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Abstract: Minimizing energy costs while maintaining consumer satisfaction is a very challenging 
task in a smart home. The contradictory nature of these two objective functions (cost of energy and 
satisfaction level) requires a multi-objective problem formulation that can offer several trade-off 
solutions to the consumer. Previous works have individually considered the cost and satisfaction, but 
there is a lack of research that considers both these objectives simultaneously. Our work proposes 
an optimum home appliance scheduling method to obtain an optimum satisfaction level with 
a minimum cost of energy. To achieve this goal, first, an energy management system (EMS) is 
developed using a rule-based algorithm to reduce the cost of energy by efficient utilization of 
renewable energy resources and an energy storage system. The second part involves the development 
of an optimization algorithm for optimal appliance scheduling based on consumer satisfaction 
level, involving their time and device-based preferences. For that purpose, a multi-objective grey 
wolf accretive satisfaction algorithm (MGWASA) is developed, with the aim to provide trade-off 
solutions for optimal load patterns based on cost per unit satisfaction index (Cs_index) and percentage 
satisfaction (%S). The MGWASA is evaluated for a grid-connected smart home model with EMS. To 
ensure the accuracy of the numerical simulations, actual climatological data and consumer preferences 
are considered. The Cs_index is derived for six different cases by simulating (a) optimal load, (b) ideal 
load, and (c) base (random) load, with and without EMS. The results of MGWASA are benchmarked 
against other state-of-the-art optimization algorithms, namely, binary non-dominated sorting genetic 
algorithm-2 (NSGAII), multi-objective binary particle swarm optimization algorithm (MOBPSO), 
Multi-objective artificial bee colony (MOABC), and multi-objective evolutionary algorithm (MOEA). 
With the proposed appliance scheduling technique, a % reduction in annual energy cost is achieved. 
MGWASA yields Cs_index at 0.049$ with %S of 97%, in comparison to NSGAII, MOBPSO, MOABC, 
and MOEA, which yield %S of 95%, 90%, 92%, and 94% at 0.052$, 0.048$, 0.0485$, and 0.050$, 
respectively. Moreover, various related aspects, including energy balance, PV utilization, energy cost, 
net present cost, and cash payback period, are also analyzed. Lastly, sensitivity analysis is carried out 
to demonstrate the impact of any future uncertainties on the system inputs.

Keywords: energy demand management; home energy management system; grey wolf optimizer; 
residential load scheduling; alternative energy sources
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1. Introduction
High residential energy demand has significantly increased energy costs globally. 

Climate change and pandemics have accelerated global residential energy consumption. In 
the United States, the residential energy demand has increased many folds, while in the 
European Union, residential power consumption increased to 26.3% in 2019 [1]. According 
to the energy information administration, in the last ten years, the rate of residential 
electricity in the U.S. has risen by 15% [2,3]. Moreover, this trend will likely continue as the 
estimated 80% additional increase in residential buildings by 2050.

Furthermore, combined with rising fuel prices like coal, natural gases are only likely 
to increase the electricity rate. However, uncertainty in producing power from renewable 
energy resources RER caused by the intermittent nature of the RER will lead the utility to 
face additional operational challenges. The residential sector is one of the most energy­
intensive segments and offers considerable scope to implement various power optimization 
methods and technologies.

Over the years, primary energy sector research has focused on various innovative 
techniques to address the rising demand for a stable energy system. With the modern smart 
grid, benefits such as energy usage reduction, cost reduction, and increased overall grid 
efficiency can be reaped. Managing the residential load demand by effectively scheduling 
the residential devices is crucial to achieving these benefits. Energy management can be 
broadly classified into supply-side management (SSM ) and demand-side management 
(DSM). Widespread adoption of DSM by consumers for their home energy management 
has been reported due to associated economic benefits [4,5]. The concept of demand side 
management includes all the activities which aim at modifying the consumption load 
curves focusing on increasing customer benefit and improving system reliability subject to 
the uncertainties of consumption profile. Several previous research works have emphasized 
the development of an improved DSM.

Employing renewable energy resources (RERs) for residential energy offers several 
personal and public benefits. On a personal level, using RERs provides urban consumers 
with a cost-effective green solution to reduce their dependence on the utility grid and remote 
energy sources. RERs have little to no carbon emissions compared to fossil fuels, resulting 
in reduced environmental impact, which helps mitigate global warming. Sm art Home 
Energy Management Systems (SHEMS) integrates RERs and energy storage systems (ESS), 
improving sustainability, efficiency, energy conservation, and reducing energy costs while 
coping with ever-increasing energy demand. The most preferred model for smart homes 
globally comprises a combination of photovoltaic (PV) and ESS to meet the dynamic energy 
demand. However, climatological conditions, especially solar irradiance, significantly 
impact energy generation by PV modules [6] .

During the COVID-19 pandemic, an increasing number of people have opted for 
the home office, and some countries even declared work from home a legal right of the 
people. Spending more time at home has made residential consumers more conscious 
regarding their quality of life, thus increasing the significance of the consumer satisfaction 
aspect of energy consumption. The waiting time is considered one of the key evaluation 
criteria for consumer satisfaction. Therefore many scheduling algorithms aim to reduce 
the waiting time to achieve a higher consumer satisfaction level [7] . Previous research 
mostly focused on reducing energy costs but gave trivial satisfaction to the consumers. 
An adequate consumer satisfaction indicator is necessary to make consumers choose the 
m ost cost-optimal load scheduling. Thus, a more holistic load management approach 
involving consumer satisfaction and energy cost reduction is needed. Few previous works 
have emphasized the relationship between consumer satisfaction and managing comfort 
conditions [8- 10]. Manzoor et al. elaborated on the relationship between the factors like 
energy usage, cost, and the level of consumer discomfort. They designed a teacher learning 
and genetic algorithm-based hybrid optimization algorithm without considering the possi­
bility of renewable energy [11]. The consumer discomfort is aggravated when either the 
operation time of devices is delayed or the consumer's power demand for power-flexible
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devices is compressed. A multi-objective model was proposed by considering factors like 
consumer satisfaction and the economy, and its effectiveness was demonstrated by numer­
ical simulations [12]. However, the study did not consider the integration of renewable 
energy. In [13], consumer satisfaction and usage rate of renewable power were considered 
to develop an optimization algorithm to curtail the daily electricity bill. However, this 
work considered an off-grid scenario where the system was entirely dependent on renew­
ables, and the utility grid was not considered. Whereas, in [14,15] author uses the state 
flow method to resolve the problem of load shedding while the author does not consider 
consumer satisfaction. An algorithm for demand satisfaction was developed to achieve 
maximum consumer comfort at a minimum price for various budget scenarios [16]. The 
concept of a two-tier consumer satisfaction [17], i.e., time and device-based satisfactions, 
was utilized in [18] for optimization by a single objective competitive grey wolf algorithm 
design to enhance the consumer satisfaction level under a pre-defined budget. The results 
suggested that higher consumer satisfaction can be achieved with an increasing budget. 
However, the system is less reliable as it is only dependent on the grid. Furthermore, the 
comprehensive state of the art is listed in Table 1. f  and X  sign shows that the reference 
considered that attribute in the research or not respectively.

Considering the relevant state-of-the-art, the author has found the following research gaps:

• The problem of optimal home appliance scheduling objective considered either reduc­
ing the cost or comfort level of the consumer. A pre-defined limited budget leaves 
the consumer with limited scheduling options; thus, trade-off solutions are needed 
between the percentage satisfaction and cost per unit satisfaction index.

• In general, the proposed strategies lack the flexibility to adapt to diverse situations and 
systems. In that context, energy export to the grid, as well as demand response, becomes 
pertinent features, which are challenging to manage using state-of-the-art strategies 
because they usually do not consider demand response and prosumer scenarios.

• To the best of the author's knowledge, most of the relevant works have only provided 
a comparison of results acquired from various demand response incentive programs 
without considering the effect of RER-based EMS on demand response programs. Further­
more, the current strategies lack the versatility to conduct such comparisons conveniently.

This work develops a novel approach for the comprehensive design of intelligent ap­
pliance scheduling with the RER-ESS system at the smart home level, intending to address 
the aforementioned challenges. The presented strategy is premised on home appliance 
scheduling, which is raised as a multi-objective problem and solved analytically by devel­
oping a novel multi-objective binary grey wolf accretive satisfaction algorithm (MGWASA), 
providing trade-off solutions between an optimal set of cost with best satisfaction level. 
Demand response programs are considered by including the time and device preferences 
of the consumer, along with the different TOU tariffs for all seasons. Unlike previous 
approaches, the stability of the system is modeled using scenarios, which are based upon 
actual data and included in the optimization problem. The main contribution of this work 
and salient features of the proposed methodology includes the following:

(a) Proposes modified consumer satisfaction objectives where the importance of device 
and operational time is incorporated through time and device preference tables. 
Novel MGWASA that integrates consumer preferences with RERs in a smart home 
environment provides trade-off solutions between cost and user satisfaction.

(b) Different scenarios generated through the approach are analyzed to effectively utilize 
the RERs for improved reliability. For the aforementioned purpose, a rule-based EMS 
for a smart home, which integrates RERs with the intelligent scheduling of appliances, 
is also proposed.

(c) To validate the improved efficacy of the proposed MGWASA for versatility and 
universal applicability, a comparative analysis with the binary non-dominated sorting 
genetic algorithm-2 (NSGAII), multi-objective binary particle swarm optimization 
algorithm (MOBPSO), Multi-objective artificial bee colony (MOABC), and multi­
objective evolutionary algorithm (MOEA), is also provided.
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Table 1. State of the art related to DSM.

Cost Function Integration Lim itations

S.No M odel
Algorithm s

(Techniques) Electricity
Cost

PAR
UC or 

Consum er 
Satisfaction

Single
Objective

M ulti­
Objective

ESS RER
Scheduling

Home
Appliances

Selling
Capability

Utilizing  
M ain Grid

Supporting
Selling

Operation

1 RTP m odel [19] PSO, BPSO f X f X f f f f f f

2

faCheck

Time-varying prices M odel [20] Stochastic 
optim ization approach X X f X f f f f f

3 Price-based model [21] MILP f X f X f f f f f f f

4 Price-based M odel [22 ] MILP f f f X f X X f X f X

5 TOU tariff M odel [23] Preference-based load 
scheduling

f f X f X f f f X f X

6 Incentive based m odel [24]
Data A nalytic 

approach f f f f X X X f X f X

7 Incentive based m odel [25] BILP optim ization f X f f X X X f X f X

8 Real-tim e electricity pricing [26] Sm art energy 
Coordination scheme

f f X X f f f f f f f

9 Price-based M odel M OGW O f f f X f X X f X f X

10 Proposed Approach (TOU) MGWASA f X f X f f f f f f f
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The rest of the article is structured as follows: Section 2 presents the architecture of the 
proposed test case system. Section 3 describes the modeling and parameters of different 
smart home units, including PV, ESS, preference, and satisfaction. Section 4 illustrates the 
climatological conditions and energy demand of the study location. Section 5 presents the 
proposed EMS and its modes of operation. Section 6 introduces the proposed MGWASA- 
based intelligent EMS and formulates the problem of the case study. Section 7 presents, 
discusses, and analyzes the simulation results. The conclusion drawn from the work and 
outlook is provided in Section 8 .

2. The Architecture of the Proposed Test Case System
The decision to switch on or off a device is based on factors like supplied energy from 

the utility grid and PV, the status of the batteries, and consumer preferences. In this work, 
the pricing scheme considers a time of use (TOU) pricing policy used in Quetta, Pakistan. 
An overview of SHEMS architecture is shown in Figure 1 to provide a holistic picture. 
SHEMS consists of a central controller with intelligent EMS and a scheduler. Central 
controller with EMS takes other parameters like available PV energy and level of stored 
energy in the ESS and regulates them according to the load demand of the consumer. On 
the other hand, the scheduler takes the estimated values of PV energy and SOC of the ESS 
and provides day a head optimal scheduling pattern of appliances. The load consists of 
the appliances divided into a section of the small home, as shown in Figure 1. Appliances 
are scheduled according to the algorithms executed via the scheduler, thus making it the 
most vital module of the SHEMS. The scheduler utilizes a user interface to acquire the 
day-ahead energy usage demand for individual time slots from the smart home consumer. 
Moreover, the appliance manager uses this schedule to control the switching activities 
of the appliances via the home area network (HAN). The HAN is an in-home private 
network that interconnects appliances with the appliance manager using wireless or/and 
wired technologies.

Figure 1. General configuration of the proposed SHEMS.

3. Mathematical Modeling and Parameters of the Smart Home Units
To design a smart home environment, modeling is divided into two sections: (1) mod­

eling of RERs, which includes PV and ESS, and (2) modeling of the consumer preference- 
enabled system. Due to the intermittent nature of RERs, it is necessary to understand the 
behavioral characteristics in actual meteorological conditions of the relevant locality by 
modeling, numerical simulation, and evaluating the PV system. The mathematical model
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of PV from [27] is considered in this paper. The technical and economical specifications 
and the product models of elements are also reported.

3.1. PV Module Modeling

The output power of the PV module (POW pv) is mainly dependent on the sun's 
irradiance and ambient temperature (Tamb). For a time interval t, the POW pv can be 
calculated as [11]:

PO W pv =  N pv x P?v ( g /Gref''j 1 +  Tcof (T c -  Tref''j (1)

where N pv, P p , G, Gref, Tcof, Tc, and Tref represent the estimated number of required PV 
modules at each iteration of the sizing process [27], the rated electrical power capacity of the 
PV module (W), the irradiance of the sun (W/m2), the value of solar irradiance at reference 
conditions taken as 1000 (W/m2), temperature coefficient of PV module (generally rated as 
- 3 .7  x 10-3  °C -1 for mono- and poly-crystalline silicon [28]), the cell temperature, and 
the temperature at benchmark performance testing conditions (usually taken as 25 ° C), 
respectively. The cell temperature Tc can be calculated by [29]:

Tc =  Tamb +  ( ( ( Tnoct -  20) /800) x G) (2)

where Tnoct symbolizes a crucial PV module performance parameter termed nominal 
operating cell temperature (°C) and is defined as the temperature achieved by open- 
circuited cells in a module when subjected to specific conditions. The PV manufacturers 
generally provide this value as part of their product specification data. In this work, a 
36-cell monocrystalline solar module (STP275S-20/Wem) with a power rating of 275 W is 
taken into consideration [28]. Table 2 provides the economic and technical aspects of the 
considered PV module.

Table 2. Economic and technical characteristics of RER components.

Parameters (Units) Values

1. PV Module (STP275S-20/Wem)
Installation charges ($/Wp ) 0.5

Maintenance charges ($/year) 20
Replacement charges ($/year) 0

Regulator charges ($) 1500
Rated power at STC (W) 275

Module efficacy (%) 16.9
Temperature coefficient Tcof (1/° C) -3 .7  x 10- 3

Nominal operating cell temperature Tnoct (°C) 45 ±  2
Lifetime (years) 25

2. Battery module
Installation charges ($/kW h) 180
Maintenance charges ($/year) 5
Replacement charges ($/year) 180

O&M charges ($/year) 5
Nominal voltage (V) 12

Rated capacity (kW h) 1
Hourly self-discharge rate a  (%/hour) 0.007

Maximum SOC (%) 100
Minimum SOC (%) 30
Maximum DOD (%) 70

Lifetime (years) 5

3. Inverter
Installation charges ($) 2500

Efficiency (%) 92
Lifetime (years) 15



Sustainability 2023,15, 957 7 of 38

Table 2. Cont.

Parameters (Units) Values

4. Economic indices
Inflation rate (%) 3
Project life (years) 25

3.2. ESS Module Modeling

A battery bank is necessary to store the energy generated by intermittently available 
solar energy. Therefore, it is also required to know the state of charge (SOC) of the battery 
bank [30]. W hen the power generation from the PV module (POW pv) is more than the 
consumption, the battery is considered to be in the charging mode. For instance t, the 
amount of charge, can be calculated by the following equation:

EbT (t) — Ebt (t -  1)-(1 -  c ) + (  PO W pv mnv -  P̂ ]  -VET (3)
V înv )

where a, y BT, and yinv represent the self-discharge percentage (taken as 0.007%/h [31]), 
battery charging/discharging efficacy (rated as 85% for either case [32]), and efficiency of 
the inverter, respectively. For the case where power generation from the PV module is 
insufficient to meet the demand, the battery is considered to be in discharging mode, and 
the corresponding amount of charge is calculated as:

Eb t (t) — Eb t (t -  1)-(1 -  a ) + ( ^  -  POW?V-^nV) /V et (4)
V tfinv J

The battery can meet the load demand with the proviso that SO C(t) is more than 
the minimum SOC (SOC). Likewise, surplus PV power generation can be used to charge 
the battery module to the point where SO C(t) is equal to the maximum SOC (SOC). The 
load demand along with the preferred autonomy day (AD) are taken into consideration to 
estimate the battery capacity (Bcap) in Ampere-hour (Ah) [33]:

AD ■ El 
Vinv x Vbt x DOD x  Vs

where El , Vs, and DOD  denote mean daily energy demand, system voltage (assumed as 
48 V), and battery's depth of discharge, representing the battery percentage that has been 
discharged with respect to battery capacity, respectively. Equation (6) estimates the number 
of batteries connected in series (nBTss), while Table 2 provides the specifications of the 
battery module under consideration.

nBTss — ^ Ca\  (6)
Max_Ps

where M ax_Ps denotes the maximum count of parallel strings. The number of batteries in 
the individual series string (nBT'ss) is calculated by:

nBT'ss — v  (7)

where Vb, denotes the voltage of the battery bank. The desired aggregate quantity of 
batteries is computed by:

TnB — nBTss x nBT'ss (8)

The smart home utilizes deep-cycle lead-acid batteries based on ESS, which are widely 
employed owing to their affordability, wide availability, modest performance, and life 
cycle properties [34].

Vb
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3.3. Consumer Preference and Comfort-Enabled System Modeling

A smart home typically consists of various electrical and electronic devices installed 
in different residence sections. The smart home under consideration contains six portions, 
each having different smart devices which provide varying satisfaction levels to the con­
sumer during the course of the day. Furthermore, the power required by each device also 
varies according to its functionality. Table 3 lists the type and section of these devices, their 
quantity, and energy ratings. The evaluation of the cost of use is based on the energy tariff 
acquired from the energy provider in Quetta, Pakistan.

Table 3. Load cost table of a typical electricity consumer.

No. Sections Appliances Quantity Power Unit Rating 
(kW)

Total Power Unit 
Rating (kW)

1
2 Laundry room Washing machine 

Lightening
1
1

0.7
0.03

0.7
0.06

3
4
5
6

Dining room
Lightening 
LCD TV 

Computer 
AC

3
1
1
1

0.02
0.15
0.1
1.2

0.1
0.15
0.1
1.2

7 Bathroom Lightening 1 0.02 0.04
8
9 Kitchen

Juicer 
Microwave oven

1
1

0.4
1.5

0.4
1.5

10
11

Refrigerator
Lightening

1
3

0.4
0.03

0.4
0.09

12
13
14 Master bedroom

Laptop
Lightening

AC

1
3
1

0.06
0.02
1.2

0.06
0.1
1.2

15 Mobile 1 0.006 0.006
16 Security room CCTV Camera 3 0.009 0.027
17 Lightening 2 0.02 0.16

Consumers usually allocate a limited budget for their electricity demands. Therefore, 
a scheduling algorithm's primary goal is to regulate appliance usage patterns to achieve 
the highest consumer satisfaction level with a minimum budget. Consumer satisfaction 
provides a comparative view of the consumer's expectations versus their perceived experi­
ence. Consumer satisfaction tends to get higher when the scheduling algorithm schedules 
the appliances closer to consumer preferences.

Consumers can assign different preference values to individual devices for each 
hour of the day. To achieve the goals of this work, the following assumptions regarding 
preference are made:

(1) Preference is a quantifiable value, and its numerical analysis is possible.
(2) Preference is fuzzy in nature, implying that it has a progressive transition among the 

lowest (pr = 0) and highest (pr = 1) preference values.
(3) Preference is both comparable and relatable. Two modes of relativities are defined: 

time-based relativity and device-based relativity.

In time-based relativity, the device's preferences, which are assigned for different 
time periods of the day, vary according to time. For instance, Table 4 provides time-based 
preferences, ranging from 0 to 1, which are indexed row-wise (viz. horizontally) by the 
consumer. On the other hand, in device-based relativity Table 5, the consumer indexes the 
data column-wise (viz. vertically) for hourly time slots over 24 h. This consumer preference 
table compares a particular device's preference to other devices for a specific hour. Consumer 
preference tables (Tables 4 and 5) were acquired from middle-class residents living in Quetta, 
Pakistan. For example, Tables 4 and 5 show the consumer preferences for the summer season, 
where consumers require excessive air conditioning compared to other seasons. Consumer 
preference for other seasons was also acquired and considered for this work.
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During the pandemic, more people are forced or opting for home office, resulting 
in commutation exclusion. Consequently, morning residential energy demand peaks 
have been postponed, and residential energy usage at noon has increased by 23% to 
30% [29]. This changed daily routine is also reflected in the consumer preference tables 
(Tables 4 and 5).

Time- and device-based preferences are taken into account to determine the absolute 
satisfaction, V s(k) (T )' and is calculated by [35]:

M's(k) (Ti) =
(pT (Ti )) 2 +  (pD (Ti )) V i =  [1,24] (9)

where time and device-based preferences of appliance k at instance i are represented by 
Pt (T ) ' and 'pD (T )', respectively. Table 6 shows the absolute consumer satisfaction table 
derived from time and device-based preferences for summer. Figure 2 illustrates the 
seasonal absolute satisfaction levels.

10 12 14 16 18
Time [hours]

Figure 2. Daily absolute satisfaction values for the four seasons of the year.

2

2
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Table 4. Time-based consumer preference table for summer.

Sections Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W.Machine 0 0 0 0 0.2 0.8 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Laundry room Lighting 0 0 0 0.1 0.2 1 1 0 0 0 0.1 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0 0

Lighting 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1 0 0 0.1 0.1 0.5 1 1 0.9 0.5 0.2
T * * LCD TV 0 0 0 0 0 0.4 0.3 0.1 0 0 0.1 0.2 0.1 0.1 0 0 0.2 0.4 0.7 0.8 1 1 0.7 0.5Living room Computer 0 0 0 0 0.1 0.5 0.8 1 1 1 1 0.8 0.8 0.8 1 1 0.9 0.5 0.1 0 0 0 0 0

AC 0 0 0 0 0.1 0.5 0.8 1 1 1 0.5 0.5 0.5 0.5 0 0 0.9 0.5 0.5 0.8 1 0.8 0.9 0.2

Bathroom Lighting 0 0 0 0 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0.5 0.9 1 0.8 0.5 0.3

Juicer 0 0 0 0 0.1 0.2 1 0.8 0.3 0 0.2 1 0.8 0.3 0 0 0 0.1 0.2 1 0.8 0.3 0 0
Oven 0 0 0 0 0.1 0.3 0.9 1 0.5 0 0.3 0.9 1 0.5 0 0 0 0.2 0.2 1 0.8 0.3 0 0

Kitchen Refrigerator 0.5 0.5 0.5 0.5 0.5 0.5 1 0.7 0.4 0 0.5 1 0.7 0.4 0 0 0.1 0.9 1 0.5 0.3 0.2 0.1 0.1
Lighting 0 0 0 0 0.2 0.1 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0 0 0.5 1 0.8 0.6 0.2 0

Laptop 0 0 0 0 0.1 0.3 0.1 0 0 0 0.1 0.2 0.2 0.1 0 0 0 0.1 0.5 0.5 0.8 1 0.8 0.7
Lighting 0 0 0 0 0.5 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.5 0.8 0.9 1 0.2

M.bedroom AC 1 1 1 1 0.8 0.5 0.1 0 0 0 0 0 0 0 0 0 0 0 0.1 0.5 0.8 0.9 1 1
M.Charger 1 0.7 0.5 0.4 0.3 0.3 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.8

CCTV 1 1 1 0.9 0.8 0.8 0.5 0.2 0 0 0 0 0 0 0 0 0 0.2 0.5 0.7 0.8 1 1 1Security room Lighting 1 1 1 0.9 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.7 0.8 1 1 1

Table 5. Device-based consumer preference table for summer.

Sections Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W.Machine 0 0 0 0 0.2 1 0.5 0.1 0 0 0 0.1 0 0 0 0 0 0.1 0.4 0.8 0.5 0.1 0 0Laundry room Lighting 0 0 0 0.1 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.4 0 0

Lighting 0 0 0 0 0.1 0.3 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 0.9 0.7 0.2
T * * LCD TV 0 0 0 0 0 0 0.3 0.3 0 0 0.1 0.2 0.2 0.1 0 0 0.2 0.5 0.7 0.8 1 1 0.7 0.3Living room Computer 0 0 0 0 0.1 0.3 0.5 0.8 1 1 1 0.9 0.9 1 1 1 1 0.8 0.1 0 0 0 0 0

AC 0 0 0 0 0.1 0.3 0.8 1 1 1 1 0.9 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.5 0.8 0.9 0.5 0.2

Bathroom Lighting 0.1 0.1 0.1 0.1 0.3 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.5 0.1 0.3 0.2 0.1

Juicer 0 0 0 0 0.2 0.5 1 0.1 0.1 0 0.2 0.8 1 0.1 0 0 0 0 0.5 1 0.2 0.1 0 0
Oven 0 0 0 0 0.3 0.6 1 0.1 0.1 0 0.2 0.8 1 0.1 0 0 0 0 0.6 1 0.2 0.1 0 0

Kitchen Refrigerator 0.5 0.5 0.5 0.3 0.3 0.6 0.4 0.1 0.1 0.1 0.2 0.3 0.5 0.4 0.1 0.1 0.1 0.9 1 1 1 1 1 0
Lighting 0.5 0 0 0.1 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0.3 0.5 1 1 0 0
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Table 5. Cont.

Sections Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Laptop 0.1 0.2 0 0 0 0.4 0.2 0.1 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 1 0.8 0.7

M.bedroom Lighting 0.2 0.1 0.1 0.2 0.5 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.3 0.3 1 0.4
AC 1 0.8 1 0.8 1 0.5 0.1 0 0 0 0 0 0 0 0 0 0 0 0.1 0.5 0.8 0.9 1 1
Mobile 1 0.9 0.7 0.3 0.3 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0.1 0.5 0.5 0.6 0.2 0.9

CCTV 1 1 1 1 1 0.8 0.1 0.2 0 0 0 0 0 0 0 0 0 0.2 0.1 0.3 0.5 0.5 0.8 1Security room Lighting 1 1 1 1 0.5 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0.4 0.5 0.7 1

Table 6. Absolute consumer satisfaction table derived from consumer's time and device-based preferences for summer.

Sections Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W.Machine 0.0 0.0 0.0 0.0 0.2 0.9 0.5 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.6 0.4 0.1 0.0 0.0
Lighting 0.0 0.0 0.0 0.1 0.2 0.7 0.7 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.0

Lighting 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.8 1.0 0.9 0.6 0.2
T * * LCD TV 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.2 0.0 0.0 0.1 0.2 0.2 0.1 0.0 0.0 0.2 0.5 0.7 0.8 1.0 1.0 0.7 0.4

Computer 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.9 1.0 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0 0.7 0.1 0.0 0.0 0.0 0.0 0.0
AC 0.0 0.0 0.0 0.0 0.1 0.4 0.8 1.0 1.0 1.0 0.8 0.7 0.7 0.7 0.6 0.6 0.9 0.7 0.7 0.7 0.9 0.9 0.7 0.2

Bathroom Lighting 0.1 0.1 0.1 0.1 0.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.7 0.6 0.4 0.2

Juicer 0.0 0.0 0.0 0.0 0.2 0.4 1.0 0.6 0.2 0.1 0.2 0.9 0.9 0.2 0.0 0.0 0.0 0.1 0.4 1.0 0.6 0.2 0.0 0.0
Oven 0.0 0.0 0.0 0.0 0.2 0.5 1.0 0.7 0.4 0.0 0.3 0.9 1.0 0.4 0.0 0.0 0.0 0.1 0.4 1.0 0.6 0.2 0.0 0.0

Kitchen Refrigerator 0.5 0.5 0.5 0.4 0.4 0.6 0.8 0.5 0.3 0.1 0.4 0.7 0.6 0.4 0.1 0.1 0.1 0.9 1.0 0.8 0.7 0.7 0.7 0.1
Lighting 0.4 0.0 0.0 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.4 0.8 0.9 0.8 0.1 0.0

Laptop 0.1 0.1 0.0 0.0 0.1 0.4 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.0 0.8 0.7
Lighting 0.1 0.1 0.1 0.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.6 0.7 1.0 0.3

M.bedroom AC 1.0 0.9 1.0 0.9 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 0.9 1.0 1.0
Mobile 1.0 0.8 0.6 0.4 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.4 0.5 0.4 0.9

c CCTV 1.0 1.0 1.0 1.0 0.9 0.8 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.5 0.7 0.8 0.9 1.0Security room Lighting 1.0 1.0 1.0 1.0 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.9 1.0
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4. Climatological Conditions and Energy Demand of the Study Location
To accurately design and evaluate the capabilities of the proposed algorithm, accurate 

climatological data is required to emulate real-world conditions while performing different 
calculations for this work. As far as this study is concerned, the actual climatological data 
for the year 2017 of Quetta, Pakistan, was used. This data was acquired from World Bank 
via ENERGYDATA.info [36]. Quetta city has GPS coordinates of 30° 10'59.7720" N and 
66°59'47.2272" E. This region has plenty of sunlight and low cloud cover throughout the 
year. The irradiance and temperature are measured using a solar station which records these 
values in 10 min time intervals throughout the year. The measured air temperature and 
solar irradiance of the selected location are shown in Figure 3 . This annual climatological 
data was used as input for the calculations performed in this study. Figure 3 also shows the 
annual residential load at the study location.

(c)

Figure 3. Graphs showing the distribution of annual (a) solar irradiance, (b) air temperature, and 
(c) residential load at Quetta, Pakistan.

5. Energy Management System for Integration of RER and ESS
The intermittency (seasonal/diurnal) and volatility of renewables exclude the possi­

bility of exclusively relying on RERs for catering to the energy demand, which adds to the 
complexity of designing an EMS. The EMS optimally executes different modes of energy 
flow in light of consumer-assigned satisfaction levels. Pi, POW pv, SOC, SOC, and SOC 
form the basis for the definition of primary strategies. The algorithm uses sub-system 
models defined in Section 3 to calculate the energy production from RERs by considering 
the initial SOC value and regional meteorological data. Subsequently, the MGWASA-based 
algorithm determines the optimum switching pattern based on this data and consumer 
input (consumer satisfaction). Our work defines the following four primary operation 
modes to implement the proposed SHEMS:



Sustainability 2023,15, 957 13 of 38

• Mode I: Provided adequate solar energy is available to cater to the energy demand, 
surplus energy is used to charge the battery bank, given that the battery is not 
fully charged.

• Mode II: The surplus solar energy is exported to the grid as long as the energy pro­
duced by the PV can fulfill the residential load demand and the battery bank is 
fully charged.

• Mode III: In the case where the energy produced by the solar cannot meet the load 
demand, the energy available in the battery bank is utilized to cater to the remaining 
load demand.

• Mode IV: When the load demand is more than the energy provided by PV and battery 
bank, then the remaining load demand is catered by the energy imported from the grid.

The flowchart of the implemented algorithm for SHEMS, involving the operation
modes defined above, is drawn in Figure 4 .

Return

Figure 4. The flowchart of the implemented EMS algorithm describes various modes of operation.

The EMS (Section 5) and preference-enabled system of the smart home (Section 3.3) 
is combined with the application of real-time data in the MGWASA to obtain a set of 
appliance scheduling solutions. The detail of the proposed algorithm is provided in the 
next section.



Sustainability 2023,15, 957 14 of 38

6. Proposed Multi-Criteria Grey Wolf Accretive Satisfaction Algorithm (MGWASA)
Even though the GWO algorithm is relatively new, its shortcomings have limited 

its usage to single optimization problems. Recently, a few variants of GW O have been 
introduced to deal with multi-objective problems [37]. It is also not feasible to directly 
employ the multi-objective GW O algorithm to handle multi-objective feature selection 
or load scheduling problems because it was originally designed to handle continuous 
optimization tasks. However, with the addition of the squashing activation function, a 
binary MGW O variant was proposed to tackle the above-mentioned tasks [38,39]. This 
binary MGW O is combined with the preference-based smart home model and EMS to 
develop an MGWASA. The binary population represents the scheduling patterns of the 
appliances. The equation formulated for updating the position is given as:

xt+i =  f  1 i f  squash ^x1+x32+x3j  > rand ^
d \ 0 otherwise

where x"+1 represents the position amended according to binary, d represents dimension, t
is the iteration, and rand  indicates a random number extracted from distribution uniform £ 
[1,0]. While x1, x2, and x3 denote positions of alpha, beta, and gamma wolves, respectively 
squash(a), x1, x2, and x3 are given as:

1
squash(a) =  , , „_10(x_05) (11)

xd =  < r a ' (12)

1 +  e-10(x- 0.5)

i  +  b s tep fj >

otherwise

:dp +  bstepj^j >

otherwise

Y +  bstepYj >

otherwise

xd = j  1 VP  ' (13)

x3" =  1 (14)

d 1 i f  cstepa o Y > rand
bs“ p ^ = {  0  '  (15)

where cstepd  ̂Y represents continuous step size value and is expressed as

1
cstepa,o,7 =  1 +  e- 10(A1 D ^ - a 5) (16)

Figure 5 summarizes the process of the proposed MGWASA. Time and device-based 
preference tables, appliance power rating tables, irradiance, and temperature data are taken 
as input to the algorithm. Irradiance and temperature data are used to estimate the PV 
power production, whereas time and device-based preference tables form the basis for the 
satisfaction table. All of these values are further required to formulate the multi-criteria 
objective function.
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Figure 5. Flowchart of the proposed MGWASA.

6.1. Multi-Objective Problem Formulation ofD SM

The proposed multi-criteria device scheduling in the smart home consists of formulat­
ing an optimization problem that constitutes the objective function, constraints, scheduling 
pattern, and state-of-the-art meta-heuristic optimization algorithm described in the subse­
quent sub-section.

6.1.1. Multi-Criteria Objective Function

Three main objective functions are of great importance in the design of a smart home, 
namely, the economic aspect objective (cost), the technical aspect objective (reliability), and 
the comfort aspect (consumer satisfaction). These objectives conflict with each other; for 
example, cost increases exponentially by increasing reliability and consumer satisfaction. 
Similarly, by decreasing the reliability and comfort level, cost decreases. Intrinsically, sets of 
non-dominated objective functions known as the Pareto front are preferred to be calculated.
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The cost of energy which covers the financial aspect, and consumer satisfaction which 
covers the comfort aspect, are the two objective functions considered for minimization. 
Whereas the reliability of the system is improved by the integration of RERs into the system. 
The mathematical formulation of this constrained optimization problem is described in 
the following.

Cost per Unit Satisfaction Index (Cs index($))

Energy cost is related to the satisfaction level of the consumer. Csj ndex($) is the 
measure of total consumer expenditure (TUexp) related to the derived consumer satisfaction 
(H ) as shown in Equation (19)). TUexp represents the total consumer energy cost, which 
is the product of total energy consumption (TEC) and energy tariff when the load is only 
powered by the utility grid, while the TUexp is changed when RER is integrated into the 
system. The cost of PV, battery, and inverter is also added in the TUexp along with the cost 
of the load run by the utility grid as shown in Equation (11)). The contribution of the utility 
grid is based on the available amount of PV energy and SOC set point. TEC  is computed 
by summation of the total operating time (TOT) of all the appliances with the specified 
power rating (PR).

Ob]'(Cs_index ($ )) =  min (Cs_index ($ ) (17)

TUexp ($)
Csindex ($) =  — e ^  (18)H-s

=  TEC X UT or (19)
T Uexp GridE x UT +  Cpv +  Cess ( )

Cpv =  (Cwp x PCXSNrV  > +  Creg +  Compv x N PV (20)
LSPV

c  _  CkWB X TBC  , c  , Cinv fr-,^
Cess = ---- j~c-----------+ Combat +  Y c—  ( )

l s BAT LSinv
Z

TEC =  E  (TOTn X TPRn) (22)
n=A

where, Cwp, Pc , N pv, Creg , Compv, and LS represent cost per unit watt, panel capacity, 
number of panels, regulator cost, yearly PV O&M cost, and lifespan of the module. The yearly
cost of the battery is calculated in Equation (21) where CkWB, TBC, Combat and LS, Q nv
represents the cost per unit kilo watt, total battery capacity, operational and maintenance 
cost, the lifespan of the module, and inverter cost.

Consumer Satisfaction or Percentage Satisfaction

The energy cost is generally directly proportional to the consumer's comfort or satis­
faction level. However, a clear relationship between consumer satisfaction and cost must 
be established. For this purpose, the satisfaction level is quantified by the consum er's 
time and device-based preferences. A mathematical model is created that relates consumer 
satisfaction with energy cost. The second objective of the problem is to maximize consumer 
satisfaction; the formulation of consumer satisfaction is given in Equation (24).

Obj(Hs ) =  max (^s) (23)

M *k)M  =  V  (P l (Ti)>2 +  (P ? (Ti)>2 (24)

24 Z
Sdesired =  E E  Hs(i)(Th) (25)

h=1 i=A

%S — Sachieved /Sdesired (26)
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6.1.2. Constraints

Constraints related to the optimization of the objective function are as follows:

I. Constraint of idle load

If interval [ fc ,n ] does not include t, then the scheduling vector si (t), which represents 
the status of load in the tth scheduling interval must be zero.

sl (t) =  0, t <  fcl Vl e  SL  (27)

sl (t) =  0, t >  n  Vl e  SL. (28)

II. Constraint related to the working of the battery

A battery always exhibits a unique operating modality, defined as

Bc ( t ) +  B f (t) +  Bd (t) =  1 (29)

where Bc(t), B f (t), and Bd(t) represent the charging, floating, and discharging modes of
operation of the battery for the interval t, respectively.

III. Constraints related to battery boundaries

The battery manufacturer defines certain maximum and minimum boundaries for 
battery parameters, i.e., charging and discharging power and status of the charge. These 
constraints are described as

SOC < SOC < SOC (30)

PBCmin <  PBC(t) <  PBC max (31)

PBDmin < PBD(t) <  PBDmax (32)

where PBC(t) and PBD (t) denote the battery power while charging and discharging, re­
spectively. The maximum and minimum power limits for charging and discharging are
represented by PgCmax, PBCmin, and PgDmax, PBDmin, respectively.

IV. Constraint related to export of power

Excess power above a certain limit may cause instabilities in the utility grid. Therefore, 
at a certain time interval t, the exported power to the utility grid PE(t) must never exceed a 
limit PEmax(t) set by the energy provider.

PE(t) <  PEmax(t) (33)

Pe (t) =  Pr (t) -  ( P l ( t ) +  Pb (t)) (34)

where PR(t) represents the expected power from RER, while PB (t) is the net battery power 
for the interval t.

7. Simulation Results and Discussion
This part validates the devised EMS employing MGWASA via a case study comprising 

diverse residential loads, RER and ESS. Residential loads studied in this work are located 
in six different sections of the residence. Table 3 provides the electrical and economic 
parameters of these devices. The smart home utilizes deep-cycle lead-acid batteries based 
on ESS, which are widely employed owing to their affordability, wide availability, modest 
performance, and life cycle properties [34]. Technical specifications of the employed battery 
are tabulated in Table 2. A roof-mounted RER system comprising PV panels is taken into 
consideration in this work. The rated capacity of an individual PV panel is 0.275 kW. The 
electricity tariff data is taken from QESCO, the local energy provider in Quetta, Pakistan. 
The estimated energy production from the PV is based on the data acquired from a World 
Bank's financed weather monitoring station installed in Quetta region [36]. Furthermore, 
MATLAB® is employed to implement the MGWASA-based EMS. All the results were
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obtained by numerical simulations performed on a computing system having an Intel® 
Core™ i5-8250U CPU with 8.00 GB RAM.

Three cases are considered for simulation to verify the proposed scheduling mecha­
nism's efficiency. In the first case, it is assumed that the smart home does not contain RER 
and ESS. Therefore, MGWASA is applied to all smart home appliances powered entirely by 
the utility grid. On the other hand, the second case covers a smart home's full potential 
by integrating RER and ESS in the system alongside appliance scheduling by MGWASA. 
The third case also considered RER and ESS integration; however, the appliance switching 
pattern is taken directly from the consumer preference table without optimal appliance 
scheduling. For further validation, the performance of MGWASA for Case 1 and Case 2 is 
also compared with state-of-the-art optimization algorithms: NSGAII, MOBPSO, MOABC, 
and MOEA.

7.1. Size Optimization o fP V  and ESS in a Smart Home

Both ESS's PV modules and battery units require considerable investment. Several 
aspects of cost, such as investment net present cost, replacement cost, O&M cost, federal 
incentives, import/export of electricity, and cost related to power outages over the project's 
lifespan, must be considered in this regard. To efficiently utilize renewable resources and 
increase the proposed system's reliability, sizing is optimized using a genetic algorithm 
(GA), based on [40], against the annual load obtained from consumer preference. Time 
intervals of one hour are taken during the sizing process. Various technical and economic 
parameters of PV and battery units are given in Table 2 . The initial investment is capped at
10 k$, while 0.3 is taken as the PV energy factor.

Furthermore, 100 and 20 are the population size and generation count for the sizing 
problem, respectively. The optimal sizes of PV and ESS are 9.35 kW (34 PV panels) and
11 kWh, respectively. It is worth mentioning that these optimal sizes are calculated against 
the consumer preference-based load demand for the entire year.

7.2. Validation o f  the Load Scheduling and Energy Management by MGWASA

Before performing the optimization by MGWASA, the algorithm shown in Figure 5 was 
executed for an entire year, covering all four seasons, to validate its long-term robustness 
and resilience. In this regard, the minimum allowed SOC value of ESS is taken as 30% 
resulting in a DOD of 70%. The PV module employed here consists of an array of 34 panels, 
providing a rated power of 9.35 kW, while the ESS has a rated capacity of 11 kWh. Figures 6 
and 7 show the working mechanism of designed EM S for an entire year, as well as a few 
samples of each season, illustrating the switching and energy flow of and between different 
system components according to the load demand. Figure 7a shows that at the start of the 
day (00 h), the ESS (dotted blue line) is at its minimum allowable storage limit (SOC =  30%). 
Therefore, the load demand (black dash line) is catered to by importing the power from 
the utility grid (brown shaded area). However, this import gradually drops and eventually 
goes to zero once the power production from the PV (red-shaded area) starts. After a certain 
time, power production from PV is more than the load demand. In this case, the surplus 
energy is channeled toward the ESS for charging (the green-shaded area). At noon, the ESS 
is completely charged (SOC =  100%), and the surplus energy from PV is exported to the 
utility grid (grey-shaded area). In the evening, as the sun goes down, the power generation 
from PV is not sufficient to cater to the load demand. Therefore, the energy stored in ESS 
is used in synergy with PV power to meet the load demand. In the late hours of the day, 
when the charge of the ESS has depleted to its minimum allowable level (SOC =  30%), and 
there exists no PV power as well, the utility grid supplies all the required power. The next 
day starts similarly, taking the SOC values from the previous day and so on.
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Figure 6. EMS energy mix analysis for the entire year.

ooc/)
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Figure 7. EMS energy mix analysis for a day of (a) spring, (b) winter, (c) summer, and (d) autumn.

Additionally, a slight dip can be observed in the PV power graph in the afternoon. 
This dip is attributed to variations in climatological conditions, such as passing clouds, 
rain, etc. However, the absence of abrupt changes in the PV power curve implies that 
irradiance is not disturbed by sudden fluctuations in weather conditions. Nonetheless, it 
can be observed from Figure 7a-d  that the amount of daily PV power varies seasonally 
because of seasonal irradiance variations, e.g., PV power in summer is higher than in other 
seasons due to a higher irradiance value.
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The current research work further exploits the capability of a maiden MGWASA 
embedded with Pareto optimal front* to optimize the smart home load scheduling. MG­
WASA can simultaneously and independently optimize the objective function (Cs_index, 
% S), and perhaps the impact of variation in cost can only be realized by simultaneously 
considering both objectives. The multi-objective optimization problem is formed by a linear 
combination of two objectives expressed as follows:

M inim ize wF1 +  (1 — w )0 .PF.F2 (35)

Equation (35) has been applied to two conflicting nature objectives, F1 =  Cs_index and 
F2 =  %S. w in Equation (35) denotes a weighting factor randomly generated in the range 
of (0,1). Its value is set at zero and progressively increased in the step of 0.05 up to 1. 0  is a 
scaling factor chosen as 1000. The two objectives have different units in the multi-objective 
optimization problem; a penalty factor (PF) is considered to balance the objectives properly.

Figure 8 shows the considered utility grid tariff pricing scheme for each season. Tariff 
prices show seasonal variations with increased prices in the evenings. This peak time 
variation is in accordance with the sunset timing of the case study location.

Figure 8. Tariff used for the simulation of MGWASA.

Six different test cases, each corresponding to 17 appliances in a smart home, are 
considered to demonstrate the proposed approach. In Case 1, MGWASA is applied only on 
the appliances for optimal scheduling without taking advantage of EMS. While in Case 2, 
EMS is also integrated into optimal scheduling to see the impact of renewable resources 
and energy storage on the cost and consumer satisfaction. Case 3 and Case 4 are related 
to the ideal load directly extracted from consumer satisfaction. Initially, the ideal load is 
run by the utility grid then the effect of EMS is considered. Lastly, Case 5 and Case 6 are 
based on the random load, also called base load profile, without and with EMS, respectively. 
MGWASA runs for five iterations with a population size of 1000, and the solution obtained 
for the smart home offers scheduling load and RER sequencing. The results offer a set 
of optimum trade-off solutions (non-dominated solutions) in the Pareto front, giving the 
decision-makers several options. The results of the above-stated cases are shown and 
discussed in the subsequent sub-sections.
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7.2.1. Case 1: Appliance Scheduling Using MGWASA without Integration of EMS

In this case, the load scheduling problem is solved by employing MGWASA without 
integrating RER and ESS. Figure 9 shows the process of grey wolves hunting for their 
prey. In every iteration, 1000 grey wolves are approaching the best possible Pareto-front 
solutions and adding the best solutions in the archive shown with the red markers. In the 
shown example, MGWASA is tested for a day of the summer season. After meeting the 
termination criteria, which is the maximum number of iterations, MGWASA produces a 
final set of non-dominated solutions of scheduling patterns which gives the consumer a 
range of solutions to opt for according to the consumer budget. Non-dominated solutions 
of two objective functions are shown in Figure 10. The maximum obtained %S is 92.44% 
with the 0.056$ Csj ndex, and the minimum %S is 17% at the Csj ndex of 0.0121$. Cost can also 
be extracted from the graph of Csj ndex; approx. a 92.5% satisfaction level can be achieved by 
spending 4.9$ per day, as shown in Figure 10. A set of Pareto-fronts obtained by simulating 
load demand without RER and ESS using MGWASA are saved in the archive. In the next 
section, these solutions are compared with the case where RER and ESS are integrated with 
the system.

Figure 9. Four iterations of MGWASA with non-dominated solutions and grey wolf populations. 
(a) first iteration of MGWASA 1000 initial population evolve according to objective functions cost per 
unit satisfaction and percentage satisfaction between 0 to 100 and 0.01 to 0.1. (b) 2nd iteration Csindex 
reduced from 0.1 to 0.06 with the same satisfaction level from to 0 to 100. (c) in third iteration Csindex 
further reduced to 0.055. (d) where as in d non dominated solutions are remain with optimal Csindex.
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Figure 10. Relationship between (a) cost per unit satisfaction index and percentage satisfaction, and 
(b) daily energy cost and percentage satisfaction.

In Figure 11, fifty Pareto-front solutions saved in the archive, and the desired sat­
isfaction levels are presented with different colours. A few solutions are selected and 
shown on the right for a better understanding. The trend indicates that the satisfaction 
level decreases with the decreasing cost. It can be seen that the percentage satisfaction 
value of 92.42% at Csj ndex of ca. 0.05$ is the highest satisfaction value achieved during 
the optimization process. A median solution of 54% satisfaction with the Cs_index of 0.02$ 
provides a reasonable solution for consumers with a limited budget who cannot afford 
more costly scheduling patterns.

Figure 11. Obtained 50 Non-dominated solutions for summer without EMS.

7.2.2. Case 2: Appliance Scheduling Using MGWASA with Integration of EMS

In this case, the intelligent energy management scheme runs the load, including PV, 
ESS, and the utility grid.

The results of four iterations of MGWASA are shown in Figure 12, where it can be 
observed that the grey wolf population follows the best trade-off solutions between the cost 
per unit satisfaction index and percentage satisfaction. Integrating EMS in the optimization 
improves the satisfaction range from 13-90% to 86-96%, and the Cs in̂ ex range is reduced 
from 0.01-0.07 to 0.036-0.042, respectively. In the previous case, where EMS was not 
involved in the optimization process, 92.02% satisfaction was achieved against Csj ndex of 
0.05$ with daily energy cost of 4.9$, whereas in the second case, 95.55% of %S is achieved
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against Csj ndex of 0.041$ with a daily energy cost of 4.2$. Thus, showing an improvement 
of ca. 4% in %S while decreasing daily energy cost by ca. 17%.

Figure 12. Four iterations of MGWASA with non-dominated solutions and grey wolf populations 
with the integration of RER-ESS.

In this case, MGWASA Pareto-front consists of 36 solutions, as shown in Figure 13. 
Four random solutions are selected in this figure to compare the performance with the 
previous case. It can be observed that the highest percentage satisfaction value of 95.5% is 
achieved at the Csj ndex of 0.04$, implying that the satisfaction level is improved and the 
cost is decreased.

Figure 14 shows the Pareto optimal solutions saved in the archive after five iterations. 
In this case, 36 solutions are obtained at the end of the optimization. The satisfaction 
pattern for the whole day is also shown, and three solutions are compared with the desired 
value of consumer satisfaction. Minimum satisfaction of 88% is achieved at Csj ndex of 0.03$, 
whereas a satisfaction level of 71% was previously achieved at a much higher Csj ndex of 
0.05$. This shows a cost difference of almost 0.03$ per unit satisfaction; in simplified terms, 
a daily cost reduction of 3$ is achieved in the second case.
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Figure 13. Relationship between (a) cost per unit satisfaction index and percentage satisfaction, and 
(b) cost and percentage satisfaction with integrating RER-ESS.

Figure 14. Obtained 36 Non-dominated solutions for a single day of summer while utilizing EMS.
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7.2.3. Case 3: Ideal Load without Integration of EMS

The ideal load is extracted from the consumer satisfaction table. If the value of 
the satisfaction level is greater than zero, the device at that particular time slot will be 
considered in the ON state and vice versa. In Case 3, the ideal load is powered by the utility 
grid. Since the utility grid exclusively powers the user-preferred load demand without any 
optimization, 100% satisfaction is achieved at a staggering daily energy cost of 9.05$ with
Cs_index of 0.082$.

7.2.4. Case 4: Ideal Load with Integration of EMS

In this case, the ideal load is powered by a mixture of the utility grid, PV, and ESS 
using the proposed EMS. The resultant energy mix for an entire day is shown in Figure 15.

10

6

- 8 -------- i-------------- ‘-------------- 1-------------- ‘--------------  0
8740 8745 8750 8755 8760

Time,hours

Figure 15. EMS energy mix analysis against the daily load extracted from the desired satisfaction table.

The energy transitions between the sources are according to the rules defined in the 
EM S and can be explained similarly to Figure 7 . This case is simulated for the same day 
for which Case 1 and Case 2 were studied in detail. In this case, %S is 100% for the daily 
energy cost of 6.09$ with Csj ndex 0.06$. A decrease in daily energy cost from 9.05$ to 6.09$ 
indicates the significance of optimal scheduling and EMS integration.

7.2.5. Case 5: Base Load without Integration of EMS

Base load is also a random load, in which any device can be switched on or off at 
any time without considering consumer preference. In Case 5, only the utility grid is 
considered for catering to the base load demand, which resulted in a poor %S of 38% with 
a substantially high daily energy cost of 8.09$.

7.2.6. Case 6: Base Load with Integration of EMS

In Case 6, the base load, discussed in the previous section, is run by a combination of 
the utility grid and EMS, utilizing RERs and ESS. In this case, a %S of 42% is achieved at a 
daily energy cost of 4$. Although there is a trivial increase of 4% in %S compared to Case 5, 
the daily energy cost has decreased considerably, again showcasing the significance of EMS 
in decreasing the cost. Nonetheless, there is still a need for proper load scheduling with the 
help of optimization.

7.2.7. Comparative Analysis of All the Cases

Figure 16 shows the seasonal variation in the daily cost and %S achieved for all six 
cases discussed in previous sections.
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Figure 16. Annual comparative analysis of %satisfaction and daily energy cost for all the cases.

The summer season has a relatively higher daily cost, mainly due to air conditioning. 
In principle, the daily energy cost is considerably higher when the utility grid solely runs 
the load. Integration of EMS reduces the daily energy cost regardless of the load profile. 
Moreover, scheduling with MGWASA significantly improves the %S while reducing the 
average cost. Thus, MGWASA and EMS improve the system's performance in terms of 
daily energy cost and %S . Table 7 shows a comparative analysis of all the cases in daily 
energy cost and %S for a single day.
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Table 7. Comparative analysis of all the cases with respect to daily energy cost and %S for a single day.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
MGWASA Ideal Load Base Load

W/o EMS With EMS W/o EMS With EMS W/o EMS With EMS
Daily energy cost ($) 4.99 4.25 9.05 6.02 8.09 4

%S 92.44 95.54 100 100 38 42

7.3. Comparative Analysis with the State-of-the-Art Algorithms

Figure 17 compares MGWASA with the other state-of-the-art multi-objective algo­
rithms, NSGAII, MOBPSO, MOABC, and MOEA. The simulation showed that the proposed 
technique significantly improved consumer satisfaction with a minimum cost per unit sat­
isfaction compared to other optimization algorithms. The highest achievable percentage 
satisfaction value using MGWASA, NSGAII, MOBPSO, MOABC, and MOEA is 97%, 95%, 
90%, 92%, and 94%, respectively, against the optimum Csj ndex of 0.049$, 0.052$, 0.048$, 
0.0485$, and 0.05$, respectively. Hence, it can be concluded that in both objective functions, 
the highest optimum value is achieved by MGWASA. If the minimum satisfaction value 
is compared among all the algorithms, MGWASA provides 77% satisfaction, whereas 
NSGAII, MOBPSO, MOABC, and MOEA provide 66%, 63%, 72%, and 73% satisfaction, 
respectively. In terms of minimum Cs_index, MGWASA gives 0.335$, while 0.035$, 0.037$, 
0.033$, and 0.0335$ are the minimum optimum Csj ndex solutions obtained by NSGAII, 
MOBPSO, MOABC, and MOEA, respectively. Thus, the proposed advanced MGWASA 
outperformed all the other state-of-the-art algorithms.
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Figure 17. Comparative analysis of MGWASA, NSGAII, MOBPSO, MOABC, and MOEA.

To further investigate the performance of the proposed MGWASA, the output of the 
proposed algorithms is also compared for different cases (a) in the absence of RER, (b) in the 
presence of RER, and (c) when only the utility grid supplies the power to the un-optimized 
loads. With efficient utilization of EMS by MGWASA, approximately 93% satisfaction is 
achieved at the Cs_index of 0.049$. Whereas, when the loads are powered solely by the utility 
grid, the consumer satisfaction level decreases to 82% for nearly the same Cs_index value.
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Moreover, in the Case 3, without optimization and EMS, 100% satisfaction is achieved but 
at a considerably higher Csj ndex of 0.06$, as shown in Figure 18.

Figure 18. Comparison of MGWASA, percentage satisfaction, and cost per unit satisfaction index for 
three test cases.

7.4. Energy Flow and Balance Analysis

The impact of various seasons and scheduling cases on PV energy production and 
surplus energy is shown in Figure 19. The surplus energy refers to the PV energy remaining 
after satisfying the load demand and battery charging at a time interval t, which is exported 
to the utility grid. It is evident from Figure 19 that the highest amount of PV energy is 
produced in the summer season due to the larger value of solar irradiance and longer 
durations of daily sunshine. On the other hand, the winter season has shorter days and 
smaller irradiance values, resulting in a relatively low amount of PV energy production. To 
be exact, 37% less PV energy is produced in winter compared to summer. It can also be 
observed that the surplus PV energy (grid export) corresponds to the amount of PV energy 
production in the respective season. However, in the optimal case, overall surplus PV 
energy is comparatively low due to an efficient load scheduling by the proposed algorithm. 
Furthermore, the results indicate that although summer has more PV energy production 
than the spring season, the amount of respective surplus energy is not in accordance with 
the production. This is attributed to the high energy demand during the summer season. 
Such analysis can also be performed for the project's lifetime by adjusting the model's 
input parameters.

A study was also conducted on the system's annual PV energy utilization. Figure 20 
shows how the PV energy contributes in different ways, for three cases, inside the system. 
In principle, there are four possible ways the PV energy is utilized: (1) PV energy is 
directly consumed by the load, (2) surplus PV energy is used to charge the batteries, (3) the 
remaining PV energy from (1) and (2) is exported to the utility grid provided that PEL is 
not reached, and (4) any surplus energy above PEL is dumped. The most cost-effective 
utilization of PV energy is its direct use for powering residential loads. Therefore, an 
efficient scheduling algorithm aims to schedule the maximum residential load during the 
PV production hours. It can be seen in Figure 20 that 41% of the produced PV energy is 
utilized for directly powering the loads in the optimal case. On the other hand, other cases 
do not take maximum advantage of the PV energy and only use 26% to 30% of the produced
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PV energy. However, there is no significant difference regarding the PV energy contribution 
in charging the batteries. The part of the PV energy unused by the loads and batteries 
is exported to the utility grid. This is a less preferred way of PV energy usage because 
the export tariff of the utility grid is generally cheaper. The optimal case substantially 
reduces the energy export to the utility grid compared to other cases, ensuring the effective 
utilization of PV energy. In base and ideal cases, more than 50% of the produced PV energy 
is exported to the utility grid on a cheaper tariff, which is inefficient utilization of the RERs. 
Moreover, in the base case, 1% of the PV energy is dumped, the least preferred utilization 
of the PV energy.
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Figure 19. Seasonal PV energy production and impact of scheduling cases on the export of surplus 
PV energy to the utility grid.
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Figure 20. Analysis of PV energy utilization for different cases.

An analytical comparison of annual energy exported to and imported from the utility 
grid was also carried out for three different scheduling cases, as depicted in Figure 21. The 
results indicate that a relatively higher amount of energy is exported and imported in the 
base case, followed by ideal and optimal cases. In the optimal case, the system dependency 
on costly utility grid energy is minimum. Both base and ideal cases, though, export a
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comparatively larger amount of energy to the utility grid; it is tariffed at a much lower 
price, making it less cost-effective. It can also be noted that the base case exhibits the worst 
energy import-export balance.
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Figure 21. Comparative analysis of energy export/import to/from the utility grid for three differ­
ent cases.

An efficient scheduling algorithm aims to cater majority of its residential load using 
domestic resources while reducing the energy import from the utility grid. Figure 22 shows 
the percentage contributions of different energy sources to meet the annual energy demand 
for three cases. The analysis shown in Figure 22 highlights the efficacy of the proposed 
scheduling algorithm. It can be noticed that approximately 69% of residential load demand 
is catered by PV energy and the batteries for optimally scheduled loads. On the other hand, 
ideal and base cases rely significantly on the utility grid and fulfill only 59% and 52% of 
their energy requirements from domestic resources.

a From ESS ■ From PV s  From Grid

0% 20% 40% 60% 80% 100%

Load [%]
Figure 22. Analysis of different energy contributions in fulfillment of annual energy demand for 
three scheduling cases.

Based on Figures 20- 22, a comprehensive energy balance analysis for the proposed 
system with optimal scheduling is illustrated in Figure 23.
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Figure 23. Energy flow analysis in the proposed system with optimal scheduling.

7.5. Sensitivity Analysis
7.5.1. Impact of PV Energy Production Capacity

PV energy serves as the alternative energy source for the smart home, which makes 
its production capacity a vital parameter. This section analyzes the impact of PV capacity 
variation on the overall system. Such analysis enables the designer to select the appropriate 
PV capacity in accordance with individual requirements. The sensitivity analysis was 
performed by varying the number of PV panels from 2 to 70. The optimal scheduling 
values with maximum satisfaction level obtained in Case 2 MGWASA for the whole year 
are considered. Each PV panel has a power rating of 275 W  (Table 2) . The obtained 
sensitivity curves are shown in Figure 24. It can be seen that the increase in the number of 
PV panels, to a certain level, leads to a reduction in annual energy cost because the load 
demand is increasingly met by cheaper PV energy instead of the costly utility grid, and the 
surplus PV energy is either used to charge the batteries or exported to the grid. However, 
after a certain limit, a further increase in the PV panel count is counterproductive because 
the surplus PV energy is more than the PEL of the utility grid and an increasing amount 
of PV energy has to be dumped. The optimal number of PV panels obtained using GA 
(Section 7.1) against the respective annual energy cost and the amount of export/dump 
energies are indicated in Figure 24.

Figure 24. Sensitivity analysis: impact of PV production capacity on the annual energy cost, export, 
and dump energies for maximum satisfaction value from Case 2 MGWASA.
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7.5.2. Impact of Battery Capacity

This section investigates the effect of battery capacity variation in smart homes. For 
this analysis, the maximum satisfaction level obtained in Case 2 MGWASA for the entire 
year is considered. The sensitivity adjustment of the battery capacity was made from 2 kW 
to 40 kW. The sensitivity curve obtained is shown in Figure 25. The right and left ordinates 
depict the annual energy cost ($), annual energy imported from the utility grid (kW), and 
annual battery charging (kW). It can be observed from Figure 25 that an increase in the 
battery capacity also increases the annual cost very rapidly. The annual battery charging 
also follows this trend. However, after a certain point (around 22 kW battery capacity), 
the pace of increment slows down. This happens due to the fact that the amount of PV 
energy production is fixed and approaching the limit of charging the battery even when 
the battery capacity is increasing. Similarly, energy import reduces with increasing battery 
capacity and reaches a trivial value near 40 kW battery capacity. This happens because an 
increasing amount of PV energy is available via battery to cater to the load demand. The 
energy import curve also shows a reduction in the pace of decrement for battery capacity 
values above 22 kW. The optimal battery capacity obtained using GA (Section 7.1) and 
respective annual cost, energy import, and battery charging are marked in the figure for 
reference. This analysis aids the designer in the selection of optimal battery capacity based 
on individual preferences.

Figure 25. Sensitivity analysis: impact of battery capacity on the annual energy cost, battery charging, 
and energy import for maximum satisfaction value from Case 2 MGWASA.

7.5.3. Impact of Climatological Conditions, Battery Health, and Tariff Price

Apart from optimal scheduling, several other factors play a decisive role in deter­
mining the cost of energy. Climatological conditions such as irradiance, cloud cover, and 
precipitation directly dictate the amount of PV energy production. On the other hand, 
batteries are not only expensive, but they also have a shorter service time, which makes 
battery health a crucial parameter. Lastly, the tariff price of the utility grid has a direct 
impact on the cost of energy. In recent times, crude oil prices have gone down, which 
influences the tariff price because crude oil-based thermal power plants have the largest 
share in total power generation in Pakistan. In light of the above-mentioned facts, the effect 
of PV energy production, battery health, and tariff price on the annual energy cost was 
analyzed. To perform this sensitivity analysis, optimal size (Section 7.1) values were used.
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Figure 26 shows the sensitivity graphs obtained via sensitivity adjustment performed using 
20% decrements. The nominal values (without adjustment) of the sensitivity parameters 
are marked by the "Base" point on the sensitivity curve's abscissa. A significant increase 
in the annual energy cost can be observed for decreasing PV energy values because the 
dependency on the costly utility grid increases with lower PV energy production. The sen­
sitivity curve of battery health against annual energy cost shows a similar trend. However, 
battery health has a relatively smaller impact on the annual energy cost compared to PV 
energy. This is attributed to the fact that the battery size is relatively small compared to the 
daily residential load. The tariff price, on the other hand, also has a significant impact on 
the value of annual energy costs. The annual energy cost rises in accordance with the price 
of the tariff.

Figure 26. Sensitivity analysis: impact of PV energy, battery health, and tariff price on the annual 
energy cost for maximum satisfaction value from Case 2 MGWASA.

7.6. Analysis o f Net Present Cost o f the System

The total net present cost (NPC), and associated categories, of integral components 
of the proposed system are shown in Figure 27. It can be observed from Figure 27a that 
batteries have the overall highest total NPC of ca. 46%, followed by PV (31%) and inverter 
(23%). However, the breakdown of system cash flow categories (Figure 27b) highlights that 
the seemingly high cost of batteries is distributed over the project's entire lifetime owing to 
their shorter lifespan, requiring frequent replacement. On the contrary, the PV module's 
procurement cost has the biggest capital cost share. However, the impact on the overall 
system cost is comparatively smaller due to its longer lifespan. It can also be seen that the 
capital cost of the inverter is higher than batteries. However, they are only replaced once 
during the project lifetime, resulting in a smaller effect on total NPC. Unlike inverters, there 
is also O&M cost associated with PV modules and batteries. The total NPC was calculated 
to be ca. 21,700$ divided into capital cost, O&M cost, and replacement cost, having 46%, 
4%, and 50% shares, respectively.
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Figure 27. (a) Component and (b) cash flow category-wise breakdown of the total NPC of the 
proposed system.

7.7. Energy Cost Analysis and Cash Payback Period

In order to validate the profitability of the study, a comprehensive analysis of the 
energy cost, project expenses, and revenue is carried out to determine the cash payback 
period (CPP). Figure 28 shows the annual energy cost analysis of all three cases, both with 
and without the integration of RER and ESS. The base case's highest annual energy cost of 
3221$ is obtained, excluding the proposed scheme and EMS. The least annual energy cost 
of 1507$ is obtained for the optimal case, where optimal load scheduling via MGWASA and 
EMS are considered. The annual energy cost of the ideal case resides relatively in between 
the base and optimal cases. It is evident from Figure 28 that the integration of RER and ESS, 
regardless of the case, has a substantial impact on the annual energy bill. From the annual 
energy cost analysis, it is calculated that a yearly profit gain (PGi) of 1191$ is achievable.

The CPP of the investment in the PV module and ESS is calculated by evaluating the 
net present value (NPV) of the system for each year of the project lifespan [41]:

N PV  =  -(C p v  +  CCess +  CCIm) +  £
NCFi

i=1 (1 +  r ) i
(36)

where Cpv, CCEss, and CCInv represent the cost incurred on the PV module, ESS, and 
inverter, respectively. While n denotes the project's lifespan, NCF  shows net cash flow, and
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r represents the incentive in the form of a discount by the government. The yearly NFC  is 
calculated by:

NCFf =  PGi -  OMi (37)

where PGi shows the profit gained for the year i compared to the ideal case (w/o EMS), 
while OM i represents the annual O&M spending on the PV and ESS.
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Figure 28. Annual energy cost analysis for all three cases with and without integration of RER 
and ESS.

Taking an inflation rate of 3%, the CPP is calculated to be ca. 12.5 years, as shown 
in Figure 29, for a properly implemented project. Furthermore, an estimated net profit of 
8075$ is achievable after 25 years of service. Figure 29 indicates that the proposed system is 
economically beneficial and offers a low-risk investment opportunity owing to a short CPP. 
Such a system can contribute significantly towards sustainable global development goals 
by reducing greenhouse gas emissions and increasing power reliability.

Figure 29. CPP analysis of the proposed system over the project lifetime.



Sustainability 2023,15, 957 36 of 38

8. Conclusions and Outlook
A consumer preference-based EMS utilizing MGWASA has been presented in this 

paper. The concept of absolute consumer satisfaction has been realized by assigning time- 
varying preferences to the appliances in the time and device-based domain. MGWASA 
was used to generate an optimal appliance scheduling pattern to maximize consumer 
satisfaction at a reduced cost. Furthermore, GA has been used to find the optimal capacity 
of the employed hybrid RER-ESS. The effectiveness of the proposed technique has been 
demonstrated by simulating a smart home with different cases and scheduling scenarios. 
The simulation results showed that the proposed technique significantly improved con­
sumer satisfaction with a minimum cost per unit satisfaction compared to other scheduling 
scenarios and optimization algorithms like NSGAII, MOBPSO, MOABC, and MOEA. MG­
WASA yields better results as it offers the optimum Csj ndex of $0.049 with a %S of 97%, 
compared to NSGAII, MOBPSO, MOABC, and MOEA, which yield optimum solutions 
of 97%, 95%, 90%, 92%, and 94% percent satisfaction at a relatively expensive Csjindex of 
0.052$, 0.048$, 0.0485$, and 0.05$, respectively. Further analysis of the simulation results 
has revealed that the proposed technique has achieved 44% annual energy cost reduction 
by optimally scheduling the residential loads so that the PV is 20% more efficiently utilized 
compared to the base scenario.

Since the scope of this work was limited to the TOU pricing scheme for the entire 
scheduling duration, it is recommended that future work focuses on the dynamic pricing 
scheme, which may also consider the time and duration of appliance operation. In addition, 
the current framework considered the smart home as a single entity; hence, a single 
consumer preference was considered. It is possible to extend the current work to a scenario 
where multiple consumers with conflicting preferences are living in a smart home.
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