Universiti Teknologi Malaysia Institutional Repository

Energy-economy-environment assessments of refrigerants R152a and R134a in a vapor compression refrigeration system using a variable displacement oil-free linear compressor

Fang, Xueliang and Chiong, Meng-Choung and Jiang, Xinyue and Yu, Lih Jiun and Chen, Xinwen and Muhieldeen, Mohammed W. and Al-Talib, Ammar Abdulaziz Majeed and Lim, Wei Hong and Wong, Keng Yinn (2023) Energy-economy-environment assessments of refrigerants R152a and R134a in a vapor compression refrigeration system using a variable displacement oil-free linear compressor. Environmental Science and Pollution Research, 30 (45). pp. 101223-101233. ISSN 0944-1344

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s11356-023-29521-6

Abstract

In light of the adverse environmental impact of the R134a refrigerant, replacing it with a more environmentally friendly refrigerant has become imperative than ever. This study presents an experimental investigation into the utilization of R152a and R134a refrigerants in a vapor compression refrigeration system employing a variable displacement oil-free linear compressor. The potential for the replacement of R134a with R152a was examined based on energy, environmental, and economic performance analyses. The outcomes indicated that R152a exhibited a higher coefficient of performance (COP) in comparison to R134a under identical operating conditions. Specifically, when the pressure ratio was 2.0 and the piston stroke was 11 mm, R152a’s COP was 13.0% higher than R134a. It was also discovered that reducing the operating stroke and increasing the pressure ratio could effectively lower CO2 emissions and total costs. Under the 2.0 pressure ratio and 9-mm piston stroke, R134a produced 1082.4 kg more CO2 emissions than R152a, representing a 209% increase. In addition, the R152a and R134a total cost was reduced by 8.3% with the 2.5 pressure ratio and 11-mm piston stroke. Notably, the results of the current study demonstrated that R152a outperformed R134a in energy consumption, environmental friendliness, and economy in oil-free linear compressor refrigeration systems. R152a used less electric power, generated fewer CO2 emissions, and naturally reduced predicted running costs in order to maintain the same COP.

Item Type:Article
Uncontrolled Keywords:COP, Domestic refrigerator, Linear compressor, R152a, Running cost, TEWI
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:107298
Deposited By: Widya Wahid
Deposited On:01 Sep 2024 06:56
Last Modified:01 Sep 2024 06:56

Repository Staff Only: item control page