtained by our EACS algorithm and the PSA algorithm [47] on “Sets A, B, P, and E”
datasets from the CVRP.
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5. Theoretical Analysis and Critical Explanation for the Performance of the Proposed
EACS Algorithm

Many earlier studies showed that the metaheuristic algorithms are very effective in
handling the NP-hard problems. Hence, in this study, we proposed an EACS algorithm
belonging to the swarm intelligence (SI) category, which is a class of metaheuristic algo-
rithms. The no free lunch (NFL) theorem [48] used in the optimization field states that no
single algorithm displays a good performance while solving all problems. Moreover, this
performance can also be poor in a few instances. Hence, we have proposed an enhanced
algorithm that would show an enhanced performance on a specific problem; however, it
would not provide a comprehensive solution for all problems.
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For achieving an efficient performance of this proposed algorithm, the metaheuristic
algorithms must address some issues like lack of an exploration mechanism, stagnation,
and parameter tuning. All these issues have been addressed in this study. Furthermore,
studies in the literature have succeeded in improving the intensification (exploitation) of the
ACS algorithm by the experience of subpaths [23]. However, the ACS algorithm is suffering
from an exploration issue; therefore, this study has considered this issue by enhancing
the traditional transition rule in the ACS algorithm by using the subpaths to support the
exploration mechanism in the EACS algorithm where all subpaths are stored after finishing
every iteration in a table to exclude repeated subpaths for achieving diversification. To
verify that our proposed algorithm has a good contribution, the performance was evaluated
using evaluation metrics that included efficiency and gap. The proposed algorithm showed
an enhanced efficiency as the convergence was increased to optimal solutions within a
reasonable computation time for the CMT6, as shown in Figures 7–10.
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Figure 9. Time efficiency of strong convergence by EACS algorithm to solve the instance of CMT6.
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Figure 10. Time efficiency of strong convergence by ACS algorithm to solve the instance of CMT6.

Statistical Analysis

In this section, we have presented a statistical analysis of all findings displayed by
the EACS and the ACS algorithms where they used the p-value for rejecting the null
hypothesis as follows. The statistical analysis related to comparison between the best
solutions obtained by the ACS and EACS algorithms that have solved some of the instances
from the CVRP dataset. The different hypotheses consist of the null hypothesis, which
refers to the average of the best solutions acquired by the ACS algorithm. This was seen to
be equal to the mean of all best solutions derived using the EACS algorithm. Hypothesis
2 refers to the alternative hypothesis, which is seen to be the mean best solution that is
derived with the help of the ACS algorithm. This was not equal to the mean of the best
solutions acquired using the EACS algorithm. Table 10 presents the statistical analysis of
the paired samples.

Table 10. Statistical analysis of the results of the best solutions obtained by ACS and EACS algorithms.

Item EACS ACS

Mean 735.69 746.95
Variance 120,518.58 121,013.52
Observations 30 30
Pearson Correlation 0.99
Hypothesized Mean Difference 0
df 29
t Stat 2.84
p-value two-tail 0.01
t Critical two-tail 2.05

As shown in Table 10, the p-value of the null hypothesis was less than 0.05 in the 95%
confidence interval, hence, it was rejected. This indicated that there was strong evidence
indicating that the above solutions were different. Owing to its positive value, the solutions
derived using the ACS algorithm were worse compared to the solutions derived using the
EACS algorithm. On the other hand, the Wilcoxon signed-rank test was used for statistically
analyzing the performance of the proposed EACS algorithm and the algorithm PSA that
was proposed in [49] as follows:

No difference was noted between the average value obtained using the PSA and
the proposed EACS algorithms for the null hypothesis. On the other hand, differences
were noted in the mean value calculated using the proposed EACS and PSA algorithms
in the case of the alternative hypothesis. The results of this test have been presented in
Tables 11 and 12.
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Table 11. Wilcoxon Signed Rank Test.

N Mean Rank Sum of Ranks

EACS—PSA

Negative Ranks 30 a 20.30 609.00
Positive Ranks 5 b 4.20 21.00
Ties 25 c

Total 60
a EACS < PSA, b EACS > PSA, c EACS = PSA.

Table 12. Test Statistics a.

EACS—PSA

Z −4.82 b

Asymp. Sig. (2-tailed) 0.00
a Wilcoxon Signed Ranks Test, b Based on positive rank.

The test statistics have been presented in Table 12.
As shown in Tables 11 and 12, the test value was seen to be −4.82 while the confidence

level was 0.00, which was less than 0.05. Hence, the researchers have rejected the null hy-
pothesis and accepted the alternative hypothesis. Though the comparative study showed a
better performance of our EACS compared to the enhanced simulated annealing algorithm,
our proposed algorithm could not find an optimal solution for all problem instances.

6. Conclusions

Despite the metaheuristic algorithms’ success, balancing the smart mechanisms owned
by these algorithms represented in exploitation and exploration is considered a challenge
for most of these algorithms. Therefore, this research work has addressed the exploration
issue in the ACS algorithm by using subpaths to avoid generating the same solutions,
thus leveraging the diversity of generating solutions to find better solutions with less
route distance in a reasonable time. The performance evaluation results of the EACS
algorithm have shown that the EACS algorithm is better than the ACS algorithm based on
the evaluation metrics efficiency and powerful convergence in addition to being better than
that based on the gap (accuracy) by using Equation (18). In this study, we also compared
the EACS algorithm with a state-of-the-art technique and noted that our proposed EACS
algorithm showed a better performance compared to the enhanced simulated annealing
algorithm. The enhanced simulated annealing algorithm yielded 29 optimal solutions out
of the 61 optimal solutions whereas the proposed EACS algorithm yielded 57 out of the
61 optimal solutions.

Though the comparative study showed a better performance of our EACS compared to
the enhanced simulated annealing algorithm (PSA), our proposed algorithm could not find
optimal solution for all problem instances. So, other metaheuristic algorithms, like genetic
algorithms, tabu search [50], and/or combination of them can show better performance of
the algorithm. Furthermore, the proposed EACS algorithm can be used for solving many
healthcare-related combinatorial optimization problems like the nurse scheduling problem
(NSP) within a shorter computational time.
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