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Abstract: The purpose of this research is to present a thorough evaluation of energy management
systems that consist of hybrid energy storage systems and their control algorithms, which may be
used in electric vehicles. This paper outlines the characteristics of electric vehicles, research methods,
an analysis of the hybrid energy storage system architecture, the converter topology, and energy
management techniques. The strength and co-occurrence of keywords over the past ten years are
shown in this study using a systematic research framework for performing a literature review and
using keyword analysis techniques. This study reveals a pattern of recently and frequently used terms
in works of literature. Consequently, their suitability, benefits, and drawbacks are assessed. In this
study, the hybrid energy storage system and converter circuit architecture are evaluated and rated. A
non-isolated DC-DC converter connected to an SC is a suitable configuration for the hybrid converter
because it is simple to build, is reliable, and has minimal loss /weight/cost, which all improve vehicle
performance. In terms of the application of control strategies, it is shown that deterministic and
fuzzy-rule-based control techniques are successfully assessed using real-scale vehicle experiments
and can be selected for manufacturing. On the other hand, real-time optimization-based energy
management techniques have been effectively shown in lab-scale tests and may be used in a future
real-scale vehicle.

Keywords: electric vehicle; lithium-ion battery; supercapacitor; power converter; hybrid energy
storage system; energy management system

1. Introduction

The electric vehicle (EV) is distinguished by two characteristics. The first distin-
guishing characteristic is its portable energy source or energy storage, which is created by
electrochemical, electrostatic, and electromechanical mechanisms, such as a battery/fuel
cell/solar cell, an SC, and a flywheel. An EV’s second distinguishing characteristic is its
electric motor, which generates tractive effort for propulsion [1]. A fuel cell (FC) cannot,
in general, receive regenerative power when braking. Furthermore, an excessive power
demand generates a substantial voltage drop and air starvation in an FC [2]. As a result,
an FC is intended to provide unidirectional power flow to a modest and steady load. In
most cases, the battery is employed as a basic source to provide and save regenerative brak-
ing with a suitable dynamic response. However, its lifetime can be significantly reduced
by supplying and absorbing high current in acceleration and deceleration, respectively.
These factors cause a high internal battery resistance and thus reduce the mileage and
performance of the vehicle.
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For supplying and absorbing high repetitive peak power from the propulsion load,
an energy storage device such as a supercapacitor (SC) should be employed because of its
fast response mechanism for storing the energy. The working principle of an SC is based
on electric charge movement, which is highly reversible, permitting it to be charged and
discharged easily and efficiently millions of times [3]. Another energy storage device for a
high repetitive propulsion load is a flywheel; in this case, the energy storage can supply
or receive pulse power by electromechanical means. However, the spinning flywheel is
like an explosive device that is inherently dangerous [4]. From this point of view, an SC
is an applicable solution to buffer the high repetitive load of EV propulsion. Therefore,
the combination of a battery and an SC is one of the best promising solutions for a hybrid
energy storage system (HESS) that provides good performance in terms of energy and
power supply [5].

To manage the HESS, an energy management strategy (EMS) that is consistent with its
topology must be developed. According to ISO 50001, the goal of an energy management
system is to build an efficient system and take the required actions to improve energy
performance [6]. The primary focus of this study is on the energy management system for a
battery hybrid electric vehicle (BHEV) employing an SC: the first is the HESS configuration
scheme, and the second is the energy management strategy for the energy storage. These
factors motivated us to investigate over the last decades what is the most effective option
for an HESS employed in BHEV applications.

This research looks at energy management systems for electric vehicle applications
that use battery/supercapacitor hybrid energy storage technology. The research approach,
as described in Section 2, is presented to provide a defined work phase and defined
processes. In Section 3, we look at several battery/supercapacitor combinations and
evaluate their characteristics for application recommendations. Section 4 proposes and
explains a converter design for merging an SC and batteries in an electric vehicle. Section 5
investigates and tabulates rule-based and optimization-based energy management control
systems to establish their applicability in real electric vehicles. The research discussion of
major results and conclusions is drawn in the last sections.

2. Research Methodology

The research framework for this study is depicted in Figure 1. We classified the
most recent work with specified keywords in the subscription and open access online
databases of IEEExplore, SCOPUS, and ScienceDirect based on the keywords “energy
management”, “battery/supercapacitor”, and “electric vehicle applications.” The linked
literature of 71 papers was carefully picked and analyzed between 2006 and 2023. The
selected terms were then entered into a reference management system, which produced a
research information system file format for keyword analysis. The VOSviewer program
was used to create networks of scientific keywords connected by a co-occurrence link,
which is a connection between two terms. The size of the word determined the magnitude
and strength of the co-occurrence, as seen in Figure 2 that depicts the prospects and trends.

4 ) Methods;
Sources; 1. Bibliometrics in Focus on co-
Tools; . .
1. IEEExplore reference management VOSviewer occurrence terms Discussion &
2. SCOPUS software coftware to enhance Conclusion
3. ScienceDirect 2. Develop the research contributions.
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Figure 1. The research approach used in this study.
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Figure 2. Keyword intensity in our field of interest during the past decade.

The minimum number of occurrences of a keyword was set to one in the parame-
ters used to create the map shown in Figure 2. Thus, the largest total link strength of
211 relevant keywords was established throughout the previous decade. The most current
and often occurring keywords between two terms are “electric vehicle(s)”, which has the
highest co-occurrence and link strength score, followed by “hybrid energy storage system”,
“battery”, and “energy management”. The findings show that the hybrid energy storage
system is a hot topic for many researchers, yet it was overlooked in our study: consider
terms such as “design optimization”, “microgrid”, “sizing”, “dynamic programming”, and
“battery /ultracapacitor”, to mention a few. These exciting themes may have a high co-
occurrence for future study due to the advancement of computer technology and electricity
generating. “Power control”, “DC-DC power converter”, and “fuzzy logic control”, among
others, are of interest for phrases appearing in the middle of the considered period and with
medium co-occurrence. Some traditional control algorithms and converters were still being
studied by researchers for HESS use in EVs. As a result, we can effortlessly link the trend of
these influencing keywords with our study topic. However, because we are concentrating
on the most important technologies for electric vehicle applications in our work, the hybrid
energy storage system and energy management are limiting considerations.

3. Battery and Supercapacitor in Hybrid Energy Storage System

The combination between the battery and SC produces an excellence energy storage
system for improving EV performance in terms of battery stress reductions and the uti-
lization of regenerative braking energy [7,8]. There are several possible configurations of
hybridization between the battery and SC, as presented in [9,10]. Figure 3a shows the direct
parallel connection of the two energy sources supplying the propulsion unit. This configu-
ration permits SC voltage, vgc, to vary according to the battery voltage, vy,;; the power flow
is proportionally shared depending on their internal resistances. This configuration is easy
to implement, but the utilization of an SC is low in the stiff DC bus studied [11]. Figure 3b
shows the direct parallel connection of two energy sources to a bi-directional DC-TO-DC
converter supplying the propulsion unit. This configuration maintains the DC bus voltage,
Upus, and the inverter efficiency. However, the SC stored energy is inefficiently discharged
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because of its small operating voltage range due to the small variation in the state of charge
(SOC) of the battery. In addition, this scheme uses a full-size converter to manage all of
the power [9,12]. The reliability of this HESS mainly depends on the converter. To control
the power flow of the SC, a converter is used to connect it to the DC bus, as shown in
Figure 3¢ [11,13-17]. This scheme improves the battery performance in terms of reducing
the battery peak power, the DC bus voltage variation, and the battery energy consump-
tion with the help of the SC [18,19]. However, it requires a medium-sized converter for
managing the power flow of the SC. To avoid the large size of the SC’s converter, Guidi
et al. [20-22] introduced the configuration shown in Figure 3d. This configuration separates
the SC into two banks, SC_0 and SC_1, but controls only one of them. Thus, the converter
capacity and losses are lower than the previous configuration, since the active components
of the converter are half-size and the inductor is one-third smaller. However, the total volt-
age of both SC banks is higher than the DC bus by two times; hence, this requires dynamic
balancing circuitries for managing the SC voltage, which are expensive and complex. In
terms of reliability, the configurations in Figure 3c,d provide higher reliability than the
configuration in Figure 3b, whereby if the converter of the SC fails, the vehicle still can be
operated. This is due to the fact that the major energy source, the battery, is directly linked
to the motor’s inverter and does not rely on any DC-DC converter.
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Figure 3. Configurations of battery/SC in HESS for EV applications; (a) direct parallel connection,
(b) parallel connection control through a bi-directional DC-TO-DC converter, (c) SC control through
the bi-directional converter, (d) separated SC control through the bi-directional converter, (e) modi-
fied battery control through the bi-directional converter, (f) cascaded battery-SC control with two
bi-directional converters, (g) cascaded SC-battery control with two bi-directional converters, and
(h) parallel SC-battery control with the separated bi-directional converter, (+,— in the figures stand
for positive and negative polarity, respectively).

By modifying the energy storage system as shown in Figure 3e, converter capacity
can be minimized [23]. In this configuration, the battery supplies average power to the
load once the SC voltage is higher than battery voltage; otherwise, the battery will forward
bias the diode, and the battery power will be discharged sharply to the load. The major
disadvantage of this scheme is the large DC bus voltage variation compared to the SC
voltage [24]. In addition, the large variation in the DC bus voltage causes high losses in the
propulsion inverter. However, this configuration improves the battery performance if it is
not discharged through the diode frequently, and it has equal reliability to the two previous
schemes. To overcome the problems of large DC bus voltage variation, the configurations
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in Figure 3f,g have been reviewed by [17,24,25]. These schemes require a medium- and a
full-size converter for each source to provide dynamic power with steady DC bus voltage;
therefore, the incremental cost, weight, and loss are the highest compared to other schemes.
Moreover, the losses in the two converters can be traded off with the improved propulsion
inverter efficiency due to the stabilized DC bus voltage. On the downside, their reliability
is lower than those in Figure 3a,c—e; if one of the converters is damaged, the vehicle might
be inoperative. To control the energy and power of the battery and SC, a multi-converter
is proposed by scholars, as shown in Figure 3h [26-29]. This configuration presents a
steady DC bus voltage and protects the battery from high repetitive power. However, the
disadvantages are like the configuration in Figure 3f,g. In an EV application, the HESS
should have the most reliability, less complexity, low weight, low loss, and low cost to
enhance the vehicle performance. These are the reasons that the configuration in Figure 3c
is widely used by many researchers and manufacturers for hybridizing the SC to the battery.

The authors provided ratings for all of the topologies for a more thorough selection
based on converter size, DC bus voltage stiffness, and reliability. Table 1 shows the scoring
of each converter’s topology. The configuration (a) obtains the lowest score because of
unable to control the power and voltage of the sources. Configuration (b), and (e) to (h)
receive the same overall score despite the fact that they present their pros and cons in
various ways, as described above. With configuration (d), it receives the best score due to
the lowest size of the SC converter, DC bus voltage stability according to battery voltage,
and excellent reliability even if the SC and its converter fail. However, the converter in
type (c) receives a lower score, despite having a bigger SC converter size but the same DC
bus stiffness and reliability as type (d). However, as previously said, this design has been
allowed for EV application, even though it did not achieve the best score in this study, but
the advantages include reduced weight, cost, and loss when compared to configuration (d).

Table 1. Converter evaluation in battery/SC HESS applications.

Contiguration  “GTTE Y a0y Seoreos) ol Score
(@) None (0) Follow battery (1) High (1) 2
(b) 1 full size (1) Constant (2) Low (0) 3
(¢) 1 medium size (2) Follow battery (1) High (1) 4
(d) 1 small size (3) Follow battery (1) High (1) 5
(e) 1 medium size (2) Follow SC (0) High (1) 3
()—(h) 1 full 1 medium size (1) Constant (2) Low (0) 3

4. DC/DC Converter Topologies for Energy Source

The design of DC-TO-DC converters to control energy or power sources for the BHEV
energy management system is an exciting and hard task [30]. Firstly, the power converter
holds hundreds of amps of current while working at a low operational voltage, often 300 V
DC or less. Through the time-varying voltage ratio, these huge currents can raise the
electric and thermal stresses in the active and passive components and lower the converter
efficiency. As a result, active and passive component ratings are increased even further.
Secondly, the stress and huge component sizes combined with EMI emissions make the
converter packaging challenging, costly, and bulky. Therefore, it is necessary to build a
converter for an EV such that it has the qualities of being compact, light, inexpensive, and
having minimal losses.

The non-isolated bi-directional DC-TO-DC converters are suitable choices among
converter topologies. Non-isolated bi-directional converters are favored because they are
lighter than isolated bi-directional converters, which have extra transformer mass. The
half-bridge converter is acceptable in the category of non-isolated bi-directional DC-DC
converters because it meets the EV converter design requirements. The key benefits of
the half-bridge converter over the CUK and combination SEPIC/Luo converter are that
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(1) it only requires one inductor (L) instead of two, and (2) the inductor size is half that
of the CUK and combined SEPIC/Luo converter. The most notable conclusion is that
the half-bridge converter is more efficient than the CUK and combined SEPIC/Luo con-
verter due to decreased inductor conduction loss, switching losses, and active component
conduction losses.

However, several academics investigated the development of an interleaved three-leg
full-bridge DC-DC converter [13] and a modified SEPIC/Luo converter [31]. The former
has the capability of reducing the inductor current ripple [32], while the latter has good
regulation capability, continuous input current, and a low EMI. An interleaved three-leg
full-bridge DC-DC converter also has lower source current ripple and is easier to control
in both the buck and boost modes of operation compared to the conventional SEPIC/Luo
converter [31]. Nonetheless, both need a huge amount of active and passive components,
resulting in them being bulky with high mass, high loss, and high cost when compared
to a half-bridge converter. Moreover, these works [13,31] were at the simulation scale and
experimental scale, while the half-bridge converter has proved its suitability for application
in real and commercial vehicles with an appropriate weight, low cost, and low losses [33,34].
However, the main drawback of the half-bridge converter is the discontinuous output
current once operating as a boost converter; this requires a large-sized output capacitor
(Co)- A half-bridge converter connected to an SC for hybridizing to the battery is shown
in Figure 4.

D

Souck [ & A
3 Dboc)st
2
__# bus
—1— C, |battery
_|_
—1 S boost '—|.._
SC Jr— s D .
O —

Figure 4. Half-bridge converter architecture coupled to SC and battery.

The half-bridge converter operates as a boost converter when power flows from the
SC to the load. The boost switch, Sy, is activated according to the switching duty cycle
produced by the controller together with the boost diode, Dy,,s;. The buck switch, Sp,cr,
will take the complementary duty ratio of Sy, for operation with the buck diode, Dy, -
Unlike previous works that separate the control of the converter in buck or boost mode
according to the mode of operation [17], in this work, the duty ratio governs the half-bridge
converter to operate in buck and boost mode complementarily depending on the load
demand; smooth operation can be achieved [35-38].

5. Energy Management Strategies for EV Applications

In general, the EMSs for EVs or hybrid EVs (i.e., pure battery EV, battery /SC hybrid
EV, battery/fuel cell/SC hybrid EV, and hybrid EV) can be classified into rule-based and
optimization-based strategies [38,39], as shown in Figure 5.
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Figure 5. Control strategies for energy control management in EV applications.

EMSs have been intensively developed by many institutional researchers involving
various aspects, such as the state of the art of the control strategy, general characteristics,
and control performances. This section provides a qualitative review of the EMSs.

5.1. Rule-Based Energy Management Strategy

The rule-based energy management strategy is a heuristic real-time energy man-
agement control strategy in which human expertise, engineering perception, and load
characteristics are used to design a rule set. This kind of energy management control
strategy does not require prior knowledge of a predefined driving cycle: it is computa-
tionally efficient and simple to implement. It has been broadly used in manufacturing
vehicles and academic research [40-42]. The control performance of the rule-based energy
management control strategy relies on initial conditions and rules. Nonetheless, the exact
initial conditions and rules themselves are the main problems that require large numbers
of mathematical analyses and a theoretical foundation. To find appropriate parameters,
comprehensive calibrations and modifications are required in order to improve the control
performance for a specified EV characteristic and driving cycle. Therefore, the development
of the rule-based energy management control strategy is protracted and dependent on the
specific characteristic of the vehicle and driving cycle [42]. Furthermore, no optimization
techniques are related to this strategy, and thus the optimal solutions are not guaranteed.
This control strategy can be divided into the deterministic rule-based energy management
control strategy and the fuzzy-rule-based energy management strategy, as presented in the
following descriptions.

5.1.1. Deterministic Rule-Based Energy Management Strategy

The deterministic rule-based energy management strategy for battery hybrid EVs can
be subdivided into the power follower (load follower) control strategy [30-32], frequency-
based (power split) control strategy [43—45], and adaptive power split control strategy. In
battery/fuel cell hybrid EVs, a battery/fuel cell is used as the main energy source, while
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an SC is availed as the auxiliary energy storage. In 1999, Faggioli et al. [46] proposed the
implementation of an SC connected to a bi-directional DC-DC converter for buffering peak
power in battery/fuel cell hybrid EVs. The energy management control strategy employed
the energy conservative law between the vehicle kinetic energy and stored energy inside the
SC and controlled all energy sources following the specific rules. However, the best solution
appeared in fuel cell EV testing with the ECE-15 urban driving cycle that consumed about
37% of the energy stored inside the SC, which led to the inefficiency of the utilization of the
energy stored in the SC.

Dixon et al. [47,48] used the energy conservative theory for the vehicle kinetic energy
and the SC stored energy to increase the transient performance of a BHEV and the lifetime
of the battery. From this principle, peak power discharge and recharge of the battery are
avoided by the hybridization of the battery and SC. In these papers (as mentioned above),
cascade control of the SC charge (outer loop) and the SC current control (inner loop) is
used. The SC charge control is compared with the SC charge reference, which is generated
from the reference charge curve considering vehicle speed and battery state of charge with
the actual SC charge. The reference charge curve allows the SC to be charged at a low state
of charge if the battery is fully charged. Thus, the energy stored in the SC is inefficiently
utilized. Moreover, the generation of a time-varying SC current reference, isc . f (1), is
not robust where the current reference is bounded by the current bandwidth limiter. The
current bandwidth is obtained by multiplying the specific voltage gain between battery
voltage, Vi, and SC voltage, Vsc, with the difference between the time-varying actual
load current, Ij;,4(t), and the maximum battery current, I, ,,x. The SC current reference
generation is given by the following equation [47]:

Vbat

. Vbat
— (] ) =1 < t) <
VSC ( load( ) b,max) > lSC,ref ( ) > VSC

. (Iload(t) + Ib,max) (1)

Thounthong et al. [44,45] proposed energy management of an FC/battery /SC hybrid
power source for hybrid EV applications that manage the energy exchanges between the
sources and the propulsion load (not considering power losses). The three control strategies
used are as follows: (1) charge mode, when the FC supplies energy to the battery, the SC,
and the load; (2) discharge mode, when the FC, battery, and SC supply energy to the load;
(3) recovery mode, when the load supplies energy to the battery and SC. In the discharge
mode, the DC bus voltage is regulated by the SC current that is generated by means of
energy and power calculation. The SC current reference is limited by its limitation function.
This limiter is developed based on a human expert in finding an appropriate working point,
so comprehensive calibration and tuning to find the suitable point are required. With this
algorithm, the control processor is loaded with energy and power calculation. In fact, a
stiff DC bus voltage can be obtained by directly controlling the SC current and DC bus
voltage, as proposed in [29,49], instead of power and energy, respectively. In addition,
the evaluation of the energy source capacity and testing with a standard driving cycle,
which are the essential tasks to prove the effectiveness of the control strategy and energy
economy, was not executed. The SC voltage was decreased by only 8% due to the improper
size of the SC, and thus the stored energy in the SC was ineffectively utilized. Moreover,
the advantage in terms of energy consumption for the driving cycle supplied by the FC
was not considered; therefore, the effectiveness could not be fully confirmed, whether the
energy supplied by the HESS was lower than a single source. Moreover, the battery was
still repeatedly charged by the FC; therefore, the battery life could be reduced.

Wong et al. [29] improved the control strategy processing by controlling the voltage
and current of the fuel cell/battery/SC for power sharing in a hybrid EV instead of
controlling the power and energy of each source. The strategy uses three algebraic current
algorithms to manage the current of each source so that the DC bus is fixed. The results
of this work show that the SC can supply a transient and steady-state current instead
of the battery and FC until the SC voltage reaches the minimum voltage limit; then, the
FC and battery take over the load instead. The function of the battery is to add support
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during the vehicle start-up period when the other sources are not ready. However, the
method of evaluation SC size was not mentioned; therefore, the energy stored in the SC
was inefficiently utilized. Moreover, the proposed system was not tested with a standard
driving cycle to confirm its implementation in real-world driving.

An advanced energy management system for controlling the SC was proposed by
Armenta et al. [14] by utilizing the energy conservative law between the vehicle kinetic
energy and the SC stored energy. The control strategy is to discharge the SC based on
the minimal power delivered to the load to give enough space for absorbing regenerative
braking energy. According to this strategy, excessive discharge power from the battery
is prevented, and a new driving cycle can be started naturally, even though the vehicle
requires high acceleration. The principle of the control strategy is to substitute the square
of speed in the vehicle kinetic energy equation with the fundamental speed equation
so a new vehicle kinetic energy equation can be derived, and the instantaneous ideal
power supplied by the SC is achieved by differentiating the energy. The SC power is then
discretized for controlling power by considering the charge/discharge losses of the vehicle
transmission system. This power uses discrete control in three strategies: acceleration
strategy, cruising strategy, and braking strategy. The simulation results show that the
proposed control strategies can reduce battery peak power and enhance the driving range.
However, the simulation results of the three ideal driving cycles are not practical, whereby
the regenerative braking power is sufficient for charging the SC until it is full without
requiring any support from the battery [36]. In general, the amount of energy supplied
by the SC to the vehicle in acceleration is higher than the regenerative braking energy
recovered, whereby it is dissipated into the powertrain system forth and back. Thus, the
regenerative braking energy alone is not enough for recharging the SC until it is full.

Wangsupphaphol et al. [49] presented a simple HESS and SC current control approach
for electric vehicle applications. Instead of managing SC power, the SC current control is
significantly simpler and more effective for reducing battery power and energy usage. The
contribution is to relate the SC current reference to vehicle acceleration or deceleration,
allowing the SC current to regulate vehicle dynamic power. In addition, the SC capacity
calculation was provided in this work, because the heavier the SC mass the larger the power
and energy consumption, which most of the HESSs studied in the past have ignored. This
design philosophy was highlighted in a Japanese automobile manufacturer’s U.S. patent
application. However, this work was limited by having no real-vehicle experiment to prove
the actual effectiveness of the proposed strategy.

Another deterministic rule-based energy management strategy termed as fixed-frequency
power split was proposed and validated by a real-time simulation in [8]. In this control
strategy, the current required from the battery is reduced by the assisting current from the
SC; however, the battery is still charged by the shallow negative current in the braking
phase even though the deep negative current is absorbed by the SC. This can reduce the
battery lifetime.

A novel adaptive power split strategy for an EV was proposed in [26], whereby
the load power was filtered as high and low frequency supplied by the SC and battery,
respectively. Two bi-directional DC-DC converters were used for interfacing the battery
and SC to the DC voltage bus. The control strategies deal with voltage and current instead
of energy and power, so the computational effort is reduced. However, the slow changing
of the filter’s time constant of the proposed adaptive splitter allows the battery to supply
high-frequency power instead of the SC once the SC has low energy, and thus can damage
the battery rapidly. Moreover, the slow dynamic of the SC voltage control loop, generated
by the adapter, causes the SC voltage to exceed the upper limit, which may jeopardize
safety and is not suitable for EV applications.

A Kalman filter used for a power splitting EMS in a tuk-tuk EV was proposed by
Karunarathne et al. [50]. A converter for the SC and battery was used, and thus the power
of them could be control properly. The power split technique can save the battery SOC
and SOH and thus improve the driving range. However, this is an inevitable trade off
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with the complex control structure and weight of the converters, which are crucial for
EV applications. In addition, the SC capacity calculation was not declared, and thus the
effectiveness of the energy reduction may be doubted.

5.1.2. Fuzzy-Rule-Based Energy Management Strategy

The fuzzy-rule-based energy management control strategy is an extended type of
the deterministic rule-based energy management control strategy. The principle of this
control strategy is to develop a group of fuzzy rules (IF-THEN) from human knowledge
and cognition whereby a mathematical model of the system is not necessary. The core
benefits of the fuzzy-rule-based energy management control strategy are its robustness
to noise and variation in component parameters. Nevertheless, the membership function
and fuzzy rule are generally derived from human expertise and cognition; hence, a noble
control performance cannot be guaranteed. The performance of fuzzy logic control mostly
relies on the designer’s expertise. The fuzzy-rule-based control strategy implemented in EV
power source control can be grouped into two categories: conventional fuzzy logic control
and fuzzy sliding mode control.

Wang et al. [51] proposed conventional fuzzy logic control for controlling SCs which
are connected parallel to the battery main energy storage for improving the energy recapture
efficiency and extending the driving range. The fuzzy control strategy employs load power
and the SOC of the battery and SC to determine the proportion of the power from the
battery to supply the load. The simulation results, implemented in ADVISOR 2002 and
compared to the traditional logic threshold strategy, show that the proposed fuzzy logic
control can reduce battery peak power and improve the energy recapture efficiency by 50%
and 10%, respectively.

Xiaoliang et al. [52] proposed the frequency decoupling method to manage the power
of an SC. The conventional fuzzy logic control is implemented to manage the energy
contents inside the SC while the battery is passively controlled. The driving cycle, road
conditions, and load current are used as the fuzzy input variables and then processed
by using state flow in MATLAB to produce the SC current reference. The experimental
results tested with the ECE-15 driving cycle show that the lower decoupling frequency
allows the higher SC energy supplied to the load. However, the intuitively optimum
decoupling frequency is unknown but must be determined based on human expertise. Thus,
the minimized battery’s energy consumption cannot be confirmed. The low decoupling
frequency causes the battery to recharge the SC in deceleration with the regenerative
braking power, even though the battery supplies less power in acceleration.

Zandi et al. [53] proposed conventional fuzzy logic control for controlling a battery and
an SC which are parallel with the FC main energy source. The fuzzy rules, established from
the SC, battery voltage, and load power, are designed to manage the energy and power
contents inside the battery and SC in any operating modes, i.e., recovery, normal, and
overload cooperative working with the FC. Three DC-DC converters for the FC, battery, and
SC are employed. Three different controllers are employed: the state feedback controller (for
the FC control), the fuzzy logic controller (for the SC and battery control), and the sliding
mode controller (for switching control). The experimental results show the perfection of
high dynamic power from the SC and battery to assist the FC power; moreover, the DC bus
voltage is always steady even if facing a sudden step load. However, the complexity and
high computational requirements of processing these controllers cannot be avoided.

Cao et al. [54] proposed a fuzzy sliding mode controller which combines the benefits
of fuzzy control and sliding mode control. The control objective changes from tracking
error to the sliding mode function by creating an S-Function incline to zero. Since fuzzy
sliding mode control could soften the control signal that reduces the chattering happening
in common sliding mode control, the robustness is improved. In the experiment, the
fuzzy sliding mode control is compared with the PID control, and the results show an
improvement in energy saving, faster response, and more reliable performances achieved
by the fuzzy sliding mode control.
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Li et al. [55] proposed a hybrid power system composed of an FC, a battery, and an
SC for a tramway power supply. The energy management control strategy is based on a
combination of fuzzy logic control and Haar-wavelet transform. The energy management
control strategy can reduce transient peak power demand while maintaining the high-
efficiency mechanism performance of the FC. The results show that the proposed energy
management control strategy can split the main positive high-frequency power from the
FC. The battery will respond to the medium-frequency power while the high-frequency
power is supported by the SC.

5.2. Optimization-Based Energy Management Strategy

The general characteristic of the optimization-based energy management control
strategy is the optimization of the EV system performance cost function, which is described
numerically, by different optimization control methods. The development of several cost
functions means the diversities of the optimization control problem. Therefore, several
optimization-based energy management control strategies are presented for solving the
varieties of optimal problems. There are two major optimization-based energy management
control strategies suggested by scholars: the global optimization energy management
control strategy and real-time optimization energy management control strategy. They are
described as follows.

5.2.1. Global Optimization Energy Management Strategy

This energy management control strategy is established with a global optimization
method to find a global optimum solution by minimizing a cost function, such as fuel
economy, emissions of a specified driving cycle considering the constraints of an HESS,
and a propulsion motor and converter. This method depends on prior knowledge of the
specified driving cycle; therefore, it can be named as an offline optimization. Additionally,
the computational requirement of the global optimization energy management control
strategy is greater than that of the rule-based energy management control strategy.

Presently, the classification of the optimization control problem of EVs has three
major solutions:

e  Firstly, there is the optimization of the parameters of a rule-based energy management
control strategy. With this method, the energy management problem turns into a
parameter optimization problem, and it is called a static optimization problem. Thus,
a derivative-free static optimization method can be implemented, i.e., a genetic al-
gorithm (GA), particle swarm optimization (PSO), and simulated annealing (SA). In
addition, a derivative-based static optimization method such as sequential quadratic
programming (SQP) can also be applied.

e  Secondly, the energy management problem of EV applications is considered as a
dynamic, nonlinear, and constrained optimization problem. This is recognized as an
optimal control problem. The optimization problem can be determined by dynamic
optimization methods such as dynamic programming.

e  Thirdly, the optimal control problem is approximately modeled as a mathematical
problem. After that, the problem is solved by static optimization methods such as SQP.

Both static and dynamic optimization methods have been utilized in the optimization
control problem of EV applications, which are described as follows.

Static Optimization Method

The calculating methods of the static optimization problem can be classified into two
groups: derivative-free methods and derivative-based methods. The derivative-based
methods such as SQP use the derivative of the objective function to solve the optimization
problem. This method is implemented in the optimization of the energy management
control strategy parameters of an EV [56].

Dellnitz et al. [57] implemented this technique in an EV for the purpose of extending
the driving range by minimizing the battery’s SOC and velocity variation. The principle of
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SQP is to sequentially formulate auxiliary quadratic problems for approximating a locally
optimal solution to the original problem, which is the main drawback of this method.
The requirements of SQP for achieving a locally optimal solution in this work are the
strong assumptions of cost or objective functions, discretization point, and initial guess
(minimized value of velocity variances). Otherwise, the SOC of the battery is highly
consumed according to the compared results in this work. However, the SQP still has some
minor problems, such as discontinuous numerical processes that are caused by look-up
tables, and the solution can be trapped in a local minimum. Therefore, for the better
performance of numerical optimization methods, a derivative-free optimization method
that can find the global optimization solution with respect to several different objectives
could be applied.

The derivative-free and stochastic search methods outperform the derivative-based
methods in terms of searching for a global optimal solution within the specified design
space. These methods find an optimal solution by iteration instead of depending on the
derivative and are typically applied to solve a number of complicated engineering problems
that are nonlinear, multimodal, and non-convex objective functions [58]. Because of their
global optimality and robustness, these methods are suitable for optimal control problems
of EVs, as described in [58-61]. The methods which are classified under this category and
applied to EVs are, for example, genetic algorithms (GAs), particle swarm optimization
(PSO), and simulated annealing (SA).

Jain et al. [33] applied an exclusive non-dominated sorting genetic algorithm (NSGA-II)
to find the optimal solution of an FC/battery /SC hybrid vehicle. The NSGA-II provides
the ability to optimize eight variables to receive two minimized global solutions: (1) fuel
economy and (2) fuel cell and battery costs. The simulation result of the vehicle running
with the given driving cycle shows that both objectives can be achieved, and especially that
fuel economy is greatly improved. However, the best solutions in this work are not only
dependent on the large population size but also on several generations, and this is the main
disadvantage of the GAs that require high performance of the processor used for a proper
convergence processing period. In addition, the solutions are well suited to the driving
cycle tested only, the inherent characteristic of offline optimization.

The PSO concept started as a simulation of simple community systems such as flocks,
fish, or birds. A PSO system begins with an initial population of random individuals,
indicating solutions to a problem, then assigning the random velocities. Ren et al. [59]
proposed a mutual PSO-wavelet-transform-based power management for PEMFC hybrid
EVs which comprise a PEMFC, lithium-ion batteries, and an SC as the HESS. To decouple
the high frequency of the load power, the wavelet transform is utilized, and this power
is maintained by the SC for extending the battery and fuel cell lifetime. The PSO is
implemented to optimize the parameters of the PID controller. The simulation results
show that the proposed method can separate the high-power frequency for supplying the
SC while the battery and FC supply the medium- and low-frequency power, respectively.
However, the disadvantages of the PSO are that it relies on the selection of the constants in
the updating velocity and initial random population and that it is easy to become trapped
in a local optimal solution [38].

SA is the method for searching for the global optimal solutions without covering the
entire design space. It has a faster processing time than the neural network technique
and genetic algorithm in finding a quasi-optimal solution. However, the performance
of SA depends on tuning parameters [38]. Chen et al. [62] used the simulated annealing
method and quadratic programming to find the optimal battery power supplied in a series
plug-in hybrid EV by solving the quadratic equation of the fuel consumption rate. The
SA method is utilized to decide the engine on—off based on battery power, vehicle speed,
and drive power. For the period of iteration, the interior point method is used to solve
the proposed quadratic programming problem to decide the optimal battery power. The
simulation results run in the program Autonomie, which was developed by Argonne
National Laboratory, demonstrate that the proposed method can reduce fuel consumption



Sustainability 2023, 15, 11200

13 of 20

with a smooth gradual decrease of the battery SOC, and thus the battery lifetime could
be extended.

Dynamic Optimization Method

Dynamic programming is an optimization method which has the ability to obtain
a global optimal solution of power control in EVs for a specified time horizon of the
driving cycle if it is known in advance. It finds the optimal solution for nonlinear dynamic
systems. The dynamic programming method extracts the dynamic optimization problem
into many groups of the problem by discretizing and calculating backwards from the final
state to the initial state (prior knowledge) in order to establish a cost-to-go function at
every sampling time. The main disadvantage of dynamic programming is the extremely
complicated processing of quantization and interpolation, which necessitates the use of
high-performance computers. The global optimization energy management control strategy
requires complete prior knowledge of the driving cycle, while in real-world driving this
is not possible. However, it is possible to apply this method in real-time by recognizing
and classifying the driving pattern together with the use of rule-based energy management
control strategies [39,63].

5.2.2. Real-Time Optimization Energy Management Strategy

As aforesaid, the global optimization control strategies are not suitable or viable for
real-time control implementation. To achieve the real-time energy management control
strategy, the instantaneous cost function must be defined by considering the variations in
electrical energy consumption compared to fossil fuel energy consumption. As a result,
the real-time optimization control technique requires less computer speed and memory to
implement. Neural networks and model predictive control approaches are well-known
and commonly used technologies for EV applications. Recently, the reinforcement learning
(RL) technique has become prominent in the regulation of an EV’s energy system.

Neural Network Control Strategy

The neural network is a human brain emulated control system that finds the solution
using reason judgment based on the qualitative and quantitative of the system input
information. This control method is considered an intelligent control system, and it is
suitable for a nonlinear complex system. Because of this characteristic, the neural network
is widely used in EVs by many researchers. Although this technique does not need exact
powertrain models, creating and updating a comprehensive database for system learning
is difficult and time consuming. In addition, the structure sizes of the database directly
affect the computation time and performance of the controller. Moreno et al. [17] proposed
the use of optimal neural network control for an SC that is hybridized with the battery in
an EV. The battery was considered as a passive element, whereby its current was controlled
indirectly by observing the load current and controlling of the SC current instead. The
dynamic equation of the battery and SC energy are state variables of the system, and they
were minimized in the optimization process by the gradient method. The method for
solving the dynamic equations of the system is to perturb the variable of the control system
for every single iteration. In this manner, the physical reaction occurring in the optimization
process can be noticed at each single time step. The simulation results show that as the SC
current is injected into the load the battery current is significantly reduced. This can save
battery energy consumption by 28.7% compared to the case of the battery-alone EV. This is
due to the SC’s high receptive performance to absorb the whole regenerative current from
the vehicle kinetic energy. However, the energy inside the SC is not utilized effectively
because of the improper calculation of the SC’s capacity.

Ortuzar et al. [16] implemented neural networks to control the SC as an auxiliary
energy source in a battery EV, a Chevrolet mini truck. The control algorithm is made of two
heuristic rules: the first rule states that the energy content in the SC must be inverted to the
vehicle speed. Therefore, at the maximum speed, the stored energy inside the SC should be
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low and vice versa. The second rule is the limits of the SC current that is extracted from the
batteries. These current limits change automatically when the battery is fully charged to
avoid overvoltage during regenerative braking. Because the first rule is complementary to
the second rule, the second rule was developed by using optimization tools after the first
rule was derived. The efficient SC currents were evaluated using optimal control techniques,
and then numerous sets of the most efficient current drawn from the SC supplying the
load were used for training the neural network. However, varieties of SC currents result in
varieties of battery currents; therefore, the most efficient set of SC currents must be found
within the allowable operating area of the SC’s SOC. Tests were carried out under four
different conditions: (1) battery alone without regenerative power, (2) battery alone with
regenerative power, (3) battery with an SC using rule-based control, and (4) battery with an
SC using the optimal-based neural network control strategy. The results show that the main
benefits of the proposed strategy are that it is energy saving, has a lower battery voltage
swing, and that no regenerative currents return to the battery. The neural network control
strategy increases the energy efficiency of the system and protects the battery from damage.
Moreover, in the economic perspective, it is possible to combine an SC in a battery EV
where the cost is higher than 8.3% compared to a pure battery (lead-acid) EV. However, if
the main energy source is a fuel cell combined with an SC, the total cost will be dramatically
decreased by 33.7% compared to the pure battery (lithium-ion) EV.

Samanta et al. [64] applied PSO and a GA as training algorithms to train a radial basis
function neural network (RBFNN), namely the GA-trained radial basis function (GRBF)
and PSO-trained radial basis function (PRBF), for an energy management control strategy
used in a hybrid EV. Because the artificial neural network (ANN) control strategy has
limitations in terms of large complication and traps in the local optimal solution, the radial
basis function (RBF) network control strategies which process on a single hidden layer are
implemented to find a global optimal solution. Nevertheless, there are still some problems
building RBFNNs. In the GRBF and PRBEF, a GA and PSO are used to find the center of
the hidden neurons, the extent, and the bias parameters by minimizing the mean square
error (MSE) of the desired outputs and actual outputs. The verification of the PRBF and
GRBF approaches was proved by the simulation of a commercial hybrid EV running in
the New European Driving Cycle compared to the other conventional artificial neural
network control strategies. The simulation result demonstrates that the PRBF consumes
the lowest energy; however, it takes the longest runtime to acquire a solution, which is the
disadvantage of the optimization technique.

Model Predictive Control Strategy

The model predictive control strategy is a well-known control strategy that has been
used in industry to cope with multivariable constraints of the control system problems.
This control normally consists of three steps: first, the cost function that is subject to
the constraints is minimized optimally in a predicted time horizon; second, the optimal
solution is implemented to the physical plant; last, the entire predicted horizon is moved
one step forward and step one is repeated [38]. Unlike dynamic programming, model
predictive control is a time-receding horizon control strategy that works in real-time. It has
the potential to decrease the computational load and can be implemented in a real EV. Since
it has the characteristic of having a receding horizon, the model predictive control strategy
can adapt to the differences in propulsion load profiles in driving cycles. Nonetheless, the
upcoming driving cycle information must be known in advance by prediction or recognition.
Based on its orientation characteristic, model predictive control can be categorized as linear
time-varying control and nonlinear control. Thus, the linearization of nonlinear systems
and constraints is used where it can reduce computational processing. However, the system
model error that is due to the linearization is the obstacle for the vehicle to enhance energy
saving [65]. Since model predictive control has the capability to predict torque demand, it
can be categorized into two subcategories: (1) model predictive control based on navigation
technology and (2) model predictive control based on a mathematical prediction model.
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The optimization performance of the former case depends on the accuracy of the road
information received from a global positioning system (GPS) or vehicle sensors. The quality,
reliability, and stability of a GPS and the peripheral vehicle sensor equipment are the keys
to assure real-time control system performance where their cost is very high. To solve these
problems, the model predictive control based on the mathematical model was proposed,
and it drew the attention of relevant researchers [34].

Reinforcement Learning Control Strategy

For a real-time EMS of a BHEV (battery/fuel cell/SC), Wang et al. [66] developed
a deep reinforcement learning control strategy. The amount of training acquired by the
RL-based EMS influences its performance; the more training that is received, the more
controlled the supplementary power source is. Furthermore, the RL-based technique still
needs a thorough understanding of the driving cycle, and the environment may be different
from that of the training scheme. The simulation results in this paper show that the method
can enhance the driving range while decreasing the power source life loss. However, the
converter’s mass may restrict the driving range, raising concerns regarding energy savings.
Without validating the same cycles, comparing the findings to the real-time rule-based
EMS at a small or actual scale might be challenging. In the actual world, the rule-based
EMS remains a strong assumption for many types of driving cycles. Table 2 summarizes
the features of several EMSs. The bold letters emphasize recent work by three EMSs that
are still being evaluated for EV applications.

Table 2. Features of energy management strategies of HESS for EV applications.

Paper EMS Control Structure Main Contributions Validation Limitations Year
. Simple real-time
application
SC converter for Reduce peak current Real-world . SC size calculation
[15-17,47,48] current control of battery application . Current bandwidth 2000-2010
within bandwidth Driving range and causes jittering
battery life extension
Economic viability
. SC size calculation
SC converter for Segregation mode of : gﬁ:ple:;;r;?l
" current control power flow control Experimental 8y & ¥
[44,67,68] DI and driving 2006-2009
based on energy DC bus voltage validation A
and power stiffness validation
. Real-vehicle
Rule based; experiment
load follower
SC converter for DC bus voltage . SC size calculation
[29] voltage and stiffness Experimental Real-vehicle 2011
& Battery support validation .
current control experiment
start up
. Impracticability of
SC converter for Reduction in battery recharging energy
[14] power control based peak power Simulation for SC 2015
on vehicle dynamic Enhance driving range . Real-vehicle
experiment
SC sizing calculation
SC converter for Reduction in battery . .
Simulation and Real-vehicl
[69] current control power and energy lab-scale 4 eal-vehicle 2022
based on consumption . experiment
vehicle dynamic Simple in control experiment
and structure
SC converter for Reduce battery current . Experimental
8] Rule based; power control based Reduce life cycle cost Simulation validation 2014
power split on vehicle of power source . Real-vehicle
kinetic energy by HESS experiment
. Slow control
Rule l?ased; SC converter for Less complex of SC Real-time response causes
[26] ada}ptlve power current and control _reference simulation inefficient use of the 2015
split voltage control generation battery and SC
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Table 2. Cont.

Paper EMS Control Structure Main Contributions Validation Limitations Year
SC size calculation
Rule based; power Battery and SC Reduce ba.ttery energy . Complex control
DA consumption Real-vehicle
[50] split using converter for Enhance batte experiment and structure 2022
Kalman filter SOC control health Ty 4 Mass of 2 converters
Experimental
Battery and SC Improve energy . L validation
. Simulation in .
[51] converter for efficiency 'ADVISOR 2002 Real-vehicle 2010
power control Extend driving range experiment
Rule bas:ed; | Mass of 2 converters
El(l);;lerll:oiga Battery and SC Complex and
Y08 Battery and SC power control Simulation and computer burden
[53] converter for energy DC bus voltage experiment Real-vehicle 2011
and power control stiffness even in P experiment
step load Mass of 2 converters
Improvement in
R . Battery and SC energy saving . . .
, ule based; fuzzy Micro EV SC sizing calculation
[54] 3. converter for Faster response . 2007
sliding mode SOC control More reliable experiment Mass of 2 converters
performances
Medium- and
Rule based Battery and SC h1gh—frquer_1cy Tramway Optimal SOC of SC
[55] Harr-wavelet converter for power splitting . 2015
. experiment Mass of 2 converters
fuzzy logic power control Improve energy
efficiency
Sl:f?ilrﬁ?zation- Minimized battery’s r]?lllsrflzrrlitéglu;;fcesses
(571 sequential quadratic 32iCaZSi velocity Extend driving range Simulation Real-vehicle 2014
programming experiment
Offline Experimental
optimization; . . peri
133] non-dominated Minimized fuel Fuel economy is Simulation validation 2009
o . . economy and cost greatly improved Real-vehicle
sorting genetic .
. experiment
algorithm
Bl o+ Mediumand T
[59] optimization; PSO- Y and o high-frequency Simulation P . 2014
and optimization of i Real-vehicle
wavelet-transform power splitting .
PID parameters experiment
Reduce fuel f&ocﬁ,tic(l;‘s]?ngd
Offline Optimal batter consumption Simulation in experimental
[62] optimization; (fwer y Smooth gradual Autonomie vall:; dation 2015
simulated annealing P decrease in .
battery SOC Real-vehicle
y experiment
Offline Prior knowledge of
optimization; Optimal power Energy efficiency . . driving cycle
[63] dynamic distribution improvement Simulation Real-vehicle 2015
programming experiment
Reduce battery power .
Real-time SC converter for and energy Sxe a;‘i,rexizrcllte SC size calculation
[15,70] optimization; consumption per 4 2010, 2016
current control . real-time Complex of control
neural network Save regenerative experiment
braking energy P
SC size calculation
Real-time Battery and SC Reduce energy loss Complex of control
[34,71] optimization; model ~ converter for of battery Simulation Real-vehicle 2010,2020
predictive SOC control Extend battery life experiment
Mass of 2 converters
Real-time Extend source life span Complex control
[66] optimization; Fuel cell/battery/SC Driving range P Simulation Real-vehicle 2022
deep-reinforcement  converter & rang experiment

learning

enhancement

Mass of 3 converters

6. Discussion on Major Findings of Energy Management Strategies

The rule-based energy management strategy and optimization-based energy man-
agement control strategy have their own characteristics and applications. The rule-based
energy management control strategy is the control strategy that has been widely used by
commercial vehicle makers due to simplicity and feasibility in terms of implementation,
which is not possible with optimization-based solutions. Therefore, the optimization-based
energy management control strategy is proposed to overcome the drawbacks found in
the rule-based energy management control strategy by means of the optimization con-
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trol approach. The optimization-based energy management control strategy can find a
global optimal solution; however, its disadvantages are the requirement of high computer
performance and the future knowledge of the driving cycle. The compromised solution
among the two aforementioned strategies is the real-time optimization. The real-time opti-
mization energy management control strategy has been developed and proposed by many
researchers for years. It is a combination of the advantages gained from the rule-based
and optimization-based energy management control strategies. It is based on finding a
sub-optimal solution that improves the performance of the rule-based energy management
control strategy by using future road information supplied by the GPS and vehicle sensors.
However, the global optimal solution cannot be assured, and high-performance processors
as well as high-precision road information are required. The real-time optimization energy
management control strategy for hybrid energy sources is still in the developing stages and
is not ready for commercialization yet.

7. Conclusions

Energy storage for electric vehicles is one of the most critical components in comparing
the performance of electric vehicles to traditional gas vehicles. This paper examines the
effectiveness of a HESS of a battery and supercapacitor to overcome the obstacles found
in pure battery EVs, such as battery life degradation and the decrease in power due
to increased internal resistance and temperature over years of use. The conclusions of
significance of this research are as follows:

e  The findings declared the significance of the HESS for EVs in terms of performance, life
cycle, and controllability via DC-DC power converters in the literature and provided
scoring for a suitable configuration for applications.

e Areview on the non-isolated half-bridge bi-directional DC-DC converter is proposed
for smooth operation based on the limitations of low weight, low cost, and low loss
with good dependability.

e  An evaluation of the energy management strategies was provided where we found
that rule-based real-time control is an acceptable solution for vehicle manufacturing.
However, the performance of the real-time optimization strategy is acknowledged and
has good prospects unless the economy of scale is established.

Finally, the advantage of adopting the HESS in an EV is that it secures the vehicle’s
performance. The HESS control could be tailored to some vehicle manufacturing needs
such as controllability, sustainability, and dependability. We discovered that the rule-based
energy management methods compensated for the lack of real-time optimization for EV
applications due to their adaptability, simplicity, verifiability, flexibility, and low processing
burden. However, the effectiveness of the rule-based strategies is determined by the
system’s model complexity, the user’s desired performance level, and the availability of
real-time data.
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