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Abstract: This paper seeks to investigate the impact analysis of wind energy on electricity prices in an
integrated renewable energy market, using regression models. This is especially important as wind
energy is hard to predict and its integration into electricity markets is still in an early stage. Price
forecasting has been performed with consideration of wind energy generation to optimize energy
portfolio investment and create an efficient energy-trading landscape. It provides an insight into
future market trends which allow traders to price their products competitively and manage their
risks within the volatile market. Through the analysis of an available dataset from the Austrian
electricity market, it was found that the Decision Tree (DT) regression model performed better than
the Linear Regression (LR), Random Forest (RF), and Least Absolute Shrinkage Selector Operator
(LASSO) models. The accuracy of the model was evaluated using the Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The MAE values
considering wind energy generation and without wind energy generation for the Decision Tree model
were found to be lowest (2.08 and 2.20, respectively) among all proposed models for the available
dataset. The increasing deployment of wind energy in the European grid has led to a drop in prices
and helped in achieving energy security and sustainability.

Keywords: price forecasting; renewable energy; grid integration; machine learning; decision tree;
random forest; linear regression; LASSO; MAE; MAPE

1. Introduction

The surge in worldwide demand for electrical energy, accompanying the rapid pro-
liferation of Renewable Energy (RE) sources (wind and solar power), has brought about
an intensified focus on energy security and sustainability. It is causing a tense scenario
with regard to fossil fuels. Even understanding this, excessive usage of these fuels will
significantly increase environmental pollution. The single major source of CO2 emissions is
power generation. India, the second-most populated nation in the world, is a developing
nation that uses more energy sources than any other nation. Focus should be placed on
developing an alternative energy source to meet energy demand because fossil fuels are a
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key contributor to pollution and global warming. Due to their endless supply and environ-
mental friendliness, now is the right time to lift the capacity of renewable energy. Moreover,
carbon dioxide and other atmospheric pollutants are not produced by wind energy.

Some developing nations like the Indian and European electricity markets are currently
more focused on renewable energy resources to meet the rising demand for power at
affordable costs. Wind energy has gained popularity as an alternative to fossil fuels
due to its characteristics such as renewability, natural cleanliness, affordability, and low
environmental effects. Because of its safety and good environmental attributes, wind energy
has developed from a marginal activity to a multibillion-dollar industry in India’s power
production sector. Although multiple wind energy power plants generate electricity in
India’s various geographical regions, analyzing their performance is a challenging task and
a priority for all stakeholders. By incorporating RE sources into the grid, consumers benefit
from a cost-saving advantage when there is a surplus of power, whilst incurring a higher
price in times of deficiency [1]. However, the intermittent nature of wind and solar makes
it difficult to optimally allocate and generate power in an RES-integrated environment.
By 2018, the total capacity of wind energy (both onshore and offshore) worldwide had
attained a remarkable 564 GW [2] and is anticipated to ascend to 2000 GW by 2030 [3].
Accordingly, to ensure an effective, dependable, and secure electricity system, there is a
requirement to establish sophisticated technologies and solutions. A review of the literature
reveals that wind energy penetration is leading to a decrease in electricity prices [4–7].
Price forecasting with wind energy penetration has become an increasingly important part
of the energy sector due to the increasing prevalence of wind energy. Wind penetration
in the US has grown from 5.6% in 2011 to 16% in 2020 and is projected to continue to
increase going forward. As wind penetration rises, there is an increased need to forecast
electricity prices given fluctuating supply and demand. Price forecasting with wind energy
penetration can reduce the unpredictability of electric markets, thereby helping to ensure
the efficient and cost-effective operation of energy markets [8]. Case studies from regions
such as Europe have demonstrated how price setting is more successful with increased
wind energy penetration. Thus, price forecasting with wind energy penetration is key to
the efficient operation of energy markets.

EPF is an essential factor in power system planning, as it helps in predicting fu-
ture electricity prices based on past data and other variables (load, forecasted load, and
meteorological data). Its significance lies in providing power producers with the nec-
essary data to bid optimally in the market, optimize demand-side management, and
improve congestion management. The complexity of the task is increased by the non-
stable and fluctuating demand. RE grid integration poses a complex challenge, particu-
larly due to the intermittent character of wind energy. To tackle this issue, EPF (Electric
Power Flexibility) technologies can be employed to modify energy utilization concerning
pricing signals. This effect is especially salient in European countries, which have high
penetration levels of wind energy, as the effects of wind energy on electricity prices are
discussed in [9].

As wind penetration increases, the electricity price decreases; however, the price
volatility for small time frames (e.g., 5 min) increases compared to longer intervals
(e.g., one hour). If wind power is over-forecasted, electricity prices will rise, whereas
under-forecasting wind power will result in a price decrease. The level of curtailing will
vary depending on the level of wind penetration, with higher levels leading to a decrease
in electricity price instability.

Wind energy penetration has reduced electricity prices due to zero marginal cost and
fuel requirements during periods of high wind power. Consequently, fuel-based plants are
forced to limit their production, allowing wind power to supplant them and further reduce
electricity prices [10]. Various studies in the literature have highlighted the significant
impact of wind energy on pricing, covering aspects such as price forecasting [11–14].
Moreover, an economic analysis exploring the price forecasting error in wind-integrated
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markets was conducted, as was a quantile regression method to determine the effect of
wind and solar on electricity price variability for Germany [15].

The utilization of machine learning algorithms within the context of wind energy and
its resultant implications remain yet to be completely investigated. Regression techniques
have been regularly employed for price prediction with varying levels of accuracy depend-
ing on the specific electricity market data, as they are comparatively straightforward to
execute [16,17]. Although empirical evidence attests to the executive precision and depend-
ability of Artificial Neural Network (ANN)-based techniques, the challenge of successfully
managing the nonlinear and erratic performance of prices is made much more intricate in
the context of an energy market incorporating renewable sources, particularly given the
intermittent character of the wind.

Electricity price forecasting is a difficult and multi-faceted task owing to the increasing
integration of renewable energy sources, such as solar and wind, into the electricity grid.
Forecasting the prices of electricity generated from these renewable sources is critical for
profit optimization and risk management. This literature review examines the current
state of electricity price forecasting under the effect of renewable energy sources such
as solar and wind. In a study of electricity price forecasting, the effect of wind energy
generation must be taken into account. Wind energy is a renewable energy source, and
its availability depends on a variety of factors, such as seasonality, geographical location,
and weather conditions. Accurately forecasting the availability of wind energy gener-
ation is essential for optimal electricity price forecasting. Furthermore, understanding
the relationship between electricity prices and wind energy availability is crucial for ef-
fective electricity price forecasts. Machine learning models are less explored for price
forecasting under the effect of wind energy penetration. Electricity price forecasting is
an important tool in the renewable energy (solar and wind) environment. It helps to
improve the integration of renewable energy sources into the existing electricity market
by predicting future electricity prices. This information is used to help energy producers
and consumers make informed decisions about their energy investments, such as when
to buy or sell energy. As renewable energy sources become more prevalent in the elec-
tricity market, the complexity of electricity price forecasting increases significantly. A
limited literature exists that explores price forecasting in correlation to renewable energy
sources [18,19]. Consequently, the authors constructed a modern model to forecast prices in
a wind energy market setting and assess the influence of wind energy penetration on prices.
The detailed literature review is provided in Table 1 to support the literature survey of
this study.

The majority of academics have made an effort to investigate price forecasting us-
ing various machine learning models, with results of varying degrees of accuracy for
the fuel-based power market. Price forecasting in such an interactive grid scenario is
vital due to fluctuation in the wind and solar energy output in the current scenario, since
the grid operations, their scheduling, and their dynamics are changing. However, be-
cause its non-stationary and stochastic nature, reliable price forecasting is a difficult en-
deavor. The interaction between price forecasting of fuel-based plants and Distributed
Energy (DE)-based plants makes this work both more difficult and crucial at the same
time. Price forecasting has been a popular topic among researchers due to the elevated
capacity, expansion, and global growth of renewable energy. This research attempts
to close the price forecasting gap between fuel-based plants and Distributed Energy
(DE)-based plants.

This paper present a comparison of four robust widely adopted machine learning-
based regression techniques by the research community. We analyze these algorithms for
the task of electricity price forecasting under the influence of wind energy penetration which
is an integral aspect of managing power generation through renewable energy sources.
However, most of the existing research in this domain, specifically price forecasting under
the influence of renewable energy, is very limited. We experiment with different kernel
combinations, loss functions, and model setups for each of the five models given in the
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article and report only the best-performing algorithmic setting for each model. We also
conduct extensive hyperparameter tuning of the models for obtaining optimum results. We
share the best hyperparametric configuration of the best performing model. We take these
steps so that other researchers do not have to go through the tedious task themselves, thus
aiding research reproducibility, community adoption, and accelerating research processes
in this domain.

Table 1. A brief literature review of some relevant works.

Ref No. Authors Name Title of the Paper Year Method Used Remark

1 Olukunle O.
Owolabi et al. [20]

Role of Variable Renewable Energy
Penetration on Electricity Price and its
Volatility across Independent System

Operators in the United States

2023 Quantile Regression
techniques

Merit order effect on price
and linearity effect has

been considered

2 Kumar, Neeraj and
Tripathi, M.M. [21]

Investigation on Effect of Solar Energy
Generation on Electricity

Price Forecasting
2022 LSTM

Effect of solar energy
penetration on electricity

price has been investigated

3.

Anna Maria
Oosthuizen, Roula

Inglesi-Lotz, George
Alex Thopil [22]

The relationship between renewable
energy and retail electricity prices:

Panel evidence from OECD countries
2022

Empirical results
were presented
(panel unit test)

Investigation of wind
energy penetration on
electricity price for 34

OECD countries
were conducted

4 Anbo Meng et al. [23]

Electricity price forecasting with high
penetration of renewable energy using
attention-based LSTM network trained

by crisscross optimization

2022 LSTM

Empirical wavelet
transform and crisscross
optimization is used to

decompose the data
features and retrain

the data

5. Haolin Yang, Kristen
R. Schell [24]

Real-time electricity price forecasting of
wind farms with deep neural network
transfer learning and hybrid datasets

2021 DNN

GRU transfer learning
concept is used for

improving the
forecasting accuracy

6.
Elisa Trujillo-Baute,
Pablo del Río, Pere
Mir-Artigues [25]

Analysing the impact of renewable
energy regulation on retail

electricity prices
2018 Statistical analysis

The impact on retail
electricity prices is positive
and statistically significant,
although relatively small

7 Talari, S. et al. [26]
Price Forecasting of Electricity Markets
in the Presence of a High Penetration of

Wind Power Generators.
2017

Bivariate
ARIMA-Wavelet and

RBFN

Large scale wind generator
effects on electricity price

have been considered

8. Cristina Ballester,
Dolores Furió [27]

Effects of renewables on the stylized
facts of electricity prices 2015

Statistical and
empirical analysis
has been presented

Statistically negative
relationship between wind
energy share and marginal

price has been derived

9 Shcherbakova,
A. et al. [28]

Effect of increased wind penetration on
system prices in Korea’s

electricity markets
2014

Seasonal correlation
between wind output

and load

Statistical analysis on wind
energy penetration on

system marginal price has
been performed

10
Blanca Moreno, Ana J.
López, María Teresa
García-Álvarez [29]

The electricity prices in the European
Union. The role of renewable energies
and regulatory electric market reforms

2012 Empirical analysis

Deployment of RES
increases prices paid by

consumers in a
liberalized market

The authors’ main contribution in this research paper is to analyze the effect of wind
energy generation on electricity prices using regression methods. The authors conducted
a detailed analysis of the data to explore the relationship between the two variables. The
dataset used in the study includes mainly historical electricity prices and wind energy
generation data. The authors have used multiple regression models (LR, RF, LASSO, and
DT) to examine the effect of wind energy generation on electricity price, with results
showing a positive and statistically significant correlation. The authors have also provided
valuable insights into the implications of the study.
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Decision tree models are advantageous for price forecasting due to their ability to
handle nonlinear relationships between variables, their ability to capture interactions
between variables, and their accuracy in predicting outcomes. Decision tree models are
also highly interpretable, allowing for easy visualization of the relationships between the
various features and the target variable. This makes decision tree models an ideal choice for
price forecasting, as the insight obtained from the model can be used to inform decisions
regarding pricing strategies. Hyperparameter tuning has been performed by adjusting the
values of the hyperparameters of a model to minimize the training error and maximize the
model performance on a given dataset. This process helps to optimize the hyperparameters
of a model and improve the accuracy of the model on unseen data. Hyperparameter tuning
can help to reduce the overfitting of a model, improve the generalization of the model, and
also improve the accuracy of the model on unseen data. From the predicted electricity price
information, a system planner can schedule resources and maintain the reliability of the
system effectively. Scheduling resources for demand and supply management given the
intermittent nature of wind is a challenging task. By providing information about price
signals, this investigation provides an invaluable aid to those in the wind power industry
in their efforts to maximize the efficiency of their resources, allowing for the optimization
of their demand schedules.

The key summary of the main contributions of this research work is as follows:

• To analyze the effect of wind energy generation on electricity prices using
regression methods;

• A detailed analysis of the data to explore the relationship between the two variables;
• Use of real-time data on Austria’s electricity market;
• Implementation of multiple regression models (LR, RF, LASSO, and DT) to validate

the performance;
• Hyperparameter tuning work has been performed by adjusting the values of the

hyperparameters of a model in order to minimize the training error and maximize the
model performance on a given dataset.

This paper is divided into five sections. The introduction section provides an overview
of the literature related to the field. The second section describes the data features and
their statistical analysis. The third section outlines the models used to inspect the effect of
wind energy on electricity prices, their mathematical modeling, and their advantages and
disadvantages for a specific task. The fourth section shows the results and comparisons
of the models used. MAPE, RMSE, and MAE were calculated for LR, RF, LASSO, and
DT models, respectively. The fifth section concludes the literature review, models used,
and results.

2. Data Analysis

This research undertakes an appraisal of the influence of wind energy penetration
into the Austrian electricity market grid on pricing [30]. To do so, relevant information
concerning day-ahead (DA) price, actual load, forecasted load, and wind energy generation
was procured. As wind energy generation is intermittent, the data were normalized and
regularized via a min-max method to optimize dataset redundancy. Statistical analysis
of the available dataset was conducted to show the variability and non-linearity of price
data and wind energy generation. After this, a statistical analysis of the price and wind
generation data was conducted. As there were some missing values, a 10-month dataset
from 2018 was utilized to train the model [31]. Data splitting was executed in a 70 and
30 (%) breakup to train and test the model. A scatter plot of wind energy generation at
15-min intervals is depicted in Figure 1 and the arithmetical investigation of the dataset is
given in Table 2.
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Table 2. Data Statistical Summary.

Name of Parameter Electricity Price Wind Power

No. of samples 26,393 26,393

Time interval in the dataset 15 min 15 min

No. of missing data 0 0

The mean value of the data 41.84024 658.2215

Root mean square deviation 19.13648 583.0336

Minimum −149.99 0

Maximum 977 2678

Dissymmetry 4.115555 1.052050

Kurtosis 225.2525 0.389035
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In Figure 1, the price versus time graph is shown, and the deviation of the price is
attributable to fluctuations in demand. Notably, there are also periods of negative prices,
which signify that power is abundant and there is reduced demand in the market. Since
wind energy is intermittent, forecasting the price to deal with the price fluctuations and
stochasticity is a challenge faced by researchers.

In Figure 2, the variation of wind energy output over time is depicted. To predict
the price, two distinct regression techniques were modeled and compared, with wind
production being taken into account as one of the limitations. An examination of the
dataset utilized to train models through analytical means is presented in Table 2. This
analysis is crucial for selecting the most appropriate model for price forecasting. It allows
us to evaluate the dataset’s symmetry and other features, thus helping us make a more
informed decision.
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3. Methodology

The methodology of this paper for examining the effect of wind energy on price
forecasting is depicted in Figure 3. Descriptions of the various models employed are
provided below. The proposed approach is comprised into seven steps, namely: (1) dataset
collection, (2) dataset preparation (training and testing phase data file), (3) design of the
regression model without wind energy, (4) design of the regression model with wind energy,
(5) performance evaluation, (6) result comparison, (7) save model for further use.
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3.1. Decision Tree

DT is a supervised learning method employed to perform classification or regression
problems by providing a set of features and a Boolean decision as output [32,33]. It
creates a tree-like structure, breaking down the task into smaller subsets and progressively
developing a decision tree. The resultant tree will comprise decision nodes, each signifying
a particular attribute, and leaf nodes demonstrating the target value. The foremost decision
node, representing the most optimal predictor, is known as the root node. The Iterative
Dichotomiser 3 (ID3) algorithm of the Decision Tree is a powerful tool for supervised
learning that utilizes a recursive partitioning methodology for constructing a decision tree
from a dataset. This algorithm can generate a decision tree with ease and has been widely
used in many real-world applications, such as data mining, knowledge discovery, and
machine learning. At each step of the process, ID3 utilizes a heuristic measure to determine
the best feature to split the data on, thereby reducing the complexity of the decision tree
and allowing the user to better understand the underlying data. Standard deviation is
utilized to assess the homogeneity of the dataset and will be zero if it is homogeneous.
The decrease in standard deviation after segmenting the dataset is used to evaluate the
maximum number of attributes that provide the highest standard deviation. In Table 3
specifications of the DT model are given.

Table 3. Details of hyper-tuned parameters for the Decision Tree model.

The Objective of the Learning Task Regression Model

Tuning linear model Regression tree

No. of tree 100

Maximum depth of tree 6

Minimum sample at leaf node 4

Parameter tuning Grid search with
5-Fold CV

The Sum of Squared Error (SSE) equation is used in the context of regression with
Decision Tree algorithms. It is used to calculate the error between the predicted values
from the Decision Tree and the actual values of the target variable. The SSE equation is
calculated by adding up the squares of the differences between the actual values and the
predicted values for each data point in the dataset. The lower the SSE, the better the model
is at predicting the target variable, following Equation (1). Therefore, the SSE equation is
essential in determining the best decision tree model to use, as it can help us identify the
model that will produce the best predictions.

S =
n

∑
i=1

(Yi − C)2 (1)

The S in Equation (1) is comprised of the number of observations (n) at the node, the
mean outcome (C) which encompasses all the observations at the node, and the predicted
value Yi of the i-th case.

Decision trees are also capable of generating robust and interpretable predictive mod-
els. Furthermore, these models allow for an easy implementation of feature engineering
or selection, which can further increase forecasting accuracy. Finally, decision tree models
usually require minimal data pre-processing and can work with both continuous and cate-
gorical data, making them ideal for wind energy-integrated markets [34]. The decision tree
model has the advantages of interpretability, data preparation is less, it is non-parametric,
versatile, and non-linear. At the same time, it suffers from data overfitting, data resampling,
and feature reduction problems.
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3.2. Random Forest

Random Forest (RF) is an ensemble learning method that is based on an estimator.
To enhance the precision of the outcomes, an average of the entirety of the trees is taken
and further refined. Bagging is a technique used in random forests to reduce overfitting.
It works by taking a subset of the data, fitting a model to that subset, and then repeating
the process with a different subset of the data. This creates multiple models which are
then combined to form a single random forest model. Bagging is an important part of the
Random Forest algorithm, as it is responsible for creating the individual decision trees that
make up the forest. The bagging procedure allows for the trees to be independent of each
other, and therefore, the forest is created with a wide variety of trees, thus increasing the
accuracy of the model [35]. Bagging helps to reduce the variance of the model and increases
the accuracy of the predictions. It is a powerful tool for improving the performance of
random forest models. Random forest has numerous benefits; it does not experience the ill
effects of overfitting even when the dataset is immense, and the random sample selection
renders it a more effective predictor model. Table 4 furnishes the particulars of hyper-tuned
parameters for the training and assessment of the RF model.

Table 4. Details of hyper-tuned parameters for Random Forest model.

The Objective of the Learning Task Regression Model

Tuning linear model Random forest regression

Maximum depth of tree 10

Minimum sample at leaf node 8

Parameter tuning Grid search with 5-Fold
CV

The algorithm works by randomly selecting a subset of the data, fitting a decision tree
model to this subset, and then repeating this process multiple times. The final prediction is
then the average of the predictions made by each decision tree. As a result, the Random
Forest algorithm is an effective and efficient way to solve regression problems. Drawing
from the initial dataset, n bootstrap samples are obtained, from which an unpruned tree
is developed for each sample. Rather than selecting the optimal sample from the range
of available predictors, an arbitrary selection of samples is taken from the predictors at
every node, with the most appropriate split being selected from this selection. The Random
Forest algorithm is an ensemble of decision tree classifiers that uses a bagging technique to
create predictions. Each tree is created from a random sample of the data, and a prediction
for a new data value is made by calculating the average of all the trees from the samples.
This helps to reduce the variance from a single decision tree and improve the accuracy of
the predictions. The Random Forest algorithm is an effective tool for both classification
and regression tasks [36].

Random forests are an efficient function approximation tool that can be used to increase
price forecasting accuracy by creating a collection of decision trees, each of which is trained
on a different bootstrap sample of the original dataset and with different parameters. This
allows random forests to improve variance and reduce bias as compared to basic decision
tree models. Furthermore, by averaging out the predictions, random forests also reduce
the risk of outliers in price forecasts and can capture a wider range of market dynamics.
The RF algorithm outputs the relevance of features, which is a very valuable feature, and it
is less prone to overfitting than DT and other algorithms. A small change in the data can
cause the Random Forest method to change significantly, and its computations can become
far more complicated than those of other algorithms.
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3.3. Linear Regression

Linear regression is a statistical algorithm used to predict a numerical outcome based
on a dataset of input variables. It is one of the most widely used algorithms for solving
regression problems. It works by finding a linear relationship between the input variables
and the output variable, and then using this relationship to predict the output. It is a simple
and powerful technique that can be used to solve a wide variety of problems.

Y = X× β + r (2)

The Least Square Regression (LR) technique employs an approach to obviate the sum
of squared discrepancies between the predicted and empirical values of Y, the response
variable, by making use of X, the predictor matrix, and β, the relationship vector, in con-
junction with r, the residual vector, as delineated in Equation (2) [37–39]. The mathematical
representation of the LR model is depicted in Equation (3) and the particulars of the hyper-
tuned parameters resulting from the training and validation stage of this model can be
viewed in Table 5.

minβ||X × β− Y||2 (3)

Table 5. Details of hyper-tuned parameters for Linear Regression model.

The Objective of the Learning Task Regression Model

Tuning linear model Linear Regression

Fit_intercept true

Copy_X true

normalize false

Linear regression is a good tool for price forecasting, as it is based on the assumption
that property values change by a consistent amount over some time. Linear regression
models can be easily transformed to allow for seasonality, wind direction, wind speed,
or other impact factors on the electricity generated from wind power. It also allows for
market responsiveness as well as for the incorporation of new energy sources into the
trading portfolio.

Implementing linear regression is straightforward, and it is simpler to understand the
output coefficients. However, because the bounds of the linear regression technique are
linear, outliers can have a significant impact on the regression.

3.4. LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) algorithm is a powerful
technique for solving regression problems. It is a regularization method that penalizes the
sum of the absolute values of the model coefficients. This helps to reduce the complexity of
the model by shrinking some of the coefficients to zero and eliminating some of the features.
The advantage of using the LASSO method is that the resulting models are usually simpler
and easier to interpret [40]. Additionally, it can help to reduce the risk of overfitting by
limiting the number of features used in the model. It is based on an optimization problem
that has a convex objective function and a regularization term added to the cost function.
This regularization term is a sum of the absolute values of the coefficients of the model,
which ensures that the coefficients of unimportant features are set to zero and the important
ones are retained. The equation for the LASSO model is given in Equation (4) [41].

£(β; λ) = min
n

∑
i=1

(Yi − Xiβ)
2 + λ1

n

∑
i=1
|βk| (4)
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In Equation (4):
Yi = the result of the forecasted variable for the i-th instance;
Xiβ = remapped vector of forecasting where Xi is the feature of the i-th variable;
B = assigned bias weight;
βk = the magnitude of the coefficient;
λ1 = penalty factor.
The precision of the LASSO model for the current dataset is suboptimal owing to the

insufficiency of features and an over-reliance on certain features, leading to overfitting.
Table 6 refers to the specifications used in the training and validation of the LASSO model.

Table 6. Details of hyper-tuned parameters for the LASSO model.

Objective for Learning
Task LASSO L1 Regularizer for the Linear Model

Tuning linear model Lasso Regression

Fit_intercept True

Copy_X True

Alpha regularization parameter 1×10−15

Normalize True

LASSO algorithms can also handle large-scale datasets and nonlinear functions which
are commonly found in wind energy markets. Additionally, it can quickly adapt to changing
input parameters which can be useful when forecasting prices in wind energy markets
which are subject to sudden changes [42].

Automatic selection of features: a key benefit of the LASSO regression model is its
ability to reduce the coefficients for features that are not interesting to zero. When we have
correlated variables, the fundamental issue with LASSO regression is that it only keeps one
variable and sets the other connected variables to zero. That might cause some information
to be lost, which would impair our model’s accuracy.

In Figure 4, the correlation plot for the features of the dataset is presented. It can be
deduced that the target is highly correlated with the load and moderately correlated with
wind generation. Hence the effect of wind energy on electricity prices is considered for the
investigation of price forecasting in the wind energy integrated market. In the correlation
plot, the correlation of data with target data is shown on the numerical values scale. One
of the reasons for not running the LASSO model for the available dataset is the limited
number of features and features that are not significantly correlated with the target value.
Nevertheless, in a consolidated market where wind energy is a factor, the cost of electricity
is impacted by wind energy. Hence, it is necessary to analyze the effect wind energy has
on electricity prices. The correlation between the data and the goal data is displayed on a
numerical values scale in a correlation plot. Because there are few features and they are not
strongly correlated with the target value, the LASSO model cannot be run for the available
dataset. However, wind energy affects the price of power in a consolidated market where
it is a factor. Therefore, it is important to examine the impact wind energy has on the cost
of power.

The tenuous relationship between load and day of the month does not conclusively
indicate a significant correlation, yet it does suggest that electricity pricing is impacted by
the presence of wind energy in an integrated market. The correlation coefficient between
the two is not sufficient to validate a meaningful association, though it can be assumed that
the price of electricity is to some degree contingent upon the availability of wind energy.
Thus, it is imperative to assess the influence that wind energy has on the cost of electricity.
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Although the shaky correlation between load and day of the month cannot prove a
causal link, it does imply that the existence of wind energy in an integrated market affects
electricity pricing. Though it can be expected that the price of power is to some extent
dependent upon the availability of wind energy, the correlation coefficient between the two
does not support a meaningful link. Therefore, it is crucial to evaluate the impact that wind
energy has on the price of electricity.

4. Results and Discussion

Regression models were utilized to assess the effect on electricity price variation by
imposing wind energy generation constraints in the market to meet the demand. Specif-
ically, the DT, RF, LR, and LASSO models were run on numerical data related to Aus-
tria’s electricity market utilizing a machine equipped with 6 GB, Double Data RAM3, a
1.6 GHz Intel Core i7 processor, and the Jupyter notebook development environment.
Results of electricity price forecasting influenced by wind energy generation are detailed in
the following section.

The same dataset was employed for training and evaluating models for electricity
price prediction. Wind energy was excluded from the training and testing of the models,
and the electricity price was then forecasted. After this, the same procedure was repeated
while incorporating wind energy as an input parameter. Extensive hyperparameter tuning
was conducted, and the highest performance values for this task have been reported. The
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efficacy of the model was gauged by utilizing forecasting metrics, and the numerical data
were compared. MAPE, RMSE, and MAE are important metrics for evaluating the accuracy
of forecasting models and the performance of a forecasting system. They are commonly
used to gauge the accuracy of a forecasting model and provide a benchmark for comparing
the performance of different forecasting systems. MAPE, RMSE, and MAE measure how
closely the forecast values are to the actual values and provide an overall assessment of the
accuracy of the system. This allows us to select the most accurate forecasting system, and
identify areas for improvement. The metrics used to determine the models’ effectiveness
were the RMSE, MAE, and MAPE as expressed in Equations (5)–(7). Here, n was utilized to
denote the total number of samples, and the actual and predicted prices for the jth instance
were represented by YA,j and YP,j in Equations (5)–(7), respectively. Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) are the metrics used to assess the performance
of the models. In actuality, it is generally accepted that the better the model, the lower
its RMSE number should be. The model is regarded as performing well without being
overfitted if the RMSE values of the training and testing samples are within a narrow range.
We think that the statistic of key focus should be RMSE, out of the two analyzed metrics. It
uses a quadratic scoring rule, which squares the errors before averaging them. This enables
RMSE to assign large mistakes a relatively high weight. Lower values of RMSE would
therefore suggest a low error rate in practice.

MAE =
1
n

n

∑
j=1

∣∣YA,j −YP,j
∣∣ (5)

RMSE =

√√√√ 1
n

n

∑
j=1

(
YA,j −YP,j

)2

(6)

MAPE =
100
n

n

∑
j=1

∣∣∣∣∣YA,j −YP,j

YA,j

∣∣∣∣∣ (7)

The results obtained from validating the models, namely the RF, LASSO, DT, and
LR models, are illustrated in Figure 5 with three lines of distinct colors (green, blue, and
orange). The DT model has shown slightly superior results in comparison with others (LR,
RF, and LASSO) because it is close to the actual price line. Additionally, the MAPE for the
DT model is lowest (5.80) with wind energy, and without wind energy error is minimal
(6.01). These results are further corroborated by Table 7 which compares the evaluation
metrics for the proposed regression models used in the analysis of the proposed task.

Table 7. Forecasting Matrices summary.

Forecasting Matrices
Proposed Models

DT RF LASSO LR

MAE without considering Wind 2.08 4.81 8.89 10.82

MAE considering wind 2.20 3.50 10.82 12.01

RMSE without considering wind 6.19 5.76 15.51 15.69

RMSE considering wind 2.08 4.06 14.62 14.93

MAPE without considering wind 6.01 12.01 23.10 25.30

MAPE considering wind 5.80 10.91 22.20 24.50
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5. Conclusions and Future Scope

This study looked into aspects of the effects of wind energy penetration on electricity
prices by proposing DT, RF, LR, and LASSO models. DT showed superiority over the
other models due to its ability to capture complex mappings, variability, and complexity.
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Analysis of the data revealed a reduction in electricity prices as an outcome of the intro-
duction of wind energy sources, as well as an augmented degree of volatility due to the
unpredictable nature of the energy source. This increases uncertainty for coal-based power
producers. To better integrate wind energy into the grid, advanced forecasting is necessary
for a reliable and effective power supply. Electricity price forecasting has great potential
for the future, especially considering the increasing penetration of wind energy into the
grid. Wind energy is highly variable and intermittent, making demand forecasting and
resource planning more difficult. However, with the development of advanced forecasting
algorithms, electricity price forecasting can be improved to better respond to the changes in
wind energy production. In addition, with the integration of machine learning and big data
analytics, electricity price forecasting can be used to anticipate the impact of renewable
energy sources on the electricity market and develop strategies to minimize price volatility.
This will enable utilities to better understand and manage the risks associated with renew-
able energy sources, and more efficiently plan for the future. Accurate prognostication of
rates in renewable energy-integrated markets is a paramount worry due to the fluctuation
in production. Hybrid techniques may enhance the precision of forecasting, which would
be beneficial for operators in scheduling resources and exploiting RE capacity to the fullest.
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