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Abstract: Symmetry in designing a microstrip coupler is crucial because it ensures balanced power
division and minimizes unwanted coupling between the coupled lines. In this paper, a filtering
branch-line coupler (BLC) with a simple symmetrical microstrip structure was designed, analyzed
and fabricated. Based on a mathematical design procedure, the operating frequency was set at
5.2 GHz for WLAN and 5G applications. Moreover, an optimization method was used to improve the
performance of the proposed design. It occupied an area of 83.2 mm2. Its harmonics were suppressed
up to 15.5 GHz with a maximum level of −15 dB. Meanwhile, the isolation was better than −28 dB.
Another advantage of this design was its high phase balance, where the phase difference between
its output ports was 270◦ ± 0.1◦. To verify the design method and simulation results, the proposed
coupler was fabricated and measured. The results show that all the simulation, design methods, and
experimental results are in good agreement. Therefore, the proposed design can be easily used in
designing high-performance microstrip-based communication systems.

Keywords: microstrip; coupler; phase; filtering response; 5G application; coupling factor

1. Introduction

Microstrip devices play a crucial role in RF communication systems as they allow for
the miniaturization, integration, and cost-effective realization of various components such
as filters, couplers, power dividers, and antennas [1–4]. Since microstrip couplers have
been in wide-spread demand for modern wireless communication systems, several novel
types have been reported recently. Using step-impedance cells, a microstrip branch-line
coupler (BLC) was designed in [5]. It operates at 2.4 GHz, which makes it suitable for
wireless local area networks (WLANs). Several types of BLCs are presented in [6–8], and
all of them display the common problem of phase unbalance. One of the advantages of
designing a coupler is that it yields a filtering frequency response. However, in [9–13],
the designers used the microstrip structures to obtain five couplers without any filtering
frequency responses. Also, they could not improve the phase balance in their designs.
A three-channel microstrip coupler with a filtering frequency response is reported in [14].
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However, it occupies a very large implementation area without suppressing the harmonics.
Two microstrip couplers are proposed in [15,16] with large sizes, high insertion loss and
high coupling factor. Using the T-shaped microstrip stubs, a coupler was designed in [17]
for 5G high-band applications. The presented microstrip couplers in [18,19] are suitable for
Global System for Mobile Communications (GSM) applications. However, they could not
attenuate the harmonics. Also, the proposed coupler in [18] is very large. In [20], a microstrip
of −3 dB BLC was achieved using open-circuited coupled lines. A microstrip coupler for
use in Worldwide Interoperability for Microwave Access (WiMAX) applications is reported
in [21], but it does not have a filtering frequency response. A summary of the advantages,
disadvantages, design methods and applications of the above-reported couplers are listed
in Table 1.

Table 1. The specifications of the previous couplers.

Refs. Advantages Disadvantages Design Method Applications

[5] Balanced phase No filtering response Calculation of the
reflection coefficient WLAN-5G

[6] --- No filtering response,
Phase unbalance

Analysis of the
ABCD matrix of a
transmission line

5G

[7] Filtering response,
Compact size High losses No mathematical

design GSM

[8] Novel structure Phase unbalance No mathematical
design 5G

[9] ---
Phase unbalance,

Magnitude unbalance,
No filtering response

Calculation of the
line impedance and
power ratio between

output ports

5G

[10] ---

No filtering response,
High loss,

Phase unbalance,
Magnitude unbalance

No mathematical
design WiMAX-5G

[12] --- No filtering response No mathematical
design 5G

[13] Low losses No filtering response,
Phase unbalance

Calculation of the
input impedance of
the basic resonator

WLAN-5G

[16] Filtering response,
Novel structure

Large size, Phase
unbalance

Obtaining the
output-input
voltage ratio

5G

In this work, we present a microstrip BLC with a novel structure. It has a filter-
ing frequency response, which can suppress the 1st and 2nd harmonics up to 15.5 GHz.
Operating at 5.2 GHz makes it suitable for IEEE 802.11a WLAN and mid-band 5G applications.
A lowpass resonator is proposed and mathematically analyzed to use in the coupler structure.
The proposed coupler is obtained through the direct integration of two lowpass filters (LPFs)
and we did not change the dimensions of the LPFs in the final coupler structure. However,
the additional optimization is performed to improve its performance. Our design has a high
performance, and it can be easily integrated with the other high frequency circuits for designing
RF communication systems.

The final layout of the designed coupler is optimized to improve its performance.
Good insertion loss, isolation, phase balance and coupling factor are obtained, while the
return loss and the coupler size (83.2 mm2) are acceptable. This manuscript is organized as
follows. Section 1 provides the introduction. Section 2 provides the presented mathematical
analysis and optimization of the proposed resonator, filters and coupler. Section 3 presents
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the simulation and measurement results, description of the measurements setup and
comparison with the previous works. Finally, Section 4 concludes the paper.

2. Design of Resonator, Filters and Coupler

Figure 1 shows a symmetrical stub-loaded transmission line with its equivalent
LC circuit. The stub is a low-impedance cell. The lines with the physical lengths la
and lb are replaced by the inductors La and Lb, respectively. Also, the open end of the shunt
stub is presented by the Co capacitor.
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Figure 1. Layout and LC circuit of the proposed resonator.

The equivalent circuit from T1 to T2 is presented by two inductors with two equivalent
impedances of 0.5jx and a capacitor with an equivalent impedance of jB. For a short-line lc
(lc < (λg/8)) with a characteristic impedance of Zc, the values of x and B can be approximated
by [22]:

x ≈ Zc(
2π lc

λg
) & B ≈ 1

Zc
(

2π lc
λg

) (1)

where λg and lc are the guided wavelength and the physical length from T1 to T2, respectively.
The equivalent impedance of the shunt stub (ZSh) can be calculated as follows:

ZSh = 1
1

( 1
jωCo

+jω(La+0.5x))
+jωB

+ jω(La + 0.5x)⇒

ZSh = 1−ω2Co(La+0.5x)+jω(La+0.5x)[jωCo+jωB(1−ω2Co(La+0.5x))]
[jωCo+jωB(1−ω2Co(La+0.5x))]

(2)

whereω is an angular frequency and La and Co are defined before and presented in Figure 1.
Substituting Equation (1) into Equation (2) results in:

ZSh =
1−ω2Co(La+Zc(

π lc
λg ))+jω(La+Zc(

π lc
λg ))[jωCo+jω( 2π lc

Zcλg )(1−ω2Co(La+Zc(
π lc
λg )))]

jωCo+jω( 2π lc
Zcλg )(1−ω2Co(La+Zc(

π lc
λg )))

(3)

The ABCD matrix of the proposed resonator (TR) can be obtained through [23]:

TR =

[
AR BR

CR DR

]
=

[
1 jωLb

0 1

]
×

 1 0

1
ZSh

1

× [ 1 jωLb

0 1

]
=

 1 + jωLb
ZSh

jωLb(2 +
jωLb
ZSh

)
1

ZSh
1 + jωLb

ZSh

 (4)
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Using the calculated TR, we can obtain the scattering matrix of the proposed resonator
(SR) as follows:

SR =

[
S11 S12

S21 S22

]
=


AR+BR/Z0−CRZ0−DR
AR+BR/Z0+CRZ0+DR

2(ARDR−BRCR)
AR+BR/Z0+CRZ0+DR

2
AR+BR/Z0+CRZ0+DR

−AR+BR/Z0−CRZ0+DR
AR+BR/Z0+CRZ0+DR

⇒

S11 = S22 =
jωLb

Z0
(2+

jωLb
ZSh

)− Z0
ZSh

2+
2jωLb+Z0

ZSh
+

jωLb
Z0

(2+
jωLb
ZSh

)

S12 = S21 = 2
2+

2jωLb+Z0
ZSh

+
jωLb

Z0
(2+

jωLb
ZSh

)

(5)

In Equation (5), Z0 is the impedance of the terminals and AR, BR, CR and DR are the
transfer parameters. Also, S11, S21, S12 and S22 are the scattering parameters. According to
Equation (3) and for low frequencies, ZSh will be an open circuit. Therefore, S11 and S21 at
low frequencies will be changed as follows:

S11 = jωlow Lb
Z0+jωlow Lb

S21 = Z0
Z0+jωlow Lb

(6)

whereωlow is a low angular frequency. From Equation (6), it is clear that the −3 dB cut-off
frequency depends on the values of Lb so that a cut-off angular frequency (ωc) can be
obtained using the following equation:

1√
2
|S21|Max = |S21|

|S21| = Z0√
2Z2

0+2(ωc Lb)
2

1√
2
|S21|Max = 1√

2

∣∣∣ Z0
Z0+jωc Lb

∣∣∣
Max

= Z0{√
2Z2

0+2(ωc Lb)
2
}

Min

= 1√
2

⇒

Z2
0

2Z2
0+2(ωc Lb)

2 = 1
2 ⇒ ωcLb ≈ 0

(7)

Our target is to obtain a cut-off frequency in GHz; therefore, by choosing a Lb of less
than 1 nH, ωcLb will be near zero. Since the simulation results show that at the cut-off
frequency |S21| = |S11|, the second way to obtain the cut-off frequency is as follows:

|S21| = |S11| ⇒
Z0√

2Z2
0 + 2(ωcLb)

2
=

ωcLb√
Z2

0 + (ωcLb)
2
⇒ ωc =

Z0√
2Lb

(8)

According to the cut-off angular frequency and based on Equation (8), the value of Lb
can be calculated. Then, using Richards’ transformation, the value of the physical length lb
can be determined. Using the analyzed lowpass resonator, two lowpass filters (LPF1, LPF2)
are proposed. These LPFs with their frequency responses are depicted in Figure 2, where
all dimensions are in mm. As shown in Figure 2, the cut-off frequencies of LPF1 and LPF2
are close to each other. The LPF1 has the best insertion and return losses of 0.03 dB and
24.9 dB in its passband. To design the LPF2, two shunt stubs were used. LPF2 has the best
insertion and return losses of 0.006 dB and 32.7 dB in its passband. All simulation results in
this work were obtained using the EM simulator of ADS software. The used substrate was
a Rogers RT/duroid 5880 with h = 0.7874 mm, εr = 2.22 and tan (δ) = 0.0009.

To obtain a microstrip BLC, we integrated the proposed LPFs. The layout configuration
of our coupler is illustrated in Figure 3, where all dimensions are in mm, and we did not
change the dimensions of the LPFs in it. Also, another internal shunt stub was added near the
isolation port (Port 4), which is able to improve the isolation and shift the operating frequency
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simultaneously. The overall size of this coupler is 6.4 mm × 13 mm = 0.14 λg × 0.29 λg, where
λg is the guided wavelength calculated at the operating frequency.
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Figure 2. Layout of the proposed LPFs with their frequency responses.

Using the current density distribution, the dimensions of the physical lengths and
widths l1, l2, w1, w2, w3 and w4 were optimized to improve the coupler performance.
The current density distributions of our BLC at the operating frequency for simulating
Ports 2 and 3 are shown in Figure 4. As can be seen, the thinner cells with higher impedances
have higher current densities than the internal stubs. This is verified through the mathe-
matical analysis of the proposed lowpass resonator. When we simulate Port 2 and Port 3,
the upper and lower transmission lines have higher current densities, respectively. On the
other hand, the upper and lower shunt stubs have higher current densities when simulating
Port 2 and Port 3, respectively.
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To improve the performance, the frequency response of the proposed coupler was obtained
as functions of l1, l2, w1, w2, w3 and w4, and the results are presented in Figures 5 and 6.
As can be seen, by increasing l1 and l2, the operating frequency moves to the left which
verifies Equation (8). However, increasing l1 and l2 can improve the common port return
loss (S11) and isolation factor (S41), which is shown in Figure 6. Decreasing the width w1
reduces the magnitude balance of S21 and S31 but improves the return loss and isolation.
On the other hand, by tuning w3, we can increase the magnitude balance. By changing
w3, the operating frequency changes slightly. But by decreasing w3, the isolation will be
increased. By increasing w4, the insertion loss, coupling factor (S31) and isolation will be
improved. However, the best value of return loss is obtained for w4 = 0.4 mm. Figure 7
depicts the steps of our coupler design.

A phase shift of 270◦ will be created according to the position of the output ports in the
branch line layout as well as the overall structure of the designed coupler. Thus, by tuning the
physical lengths and widths of our LPFs and by changing their positions in the branch-line
structure we were able to obtain a phase shift of 270◦ between S31 and S21. For example, the
relatively symmetrical branch line coupler with an even number of shunt stubs can create a
270◦ (or 90◦) phase difference between the output ports. On the other hand, where the best
isolation and return loss values are close to the operating frequency, the phase is balanced easily.
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3. Results and Comparison

We obtained the simulation results by using ADS software and the measurements were
performed using an HP8757A vector network analyzer. To conduct S-parameter measurements
of a branch-line coupler using a vector network analyzer (VNA), the VNA was calibrated.
This process was in line with a set of calibration standards that match the frequency range
and impedance of the device under test (DUT). Common standards include open, short and
load terminations, as well as through-and-line standards. Using the same standards, a full
two-port calibration of the VNA was performed to compensate for any systematic errors in
the measurement system, such as mismatch and transmission line effects. The VNA was
then configured to perform S-parameter measurements in the appropriate frequency range
and measurement format, for example, the phase and magnitude or real and imaginary
components, as well as the number of points and frequency step sizes for the measurements.
The BLC, which is the DUT, is then connected to the RF ports of the VNA with proper
coaxial connections. To measure the return loss of the BLC, Port 1 of the BLC is connected
to Port 1 of the VNA, while all the other ports are terminated with 50 ohm terminators.
For the BLC insertion loss measurement, Port 1 of the VNA was connected to Port 1 of the
BLC, and Port 2 of the VNA was connected to Port 2 of the BLC. Port 3 and Port 4 of the
BLC were terminated through the 50 ohm terminators.

Similarly, for the measurement of the BLC coupling loss, Port 1 of the VNA was
connected to Port 1 of the BLC, and Port 2 of the VNA was connected to Port 3 of the
BLC with Port 2 and Port 4 all terminated through 50 ohm terminators. Finally, for the
measurement of the BLC’s isolation loss, Port 1 of the VNA was connected to Port 1 of
the BLC, and Port 2 of the VNA was connected to Port 4 of the BLC. Port 2 and Port 3 of



Symmetry 2023, 15, 1598 10 of 14

the BLC were terminated with 50 ohm terminators. Due to the SMA and copper losses, the
simulated losses are a little better than the measurements losses. The simulated and measured
frequency responses are presented in Figure 8, while Figure 9 shows the simulated and
measured phase difference between S21 and S31. The scattering parameters of proposed
coupler at 5.1–5.3 GHz are depicted in Figure 10. Since the proposed structure is simple,
the manufacturer error is minimal, which is an advantage. The proposed coupler works at
5.2 GHz (exactly at 5.19 GHz), which makes it suitable for WLAN and mid-band 5G (which
covers 1 GHz to 6 GHz). At this operating frequency, the phase difference between S21
and S31 is 270◦ ± 0.1◦. As shown in Figure 8, near the operating frequency, the best values
of S11, and S41 (isolation) are −19.6 dB and −28.2 dB, respectively. Also, the best values
of S21 and S31 near the operating frequency are −2.6 dB and −2.4 dB, respectively, which
are at two different frequencies. Meanwhile, at the operating frequency S21 and S31 are
−3.28 dB and 3.56 dB, respectively. The harmonics are suppressed by up to 15.5 GHz with
a maximum level of −15 dB. Narrowband frequency responses of the proposed coupler are
shown in Figure 10. Figure 11 shows the fabricated coupler.
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urement of the BLC’s isolation loss, Port 1 of the VNA was connected to Port 1 of the BLC, 
and Port 2 of the VNA was connected to Port 4 of the BLC. Port 2 and Port 3 of the BLC 
were terminated with 50 ohm terminators. Due to the SMA and copper losses, the simu-
lated losses are a little better than the measurements losses. The simulated and measured 
frequency responses are presented in Figure 8, while Figure 9 shows the simulated and 
measured phase difference between S21 and S31. The scattering parameters of proposed 
coupler at 5.1–5.3 GHz are depicted in Figure 10. Since the proposed structure is simple, 
the manufacturer error is minimal, which is an advantage. The proposed coupler works 
at 5.2 GHz (exactly at 5.19 GHz), which makes it suitable for WLAN and mid-band 5G 
(which covers 1 GHz to 6 GHz). At this operating frequency, the phase difference between 
S21 and S31 is 270° ± 0.1°. As shown in Figure 8, near the operating frequency, the best 
values of S11, and S41 (isolation) are −19.6 dB and −28.2 dB, respectively. Also, the best val-
ues of S21 and S31 near the operating frequency are −2.6 dB and −2.4 dB, respectively, which 
are at two different frequencies. Meanwhile, at the operating frequency S21 and S31 are 
−3.28 dB and 3.56 dB, respectively. The harmonics are suppressed by up to 15.5 GHz with 
a maximum level of −15 dB. Narrowband frequency responses of the proposed coupler 
are shown in Figure 10. Figure 11 shows the fabricated coupler. 
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To prove the high performance of the proposed coupler, we compared it with previous
works. The comparison results are summarized in Table 2. The operating frequency,
filtering response, the last frequency with suppressed harmonics and the phase unbalance
are depicted by fo, FR, LFSH and PU, respectively. As can be seen, the majority of previously
reported couplers did not have a filtering frequency response and subsequently could not
suppress the harmonics. Only the phase balances in [5,19,21] are a little better than ours.
However, we were able to better suppress the harmonics. Moreover, the proposed designs
in [5,19,21] do not have filtering frequency responses. There are four smaller couplers in
Table 2 compared to ours. However, they could not suppress the harmonics well. At the
operating frequency, the values of S21 and S31 are −3.28 dB and −3.56 dB. Therefore, there
is a ±0.28 dB amplitude unbalance, which is considered acceptable, since it does not have a
significant negative impact on the performance.

As shown in Table 2, the isolation factor (S41) near the operating frequency of this work is
acceptable. The presented couplers in [5,11,19,21] were not able to suppress the harmonics, as
they do not have a filtering frequency response, while our coupler suppresses harmonics of up
to 15.5 GHz. The size of the proposed coupler in [16] is larger than ours. Also, our design has a
better balanced amplitude and phase than the designed coupler in [16].

Table 2. Comparison with the previous works (fo: operating frequency; FR: filtering response;
LFSH: last frequency with suppressed harmonics; PU: phase unbalance; *: approximated value;
**: triple-band coupler).

Refs fo (GHz) FR LFSH (GHz) S21
(dB)

S31
(dB)

PU
(Degree)

S41
(dB)

Size
(mm2/λg

2)

Our coupler 5.2 Yes 15.5 −3.28 −3.56 0.1 28.2 83.2/0.04

[5] 2.4 No No −3.3 −3.3 0.09 42.9 175.1/0.023

[6] 2 No No −3.1 −3.4 3 26 * 1322/---

[7] 0.93 Yes 1.3 * −3.5 −3.5 --- Better than 20 673/0.017

[8] 2 Yes 4.5 * −3.11 −3.39 1 --- 265.69/---

[9] 2.9–4.1 No No −5 −3 ± 1 10 21 * 1524.24/---

[10] 3 No No −7.38 −2.25 2.3 21.5 819/---

[11] 6.3 No No −4.07 −4.39 2.1 30 * 2218/---

[12] 1.07 No No −3.3 −3.3 1 24.2 204.9/---

[13] 5.7 No No −2.3 −2.6 0.8 19.4 110/0.042

[14] 2.17 ** Yes No --- --- 5 15 ---/0.448

[15] 20–28.7 No No −3 ± 1 −3 ± 0.8 3 15 * 595/0.307 *

[16] 2.8 Yes 7 −3.3 −2.9 0.97 31.3 710/0.075

[17] 3.5 No No −2.97 −3.65 3.6 24.46 493/0.049

[18] 1.87 Yes No --- --- 3 Better than 20 ---/0.138

[19] 1.8 No No −2.9 −3.2 0.01 40 192.7/0.011

[20] --- Yes No −3.6 ± 0.5 −3.6 ± 0.5 --- Better than 20 1157.5/0.2379 *

[21] 2.4 No No −3 −3.08 0.037 30 354.75/0.037

4. Conclusions

In this paper, we designed a symmetrical microstrip coupler using a new structure
and good performance for 5G applications. It displays a filtering frequency response with
suppressed harmonics, while a large number of the previous works did not cover this issue.
The design method is based on analyzing a lowpass resonator to calculate the scattering
parameters and find the cut-off frequency. Based on changing the significant lengths and
width, the final layout structure is optimized. The simulation results extracted from the
optimization method verify the presented mathematical formulas. Using the analyzed
resonator, two lowpass filters are designed to be embedded in the final layout of the



Symmetry 2023, 15, 1598 13 of 14

proposed coupler. Finally, we compared our coupler with previous works. The comparison
results showed that we were able to obtain a high phase balance and good S21 and S31
without a significant increase in the coupler size.
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